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SUMMARY. The von Koch beam is one of the most well-known fractal structures, and it turns 

out to be particularly suitable to design fractal antennas. In this paper, its mechanical behaviour is 

investigated, by considering it as a hierarchical Eulero-Bernoulli framed-beam structure. 

Reductions of stiffness, mass and damping matrices lead to simple analytical recursive 

relationships, depending on the fractal dimension. A methodology to analyze damping of fractal 

antennas is proposed. Eventually, the results are exploited to perform a complete modal analysis 

and the response of the structure to the unit step function is considered. 

 

1 INTRODUCTION 

Fractal-shaped antennas have some unique characteristics that are linked to the geometrical 

properties of fractals [1-2]. Firstly, because the self-similarity property of fractals makes them 

specially suitable to design multi-frequency antennas [1]. Secondly, because the huge space-filling 

properties of some fractal shapes (i.e. the fractal dimension) help in the realization of small 

antennas to better take advantage of the surrounding space [2]. 

The properties of a von Koch curve [3], an archetype of fractal antennas, have recently been 

widely investigated: the existence of a homeomorphism between the closed real interval [0,1] and 

the von Koch curve has been proved in [4], while an analysis on the surface contained inside a 

Von Koch snowflake has been developed in [5]. On the other hand, to what concerns a von Koch 

beam, considered as a hierarchical Eulero-Bernoulli framed-beam structure, its static mechanical 

behaviour has been analyzed, both numerically [6], by means of a self-similarity postulate, and 

analytically [7], by means of simple recursive relationships on the strain energy and stiffness 

matrix. These results have been extended fot the computation of the mass matrix and to perform, 

consequently, a complete free-vibration analysis of the structure [8]. Thanks to matrix reduction 

[9-11], simple recursive scaling laws are provided. 

In this paper, the analysis of the mechanical behaviour is extended to a generic von Koch beam 

i.e., with a generic indentation angle, and to the damped case. The paper is structured as follows: 

in Section 2, the von Koch beam construction is briefly recalled as well as the equation which 

describes how the fractal dimension of the structure varies as the indentation angle varies. 

Stiffness, mass and damping matrix scaling laws related to such structures are presented in Section 

3. In Section 4, these results are exploited to perform a complete modal analysis and to evaluate 

the resonant and damped resonant frequencies of a von Koch cantilever beam. Eventually, the 

response of the structure to the unit step function is investigated by means of a Finite Element (FE) 

analysis. 



2 GENERIC VON KOCH BEAM 

The classical von Koch beam is generated starting from a line segment of length l0 (called the 

intiator): at each step the middle third of each segment is removed and replaced by the other two 

sides of the equilateral triangle based on the removed segment (Fig. 1). In this case, an indentation 

angle θ=60° is taken into account and the fractal dimension of the structure is D=ln 4/ln 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: First four iterations in the classical von Koch beam generation. 

 

The construction may be generalized to a generic von Koch beam i.e. with a generic value of θ, 
then considering a different fractal dimension according to the relationship:  
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The fractal dimension D
*
 is hence a monotonic increasing function of the angle θ, 0≤θ<90°. 

 

3 STIFFNESS, MASS AND DAMPING MATRICES 

The static analysis of a von Koch beam has been widely investigated in [7]. Since at each 

iteration n the number of nodes (and hence of the degrees of freedom, d.o.f.’s) grows 

exponentially as 2
2n+1

, the dimensions of the stiffness and mass matrices increase. In [7-8] it has 

been proved that, by reducing matrices with respect to the same set of nodes (henceforth called 

master, as the related d.o.f.’s), particular scaling laws, depending on the fractal dimension, emerge 

after different iterations of the structure . Starting from the results on the strain energy, obtained by 
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considering a classical von Koch cantilever beam subjected to three different loading conditions 

[7-12], the reduced stiffness matrix [K]n of a generic von Koch beam can be written as: 
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where l0 is the length of the initiator (n=0), ln=q
n
 l0 is the length of each rectilinear beam 

constituting the structure at the n-th step, k is the beam rigidity, i.e. the product of the Young’s 

modulus E of the material times the moment of inertia I of the cross-section with respect to the 

neutral axis, and nK ][  is the dimensionless stiffness matrix, which converges to finite values after 

approximately six iterations. The stiffness matrix [K]n in Eq. (3) scales asymptotically as (4q)
–n

, 

exactly as the total length Ln. For n tending to infinity, the structural stiffness trivially tends to zero 

and the structure becomes infinitely compliant. 

On the other hand, taking into account the real distribution of the masses over the beam, the 

following recursive relationship of the mass matrix [M]n is satisfied [8]: 
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m=ρA being the mass per unit length, where ρ is the material density and A is the area of the cross-

section, and nM ][  the dimensionless mass matrix, which converges to finite values after a few 

iterations. Eq. (4) represents the counterpart of Eq. (3): while each term of the stiffness matrix 

tends to vanish (by scaling asymptotically as (4q)
–n

) as the number of iterations n increases, the 

coefficients of the mass matrix diverge (by scaling as (4q)
n
).  

The validity of Eqs. (3) and (4) for a generic angle θ different from 60°, which has been 

implicitly assumed so far, will be proved in the next section by considering the related modal 

analysis.  

Eventually, let us consider the special case in which the symmetric damping matrix [C]n is a 

linear combination of the matrices [M]n and [K]n, namely when: 

 

 nnnnn KMC ][][][ β+α= ,          n>1, (5) 

 

where αn and βn are real constants. This damping model is also known as “proportional damping” 

or “Rayleigh damping”. Modes of proportionally damped systems preserve the simplicity of the 

real normal modes as in the undamped case. It follows from Eqs. (3) and (4) that, if αn and βn are 

not supposed to vary at each iteration, i.e. αn = α and βn = β, the damping matrix scales 

asymptotically exactly as the mass matrix. In Section 4, it will be shown that this condition is 

physically unacceptable and suitable scaling laws for the two constants will be provided. 

Observe that stiffness and mass matrices (and consequently the proportional damping one) 

remain finite as n increases only if the beam rigidity k and the mass per unit length m scale as (4q)
n
 

and (4q)
 –n

, respectively. 

 

 



4 MODAL ANALYSIS 

By means of Guyan’s reduction [9] the choice of reducing stiffness and mass matrices with 

respect just to the extreme nodes is sufficient for the investigation of the first two vibrating 

frequencies related to a von Koch cantilever beam [8]. By increasing the number N/3 of master 

nodes, as to the five of the first order von Koch beam, the number of modes which can be 

accurately analyzed increases to seven [11]. Note that self-similarity of the structure can be 

exploited to simplify calculations [6]. 

4.1 Free vibration motion 

Once the stiffness and mass matrices are known (Eqs. (3) and (4)), the governing differential 

equation of motion of a von Koch beam, in its free natural vibration, can be written as: 

 

 { } { } { }0][][ =δ+δ nnnn KM && , (6) 

 

{δ}n and { }
nδ&&  being the vectors of nodal displacements and the corresponding accelerations, 

respectively, at the iteration n. In order to investigate the free oscillation of the system, let us 

suppose that the generalized coordinates vary harmonically in time t as: 

 

 { } { } tnnn ωδ=δ sin0 , (7) 

 

where angular frequencies ωn and maximum amplitudes {δ0}n are to be determined via the 

eigenvalue problem:  
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By solving Eq. (8), the following natural frequency scaling law is obtained [8]: 
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where the first subscript refers to the mode, while the second one refers to the von Koch beam 

iteration (ω1,n, for instance, is the fundamental frequency related to the n-th order iteration). 

Fundamental frequency behaviour of a von Koch cantilever beam is plotted in Fig. 2, while the 

coefficients ai,n
(ω) 

related to the first three natural frequencies are reported in Table 1: if four 

decimal digits are taken into account, convergence is expected after nearly six iterations.  

Note that the Ti,n period scaling law is trivially recovered by inverting Eq. (9). On the other 

hand, inserting it into Eq. (8) yields: 
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the modes having been opportunely normalized with respect to the mass. ][ )(
,
δ
nia  is the N×N 



diagonal matrix of the normalized eigenvector coefficients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Dimensionless natural frequencies vs. iteration n, for different indentation angles θ. 
 

 

Angle Iteration n 1 2 3 4 5 

a1,n
(ω)

 1.0000 0.9994 0.9990 0.9989 0.9989 

a2,n
(ω)

 1.0000 1.0004 1.0008 1.0010 1.0011 

 

15° 

a3,n
(ω)

 1.0000 0.9632 0.9618 0.9615 0.9614 

a1,n
(ω)

 1.0000 0.9975 0.9964 0.9961 0.9961 

a2,n
(ω)

 1.0000 1.0152 1.0182 1.0188 1.0193 

 

30° 

a3,n
(ω)

 1.0000 0.9678 0.9636 0.9625 0.9622 

a1,n
(ω)

 1.0000 0.9949 0.9926 0.9919 0.9918 

a2,n
(ω)

 1.0000 1.0434 1.0515 1.0532 1.0536 

 

45° 

a3,n
(ω)

 1.0000 0.9842 0.9811 0.9797 0.9793 

a1,n
(ω)

 1.0000 0.9932 0.9899 0.9986 0.9884 

a2,n
(ω)

 1.0000 1.0905 1.1084 1.1118 1.1125 

 

60° 

a3,n
(ω)

 1.0000 1.0225 1.0253 1.0235 1.0228 

a1,n
(ω)

 1.0000 0.9979 0.9934 0.9920 0.9917 

a2,n
(ω)

 1.0000 1.1667 1.2047 1.2132 1.2152 

 

75° 

a3,n
(ω)

 1.0000 1.0922 1.1138 1.1157 1.1157 

 

Table 1: Coefficients ai,n
(ω)

 related to the natural frequency scaling laws (Eq. (10)). 

 

The physical soundness of the scaling laws provided by Eqs. (9) and (10) is supported by 



introducing the Rayleigh’s quotient: 
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which consistently scales as (4q)
 –2n

.  

 

4.2 Forced damped motion 

The response of a general viscously damped system represents a considerably more difficult 

problem, due to the coupling introduced by damping. Also in this case, the differential equations 

of motion may be written in the matrix form: 

 

 { } { } { }nnnnnnn FKCM =δ+δ+δ ][}{][][ &&& , (12) 

 

where {F}n is the reduced vector of the applied forces. 

Let us now introduce the modal matrix [∆]n (i.e., the matrix whose columns are the normalized 

eigenvectors provided by Eq. (10)) and the transformation 

 

 nnn tt )}({][)}({ η∆=δ , (13) 

 

{η(t)}n being the normal coordinates. Inserting Eq. (13) into Eq. (12) yields 

 

 { } { } nnnnnn Qc }{][}{][ 2 =ηω+η+η &&&  (14) 

 

where [ω2
]n is the N×N diagonal matrix of the natural angular frequencies, {Q}n is the N modal 

force vector and [c]n is a N×N symmetric matrix, generally non-diagonal. In the proportional 

damping case (Eq. (5)), [c]n does indeed become diagonal (let us remember that Eq. (5) is a 

sufficient but not necessary condition to get [c]n diagonal, [13]):  
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where [I] is the N×N diagonal unit matrix and ζi,n is the modal damping factor 
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so that Eq. (14) reduces to an independent set of equations: 
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It follows from Eqs. (9) and (16) that, if αn and βn do not vary, ζi,n scales asymptotically as (4q)
n–1

: 

in such a case, the von Koch beam tends to become an over-damped system for each mode, a 

physically unacceptable condition. The problem of computation of Rayleigh damping coefficients 

has been faced by several authors (see, for a deeper analysis, [14-15]). The easiest practice consists 

in assuming a constant damping ratio ζ for all significant modes. On the other hand, since it is 

generally observed that ζi increases with increasing the mode order, it is not difficult to describe 

the Rayleigh damping by choosing ζi= ζ (n fixed) for two modes in Eq. (16) and solving the 

corresponding damping coefficients αn and βn. Considering the first two frequencies, yields: 
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Once ζi is evaluated, the damped frequency related the i-th mode clearly reads 
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Let us now investigate the damped response of a generic von Koch cantilever beam to a 

transversal unit step function F=u(t), where u(t)=0 for t<0 and u(t)=1 for t>0, applied at the free 

end (Fig. 3). Null initial conditions are assumed. By means of Eqs. (18a,b), values of αn and βn for 

all significant modes have been evaluated, starting from a damping coefficient ζ equal to 0.05. 

LUSAS
®
 code has been used to perform FE simulations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Von Koch cantilever beam subjected to a unit step transversal force at the free end. 

 

First of all, let us turn our attention to a specified von Koch cantilever beam, with a fixed angle θ, 

u(t) 

vn 

x 

y 



and let us consider the time history of the transversal displacement at the free end for different 

iterations, vn. Results are presented in Fig. 4: as the iteration n increases, the frequency of 

oscillation decreases, nevertheless its amplitude increases. Furthermore, the structure becomes 

more compliant, in perfect agreement with the analysis performed in [7]. Note that the steady-state 

response is reached earlier by lower order von Koch structures.  

Let us now compare the step response between generic von Koch beams, with n fixed (Fig. 5, 

n=5): the frequency of oscillation decreases as the indentation angle θ increases, since lower 

natural frequencies correspond to higher values of θ [16] (Fig. 2). The steady-state response is 

reached earlier by smaller indentation angle structures, which also result to be stiffer.  

Analogous results have been obtained by applying both a longitudinal unit step function and a 

unit impulse function. In the former case, the steady axial displacement at the free end is nearly a 

order of magnitude less than in the previous case [7], while in the latter the steady response is 

simply vn=0. By summarizing, more damped responses are expected by either decreasing n or θ: 
these results, together with the multi-frequency analysis performed in [1-2], could be particularly 

useful in fractal antenna design. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Von Koch cantilever beam subjected to a unit step transversal force: dimensionless 

transversal displacement vs. normalized time, for different iterations n (θ=60°). 

 

 

 

 

 

 

 

 



Figure 5: Von Koch cantilever beam subjected to a unit step transversal force: dimensionless 

transversal displacement vs. normalized time, for different indentation angles θ (n=5). 

 

5 CONCLUSIONS 

 

The mechanical behaviour of a damped von Koch beam has been investigated in this paper. 

Simple recursive scaling laws are obtained, by keeping fixed at each iteration n the number of 

master nodes, to which stiffness, mass and proportional damping matrices are reduced. Eventually, 

the forced damped response of the structure to the unit step function for different iterations and 

indentation angles is analyzed: a methodology to investigate damping of fractal antennas is 

proposed. 

 

References 

[1] Cohen, N., “Fractal and shaped dipoles”, Commun. Quart., 25-36, (1996). 

[2] Puente, C., Romeu, J. and Cardama, A., “The Koch monopole: a small fractal antenna”, IEEE 

Transaction on Antennas and Propagation, 48, 1773-1781 (2000). 

[3] Von Koch, H., “An elementary geometric method for studying some questions in the theory 

of planar curves” (in French), Acta Math., 30, 145-174, (1906). 

[4] Epstein, M. and Śniatycki, J., “The Koch curve as a smooth manifold”, Chaos Solitons 

Fractals, 38, 334-338 (2008). 

[5] Milosǒevic´, R.T. and Ristanovic, D., “Fractal and nonfractal properties of triadic Koch 

curve”, Chaos Solitons Fractals, 34,1050–59, (2007). 

[6] Epstein, M., and Adeeb, S., “The stiffness of self-similar fractals”, Int. J. Sol. Struct., 45, 

3238-54, (2008). 

[7] Carpinteri, A., Pugno, N. and Sapora, A., “Asymptotic analysis of a von Koch beam”, Chaos 

Solitons Fractals, 41, 795-802, (2009). 

[8] Carpinteri, A., Pugno, N. and Sapora, A., “Free-vibration analysis of a von Koch beam”, to 

appear. 

[9] Guyan, R.J., “Reduction of stiffness and mass matrices”, Am. Inst. Aeronaut. Astronaut. J., 3: 

380 (1965). 

[10]  Lin, R. and Xia, Y., “A new eigensolution of structures via dynamic condensation”, J. Sound 



Vibr., 266, 93-106, (2003). 

[11] Bouhaddi, N. and Fillod, R., “A method for selecting master DOF in dynamic substructuring 

using the Guyan condensation method”, Comput. Struct., 45, 941–46, (1994). 

[12] Carpinteri, A., Pugno, N., and Sapora, A., “Fractals to model hierarchical materials and 

structures”, Atti del XVIII Convegno Associazione Italiana di Meccanica Teorica ed Applicata 

(AIMETA), Brescia, Italia, 11-14 settembre 2007, CD-ROM, Paper N. SO 17.1 (2007). 

[13] Caughey, T.K. and O’Kelly, M.E.J,. “Classical normal modes in damped linear dynamic 

systems”, Transactions of ASME, J. Appl. Mech., 32, 583–588, (1965). 

[14] Chowdhury, I. and Dasgupta, S., “Computation of Rayleigh damping coefficients for large 

systems”, The Electronic Journal of Geotechnical Engineering, 8, Bundle 8c, (2003). 

[15] Adhikari, S., “Damping modelling using generalized proportional damping”, J. Sound Vibr., 

293, 156–170, (2006). 

[16]Carpinteri, A., Structural Mechanics - A Unified Approach, Chapman & Hall, London, (1997). 

 

 


