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Abstract This paper presents two automated methods for the segmentation of immunohistochemical tissue
images that overcome the limitations of the manual approach as well as of the existing computerized techniques.
The first independent method, based on unsupervised color clustering, recognizes automatically the target can-
cerous areas in the specimen and disregards the stroma; the second method, based on colors separation and
morphological processing, exploits automated segmentation of the nuclear membranes of the cancerous cells. Ex-
tensive experimental results on real tissue images demonstrate the accuracy of our techniques compared to manual
segmentations; additional experiments show that our techniques are more performant in immunohistochemical
images than popular approaches based on supervised learning or active contours. The proposed procedure can be
exploited for any applications that require tissues and cells exploration and to perform reliable and standardized
measures of the activity of specific proteins involved in multi-factorial genetic pathologies.
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Figure 1: Examples of IHC lung cancer tissue images. A: 400x image with membrane activity; B: 200x image
with cytoplasm activity; 800x image with membrane activity.

1 INTRODUCTION

In this paper we address the problem of immunohistochemical tissue image segmentation.
In the last few years biological imaging has definitely undergone a revolution and new techniques have

been shown to be effective in extracting clinical and functional information from images of molecules and
tissues. In particular, the quantification of the activity of specific proteins through the analysis of tissue
images provides critical information about important multi-factorial genetic pathologies, such as cancer. For
example, EGFR/erb-B family of receptors plays an important role for non-small cell lung carcinoma (NSCLC)
development. Quantifying and classifying the EGFR expression and activity in NSCLC with special regard
to the assessment of the prevalence of EGFR mutations as well as to ligand-receptor interactions lead to new
insights into the modulation of EGFR in individual lung carcinomas [1].

In addition to its well-established role in the early diagnosis of cancerous diseases, protein expression analysis
recently acquired a new important role in the design of novel targeted therapies: the correlation of standardized
measurements of protein expression from pathological tissue images with genetic expression data extracted from
the same tissues allows to define a group of potential candidates to protein family-inhibiting therapies as well
as to classify the specific pathology in a more accurate way through its specific genetic alterations [1, 2, 3].

A widespread technique in this field which leads to protein activity quantification is immunohistochemistry
(IHC), that is the analysis of cancer tissue images where marked antibodies are used to link specific proteins
in situ, as well as their ligands; the evaluation of the colored stains at the specific subcellular regions where
the markers are localized (i.e. nucleus, cellular membrane, cytoplasm) provides important information for the
assessment of cancer [1]. Fig. 1 shows three images taken from different tissue specimens, where brown and blue
stained regions indicate that the relative marker is present.

In the last few years this technique has acquired a central role in pathology thanks to its several advantages
over alternative bioimaging techniques (e.g. fluorescence in situ hybridization, FISH); among them, its wide
availability, low cost, easy and long preservation of the stained slides [4].

Currently, pathologists usually resort to slow, manual analysis to extract information from IHC images.
This is time-consuming, not scalable for very large datasets and extremely affected by inter- as well as intra-
operator variability [5]. Moreover, IHC‘s new role in target therapy response prediction and in the correlation
of protein and genetic expression data [1, 2, 3] is placing new demands on the reproducibility of the obtained
information [6]. This calls for new automated tools able to assist the pathologist in their examinations and to
provide fast, accurate and standardized measures of protein activity in IHC images.

Protein expression has to be computed within the specific subcellular location of interest of the analyzed
receptors (nuclei, cellular membranes or cytoplasm, depending on the receptor) in order to obtain sensible bio-
logical information [1]; in fact the subcellular location in which the receptors are expressed may represent a very
small percentage of the whole imaged area. This translates into a cell-by-cell evaluation of the subcellular stain,
that is much more specific than simple quantification of the global amount of the stain in the whole image [7, 8]
and that requires preventive recognition of the cancer cells in the specimen and accurate segmentation of the
subcellular compartments where the target receptors are localized.

In this paper we present fully-automated techniques that exploit: i) recognition of the cancerous cells and
separation from the non-cancerous tissue areas in the specimen (e.g. stroma) and ii) segmentation of cancerous
nuclei in the areas identified at point i). The proposed procedure can be exploited to perform reliable and
standardized measures of protein activity as well as for any other applications that require tissue and cell
exploration.

To this day, literature does not provide effective fully-automated procedures to perform the tasks addressed
by this paper. Commercial microscopy software usually allow the user to select the subcellular location of
interest for protein activity quantification in a semiautomated or automated way; nevertheless, these tools are
based on simple approaches that suffer due overgeneralization, and most of the times require extensive user
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interaction, so that the objectivity of the result tends to be lost [4, 6, 9, 10]. In particular, commercial products
generally require the user to select manually the areas that are richest in tumoral cells [11, 12], to set intensity
thresholds or levels to distinguish the cellular patterns from the background [13, 14] or to outline a set of cells
that are representative of the tumor or of the specific targeted cellular regions [15, 16]. Moreover, most of
these commercial tools are integrated into whole-slide scanning instruments [11, 16] or are hardware-based in
that they require multispectral imaging technologies attached to microscope platforms that may be not readily
available to a regular pathologist or onchologist [15, 17].

The recent literature reports many attempts to develop automated methods for nuclear segmentation. The
used approaches vary among the most widely known image processing techniques, including intensity thresh-
olding [18, 19], active contours [20, 21, 22, 23, 24], watersheds [24, 25, 26], multiscale analysis [27], a priori
geometric models [28, 29], graph-cuts [30], Markov random fields [31], etc. Despite active research in this field,
reliable cancerous nuclei segmentation remains extremely challenging.

The major contribution of this paper is to provide a fully automated and flexible procedure that overcomes
the limitations of the existing computer-based techniques.

The paper is structured as follows: in Section 2 we discuss the main challenges related to IHC tissue image
segmentation and limitations of the existing techniques and we describe the main contributions of our work; in
Section 3 we present our case study related to the IHC analysis of lung cancer tissue images and we describe in
detail our proposed methods; in Section 4 we discuss parameters and implementation; in Section 5 we present
experimental results; Section 7 concludes the paper.

2 BACKGROUND

2.1 IHC Analysis and Image Characteristics

The images targeted by our methods are high-resolution microscopy pictures of tissue samples stained with
marked antibodies [1] (see Fig. 1 for examples).

In general, IHC techniques use different stains to detect the activations of specific proteins and distinguish
them from regions without activations. The purpose of IHC image analysis is to separate the activated image
regions from the rest of the image. Literature reports several methods and protocols for the quantification
of IHC specimens [32], which generally include both evaluation of the intensity and of the continuity of the
staining in the specific subcellular location that is targeted by the receptors. In particular, this analysis requires
i) identification of the cancerous areas in the tissue sample, ii) cell-by-cell identification of the subcellular
compartments of the cancerous cells (i.e. nuclei, cellular membranes or cytoplasm) that are targeted by the
given receptors, and then iii) at the only locations of interest previously identified, cell-by-cell evaluation of
the staining and of the percentage pixels that are positive to the target receptors. The positive portions are
highlighted by a more intense coloration compared to the negative ones, that are just lightly stained or not
stained at all. These cell-by-cell measures will be then categorized into three or four groups (typically 0 to 3+)
in order to obtain a scoring of protein expression in the whole sample [28, 33].

In this paper we focus on the first two steps of the procedure. In particular we discuss the segmentation of
nuclear membranes, that is a critical task not only for the quantification of images with nuclear activity [18] (i.e.
where receptors activations are specifically localized in the nuclei), but also for images with cellular membrane
and cytoplasm activity (see Fig. 1): in fact nuclear membranes are generally used as reference curves to detect
cellular membranes and cytoplasm [28, 33].

The main features of IHC images that make the selection of the cancerous tissue and the segmentation of
nuclear membranes challenging are:

1. the presence of tissue components that are not of interest for the analysis (i.e. lymphoids, blood vessels,
non-cancerous tissue components, etc.);

2. the superposition of different tissue slices, due to the unidealities of the sample preparation process [6];

3. the colocalization of different stains [8];

4. the presence of clustered or touching cells;

5. the non-predictable morphological variations of the tissue induced by the pathological process;

6. the heterogeneity (in terms of both intensity gradient and color) of the regions to be recognized. This is
mainly due to:

(a) the uneven activation intensity leading to variable color intensity;

(b) the superposition of different colors due to the unideal distribution of the stains on the reactive
regions and the superposition of different tissue layers;
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(c) the variation of the illumination over the tissue specimen.

These heterogeneities are intrinsic of IHC technique, which is renowned for being affected by many sources
of variability related to the preparation of the samples as well as to the acquisition of the images (e.g.
fixation conditions, specimen pretreatment, reagents, detection methods, etc.) [6].

2.2 Related Works and Contributions

The image characteristics described in the previous section make IHC tissue segmentation a challenging task.
In the last few years there have been many efforts towards the development of automated methods for nuclear
segmentation; nonetheless, to these days literature does not provide any fully-automated procedure able to cope
with all the critical issues discussed in Section 2.1.

Stains’ colocalization, which is a frequent phenomenon in IHC imaging, is a highly critical issue for most
of the methods based on classical color segmentation [7, 8]. Several methods in literature classify pixels on the
base of their red-green-blue (RGB) values [29, 34] or of color features obtained by transforming the RGB image
information to hue-saturation-intensity (HSI), hue-saturation-value (HSV), CIELab [8, 28] or other color specific
representation such as Blue/Red ratio and Green channel [35]. Nevertheless, most of the color segmentation
techniques present problems in presence of stains’ colocalization [8], since pixels are classified as belonging to
a stain or to another one but more than one dye may have contributed to the final color. Color classification
methods do not necessarily exclude stains colocalization, since mixed colours can be classified on the base of
their proximity to the features that are representative of one of the pure color classes. Some methods even
overcome the problem of class non separability due to color mixing by using masks that modify the ambiguous
pixel values [34], although these solutions provide reliable distinction between positive and negative cells rather
than stain-specific intensity information.

The inhomogeneous staining and illumination of the specimen complicates the distinction between fore-
ground and background and leads traditional intensity-based segmentation techniques such as global intensity
thresholding [18, 19] to error.

The effectiveness of other widely used segmentation methods such as edge-based techniques (e.g. Canny [36]),
active contours [20, 21, 22, 23, 24] or watersheds [24, 25, 26] is limited by the remarkable intensity variations
within as well as outwards the targeted cellular regions. In particular, active contours are highly impacted
by the hard noise conditions, the non predictable intensity variations within the nuclei and the massive pres-
ence of close or overlapped foreign particles which may deviate the initial curve from the target boundary. In
Section 5 we report results obtained applying active contours to the segmentation of nuclear membranes. Wa-
tersheds approaches [24, 25] are rather affected by over-segmentation and multiple watershed lines; the attempt
to overcome over-segmentation through seeded watersheds [26] presents problems in obtaining only one seed
per object and often resorts to extensive user-interaction. In our approach watersheds are used just to sepa-
rate clustered nuclei; then correction steps based on morphology and gradient magnitude analysis are applied
to overcome over-segmentation. Edge-based techniques include also multiscale analysis [27], that can handle
intensity variations but do not address overlapping nuclei with weak edge information.

Techniques based on geometrical templates or on fixed models of the tissue morphology [28, 29] suffer due
overgeneralization because of the non predictable shape and size variations of the cells; these variations are
induced by the pathology as well as by the mechanical and thermal stress related to the preparation of the
sample.

Alternative approaches include graph-cuts methods [30], that depend on manual initialization, and Markov
random fields [31], that suffer due undersegmentation.

The several sources of variability that naturally affect IHC imaging [6] reflect in the heterogeneity of the fea-
tures of the produced images, so that supervised learning techniques based on mathematically superior methods
such as support vector machines [37] (SVMs) suffer from classes’ non-separability due to the heterogeneity of
the training sets. In Section 5 we report experimental results obtained applying SVMs to the selection of the
cancerous tissue.

In conclusion, most of the times manual intervention is still necessary to resolve difficult/ambiguous cases.
Recent literature reports examples of automated techniques for cell and nuclear segmentation of microscopy
images; nevertheless, most of these techniques are specifically intended to fluorescent cellular images [24, 38],
where each dye is identified by a specific emission wavelength, so that the cellular structures of interest (such as
nuclei) can be easily isolated from the rest of the tissue and visualized in a specific channel. Other techniques
exploit nuclear segmentation of IHC images with nuclear activations [18, 39], that are less noisy and relatively
easier to segment than images with membrane or cytoplasm activations.

Our proposed method is mainly a color and morphology-based procedure; as such the novelty of the method is
in how color segmentation and morphological operators are applied in the specific context of IHC tissue imaging
in order to solve the technical problems that are typical of this field. Summarizing, the main contributions of
our paper are the following: i) we exploit morphological and chromatic characteristics of the tissue in order
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to recognize the cancerous tissue automatically, thus avoiding the necessity of manual selection of the target
tissue areas; ii) we separate nuclei from background by exploiting local analysis of intensity distribution in
the neighborhood of each cell; this leads to minimize the effect of noise as well as of uneven staining and
illumination, that are major problems in IHC imaging; iii) we separate clusters through watershed algorithm
and then we correct watersheds oversegmentations through an innovative technique which merges oversplit
nuclei by exploiting chromatic characteristics of the cells.

3 MATERIALS AND METHODS

3.1 Case Study: Segmentation of Lung Cancer IHC Tissue Images

In this paper we applied our proposed techniques to images of lung cancer tissue (see Fig. 1 for examples). This
is an application of great impornance in biomedicine: in fact lung cancer is one of the leading causes of death
for tumor: despite extensive preclinical and clinical research has been led for decades, lung cancer’s prognosis
is still very low with only 5-15% of patients surviving 5 years after the first diagnosis. The characteristics of
these images entail all the challenges mentioned in the previous sections and for this reason they represent a
meaningful case study for our approach. However, the robustness of our algorithm was assessed also in tumors
from other anatomical locations (e.g. kidney, liver, prostate and bone marrow).

Images were acquired from surgical samples of anonymous patients fixed in formalin and embedded in
paraffin. From each paraffin block, 5-µm-thick sections were prepared. After deparaffinization and rehydration
through graded alcohols and phosphate-buffered saline (pH 7.5), endogenous peroxidase activity was blocked by
absolute methanol and 0.3% hydrogen peroxide for 15 minutes. The slides were incubated for 40 minutes at room
temperature with primary monoclonal anti-EGFR antibody (dilution, 1:60; NeoMarkers, Freemont, CA) or with
primary monoclonal anti-TGF-alpha antibody (dilution, 1:300; Calbiochem, Merck, Darmstad, Denmark). The
immune reaction was revealed in a biotin-free detection system based on a dextran chain linked to the secondary
antibody and carrying peroxidase (En Vision; Dako, Glostrup, Denmark), using 3,3-diaminobenzidine (DAB)
as the chromogen. For antigen retrieval steps, the sections were treated in a microwave oven for 15 minutes in
EDTA buffer (pH 8.0). Slides were counterstained with hematoxylin (H), dehydrated, and mounted.

The images to be processed are then characterized by brown (DAB) and blue (H) stains; the relationship
between stains and tissue parts are resumed in Fig. 2.

Figure 2: Details of IHC lung cancer tissue images with membrane (left) and cytoplasm activity (right). A:
positive reactions at the targeted receptors; B: cancerous nuclei; C: negative reactions at the target receptors;
D: non cancerous tissue (stroma, lymphoids, blood vessels, etc.).

A brown DAB stain highlights the specific portion of the cancerous tissue that shows positive reactions
at the EGF-R/erb-B or at the TGF-alpha receptor activation. These positive reactions are localized in the
cellular membranes or in the cytoplasm of the cancerous cells, respectively for EGF-R/erb-B and TGF-alpha
(see Fig.2-A), so that images with EGF-R/erb-B reactions are called images with membrane activity, whereas
images with TGF-alpha reactions are called images with cytoplasm activity.

A blue Hematoxylin stain is used as a contrasting background color; it highlights:

1. the cancerous portions that are negative to the target receptors (i.e. nuclei as well as parts of cellular
membranes or of the cytoplasm that do not react to the studied receptor) (see Fig. 2-B,C);

2. the non-cancerous portions (lymphoids, blood vessels, stroma, etc) present in the sample because of
unidealities in the selection of the tissue (see Fig. 2-D).

In particular, nuclei of both cancerous and non-cancerous cells are always blue-colored, with the H stain
revealing their chromatin content; the blue coloring of the chromatin is generally more intense, so that nuclei
are distinguishable from the background tissue (see Fig. 2-B).
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3.2 Proposed Procedure

Our procedure is based on three consequential step:

1. colors separation, in which a pure hematoxylin (blue) and a pure DAB (brown) image are obtained
from the original RGB picture;

2. selection of cancerous tissue, in which the cancerous tissue is automatically separated from the non
cancerous components (e.g. stroma);

3. segmentation of nuclei, in which the nuclear membranes of the cancerous cells highlighted by step 2
are detected and outlined.

For step 1 we applied a specific literature approach, whereas for selection of cancer tissue and nuclei segmen-
tation we developed custom-designed procedures. All the phases of the algorithm are detailed in the following
subsections and reported in the flowchart of Fig. 3, whereas the set-up of parameters is reported in Section 4.

Figure 3: Flowchart of the proposed technique.

3.2.1 Colors Separation

The purpose of this first method is the separation of the brown (pure-DAB) and blue (pure-hematoxylin)
components of the RGB image; in this way the specific information carried by the two stains, which highlight
different cellular structures in the tissue, can be processed separately. The main challenge of this task is to
obtain an effective color separation in presence of stains colocalization, a very common phenomenon in IHC
tissue images due to the chemical reactions of stains linking the target proteins and to the tissue superposition
during the slicing of the samples. A powerful approach to achieve this target is color deconvolution [40]. It is a
method based on the stain-specific RGB absorption which has been demonstrated to separate reasonably well
up to three overlapped stains in presence of stains colocalization [8]. The technique can be applied not only to
H-DAB images but to any of the most used dies in histopathology (e.g. H-E, H AEC Azan-Mallory, Fast Red,
Fast Blue and DAB, etc.) or to any user-defined die, provided that its RGB components are experimentally
determined and given as an input to the algorithm. The information carried by the pure-brown and the pure-
blue images as obtained after color separation are processed to perform cancer tissue selection and nuclear
membranes segmentation.

In order to get the best performance achievable from color deconvolution, we followed the indications provided
by [40, 41]. As for most colors segmentation techniques, color deconvolution may not produce meaningful results
in case of nuclear stains with mixed high-intensity hematoxylin and DAB staining [7]. This problem does not
arise in images with cytoplasm and membrane staining. In order to obtain reliable nuclear segmentations in
case of nuclear staining, the separate contributions of H and DAB stains have to be merged together (see end
of Section 3.2.3).

3.2.2 Selection of Cancerous Tissue

This method addresses the automated recognition of cancerous tissue from non cancerous areas (e.g. sroma,
blood vessels), thus avoiding the necessity of time-consuming and not feasible manual selection.
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Our method exploits both color and morphological information to distinguish cancerous and non cancerous
areas. First of all we apply unsupervised clustering to partition the sample into regions that are homogeneous
in terms of brown stain intensity, exploiting region-wise rather than pixel-wise color information in order to
deal with color inhomogeneity that is typical of IHC images. Then we apply morphological processing in order
to obtain the final tissue classification, thus associating the tissue regions as obtained from the previous step to
cancerous or non-cancerous tissue.

Given the characteristics of the IHC images, an unsupervised approach was found to be better than ap-
proaches based on supervised learning, such as Support Vector Machines [37, 42]; in fact our experimental
results show that SVMs are not able to deal with the heterogeneity of the training features (see Section 5 for
further details).

The main steps of our procedure are detailed in the following subsections and shown in Fig. 4.

Unsupervised Color Clustering A preliminary partition of the tissue sample is performed through unsu-
pervised clustering of color information taken from pure-DAB image, as obtained from the colors separation
step. This technique is based on the assumption that cancerous pixels are either brown colored or rather have
some brown colored regions in their vicinity; in fact the brown stain highlights only the portions of the cancerous
tissue (i.e. cellular membranes or cytoplasm, respectively) that are positive to the target receptors. Then in our
technique each pixel is assigned to a different cluster depending on the brown intensity which is characteristic
of its surrounding area, and not just of the pixel itself. In particular, the discriminant feature we used is the
following:

F (x) = MinN

〈
ĪN

〉
, (1)

where x and y are the pixels coordinates, N is a neighborhood of radius RN and ĪN is obtained by the pure-
brown image I by averaging the intensities over each pixels neighborhood N . Then the discriminant feature
F (x, y) related to the pixel with coordinates x and y is calculated as the minimum value of all the average
intensities in its neighborhood N ; this corresponds to the mean intensity value of the darkest brown area
around the pixel. Pixels that dont have any positive region in their vicinity are characterized by high values
of F (x, y) whereas pixels that have positive regions in their vicinity are characterized by low values of F (x, y);
in fact light brown areas correspond to high intensity values, and so to high values of F , and vice-versa. The
radius of the neighborhood RN is dependent on the cell size, and thus on image resolution (see Section 4 for
details).

Cancerous tissue is generally characterized by more than a value of F (x, y): in fact the brown stain is
generally lighter or darker in different portions of the cancerous tissue, depending on how positive to the target
protein activation that portion is. Generally pathologists classify the staining into three or four classes [32]; to
be consistent with this praxis, we partitioned the pixels into four clusters. This choice was corroborated as well
by our experiments on real IHC images.

The clusters partition was exploited through a well-established iterative unsupervised learning algorithm,
namely k-means [43]. The cluster that is characterized by the highest centroid value, i.e. by the highest
mean value of F , is constituted by tissue areas that are negative to the target receptor; as shown by Fig. 4-
D, this cluster include non-cancerous regions as well as small round-shaped cancerous regions without receptor
activation (such as nuclei and negative cancerous cells); the other three clusters are constituted by only cancerous
tissue areas, that are positive to the target receptor.

Morphological Processing In order to obtain the final separation of cancerous and non-cancerous tissue,
pixels belonging to cancerous portions that are negative to target receptor have to be selectively removed from
the highest centroid cluster as obtained from the previous described K-means clustering. This is achieved
through morphological processing. In particular, we perform a selective removal of particles with low area and
high circularity; in fact, as shown by Fig. 4-D, negative cancerous portions are small and round-shaped. Area
was measured in terms of number of pixels belonging to each particle, circularity was measured trough the
following index in the [0,1] interval:

Circularity = 4π
Area

Perimeter2
(2)

Threshold values of area and circularity, TA and TC , respectively, are reported in Section 4.
Secondly, non-cancerous tissue usually shows a well-defined boundary w.r.t. cancerous background in terms

of intensity gradient variation (see Fig. 4-B), so that other cancerous regions can be removed from the highest
centroid cluster through their edge characteristics. Therefore areas which show along their boundary a low
percentage of edge pixels, i.e. pixels with high gradient intensity variation w.r.t. background, are selectively
removed from the cluster (threshold value TE is reported in Section 4). Edge detection is performed through a
Sobel detector followed by automated intensity thresholding [44].

As shown in Fig. 4-E, the highest centroid cluster as obtained after supervised color clustering and morpho-
logical processing contains non-cancerous tissue; the complementary region represents the cancerous tissue.
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Figure 4: Selection of cancer tissue. A: original image; B: pure-brown image, where the cancerous tissue is
locally brown colored while non-cancerous tissue appears while or very light brown; C: gray-level representation
of the discriminant feature F used for color clustering, where the non-cancerous tissue is characterized by
the highest value of F (white); D: highest centroid value obtained after k-means clustering, containing both
non cancerous tissue and small round-shaped portions of negative cancerous cells; E: final tissue segmentation
after morphological processing (cancerous tissue in white, non-cancerous tissue in black); F: manual tissue
segmentation, shown for comparison.

Figure 5: Segmentation of nuclei. A: original image; B: pure-blue image; C: after local thresholding; D:
after separation of clustered nuclei through watershed algorithm; E: after remerging oversplit nuclei; F: final
segmentation.

3.2.3 Segmentation of Nuclei

The third method in our framework is the segmentation of cancerous nuclear membranes.
Our proposed technique is a structured procedure that exploits color and morphological information. Pipelined

steps of this procedure, that are necessary to cope with the aforementioned critical issues of IHC tissue images,
are described in the next subsections and shown in Fig. 5.

Local Thresholding Since nuclei are revealed by the blue stain, our technique for nuclear segmentation
exploits color information taken from the pure-blue image as obtained from the colors separation method. Since
in the pure-blue image nuclei are characterized by darker coloring (i.e. lower intensity values) compared to
background, they are detected through automated intensity thresholding (see Fig. 5-C).

To overcome variations of staining and illumination we apply a local adaptive threshold dependent on the
local intensity distribution. The procedure is customized by calculating thresholds based on the analysis of local
intensity distribution of each pixel, which aims at minimizing the effects of unrepresentative pixel values due
to noise and stain inhomogeneity by preventively subtracting each pixels intensity by the median value of its
neighborhood. The neighborhood size, namely local thresholding radius RLT , is selected taking into account
the average dimension of the nuclei; thus its value is mainly dependent on image resolution (see Section 4 for
details).

Binary morphological operations [44] (dilation, closing and holes filling) are applied after thresholding to
handle intensity variations within the nuclei and irregular nuclear shapes.

Separation of Clustered Nuclei Clustered nuclei are separated through watershed algorithm [44]. In our
method we get rid of the well-known over-segmentation problems of watershed technique through a selective
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remerging of over-split nuclei (see Fig. 5-E). This is obtained by scanning the interposed area between each
couple of nuclei split by watershed and by computing the relative amount of blue and brown pixels within this
area. Blue and brown are obtained respectively from the pure-brown and the pure-blue image though local
intensity thresholding. Couples of particles with a prevalence of brown pixels (that belong to cellular membrane
or cytoplasm) in the interposed area are interpreted as two separated nuclei and left unchanged; to the contrary
couples of particles with a prevalence of blue pixels (that belong to nuclei) in the interposed area are interpreted
as a single nucleus and remerged. This is obtained by comparing the percentage of blue and brown pixels in the
interposed area between the two particles to threshold percentage values, namely Tblue and Tbrown (see Section 4
for details).

Segmentation Refinement One of the major challenges of cancerous nuclear segmentation is the presence
in the sample of other particles (e.g. non cancerous nuclei, lymphocytes, ecc) together with the target nuclei;
these foreign particles may be very similar to the target nuclei in terms of shape and color, thus leading nuclear
segmentation to error. The presence of non cancerous tissue in the sample is already overcome in our procedure
by the automated tissue selection step, which allows to preventively narrow the range of interest of nuclear
segmentation to the areas of the image that are occupied by the cancerous tissue. Nonetheless lymphocytes,
which are round-shaped and blue-colored exactly as the cancerous nuclei, may be spread all over the sample,
thus calling for specific postprocessing to remove them from the segmented nuclei. Lymphocytes removal is
performed based on their smaller size comparing to cancerous nuclei: in particular, particles whose area is
considerably lower than the average area of all the detected nuclei are removed from the final segmentation.
The threshold size TS is expressed in terms of percentage of area w.r.t. the average area of the detected nuclei
and reported in Section 4.

In order to obtain smooth nuclear membranes, the best fitting ellipse is finally calculated and outlined for
each detected nucleus (see Fig. 5-F).

The proposed procedure can be opportunely simplified in order to address images with nuclear staining. In
fact in images with nuclear staining both the dyes highlight the nuclei, that are clearly distinguishable from
background and then generally easier to segment. Then nuclear segmentation in this case can be obtained
by simply applying the local thresholding step on both pure-blue and pure-brown images separately and then
by merging together the respective binary results. Separation of clusters can be obtained through classical
watersheds.

4 IMPLEMENTATION
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We implemented our procedure in Java as a plugin for ImageJ [45], a powerful public domain image analysis
and processing software which runs on all standard operating systems (Windows, Mac OS, Mac OS X, Linux);
therefore it is totally hardware-independent, flexible and upgradeable. We inherited the whole class hierarchy
of ImageJ 1.38 API and open-source plugins and macros in [41, 46, 47] and we implemented our own functions
and classes.

Parameters values tuned on real-life lung cancer tissue images are shown in Table 1 separately for the selection
of cancer tissue and the segmentation of nuclei; they don’t need to be changed for lung cancer tissue images
with either membrane and cytoplasm activity as well as for weakly and strongly stained tissues. As clarified
in the description of our techniques in Section 3, most of the parameters (highlighted with a ") are related
to morphological features of the tissue to be segmented, thus they were set taking into account the specific
characteristics (cell size and shape) of the lung tissue; the user is anyhow allowed to apply the procedure to
other tissues with different morphological characteristics by tuning these parameters. A user-friendly interface
allows the setting of different parameters values without modifying the source code. The other parameters
values are related to general characteristics of IHC images: in particular, the number of clusters k is consistent
with the number of intensity levels usually discriminated by pathologists and the values of TE , Tblue and Tbrown

are related to how the blue and the brown stains are distributed in a specimen while highlighting different tissue
components. See Section 3 for explanation of each parameter.

5 EXPERIMENTAL RESULTS

We tested the performance of our automated pipeline on real IHC images of lung cancer tissue. H-DAB staining
was preventively performed on the tissue to highlight positive activations at the EGF-R or TGF-alpha receptors,
that are respectively localized in the cellular membrane or in the cytoplasm of epithelial cells (see Section 3.1 for
details). Other than the cancerous epithelial cells, that are the ones targeted by IHC analysis, the tissue samples
contained portions of non cancerous connective stromal tissue as well as lymphocytes and other foreign particles.
The images were acquired through high resolution digital microscopy with three different enlargements (200x,
400x and 800x).

Our proposed techniques for the selection of the target tissue and the segmentation of nuclei were firstly
tested separately, since they represent conceptually independent tasks of the automated pipeline for tissue
segmentation. The experiments as well as the achieved results are reported in Section 5.1 and Section 5.2,
respectively for the selection of the target tissue and for nuclear segmentation. The two sections are both
organized as follows. In a first subsection the performance of the automated technique is assessed through
strict pixel-wise comparisons with manual segmentations provided by an expert of the field. In a second
subsection it is compared with alternate techniques that are highly popular in Data Mining and Computer
Vision, namely Support Vector Machines (SVM) [37] and active contours [22]. The application of the above
mentioned techniques to the tasks targeted by our work (respectively, SVM to the selection of the target tissue
and active contours to nuclear segmentation) is discussed; the better accuracy provided by our approach is
demonstrated through experimental results achieved on real IHC images. Finally, in Section 6.1 we reported
the accuracy of the combined tissue selection + nuclear segmentation procedure, providing a measure of how
the efficiency of the tissue selection technique impacted on the following segmentation of pathological nuclei.

5.1 Selection of Cancerous Tissue

5.1.1 Comparison with Manual Performance

In order to evaluate the performance of our technique in selecting the target tissue (i.e. in disregarding the
unwanted non cancerous areas), an expert of the domain was asked to outline manually cancerous and non
cancerous tissue in the validation datasets; then a pixel-wise comparison between automated and manual seg-
mentations was performed. Validation datasets contained on average 1700x1300 pixels, for a total number of
about 28 Mpixels, and were taken from real-life EGF-R and TGF-alpha tissue images.

The performance of the technique was evaluated in terms of sensitivity and specificity of removal of non
cancerous tissue. Sensitivity was calculated as percentage of non cancerous pixels correctly identified; specificity
was calculated as percentage of cancerous pixels correctly identified. The accuracy of cancer tissue selection
was finally calculated as weighted1 average of sensitivity and specificity, as follows:

Accuracy =
2

3
sensitivity+

1

3
specificity (3)

1A higher weight was assigned to sensitivity, since it is more critical than specificity for the automated quantification of protein
activity, that is the principal application targeted by our pipeline. In fact to eliminate as much as possible non representative tissue
from the range of interest is fundamental for a reliable measure of protein activity. This is expressed by sensitivity of removal of the
non cancerous tissue. Moderate removal of cancerous regions is rather tolerable, since it has a minor influence on the final result.
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The achieved results are reported in the first section of Table 2, under the label ”unsupervised approach”.
The accuracy on tissue segmentation was on average above 90%, thus confirming that tissue selections

obtained through our automated unsupervised procedure are highly comparable with those manually performed
by a skilled operator.

5.1.2 Comparison with Supervised Approach

Our unsupervised technique was compared with supervised learning approach. For this purpose we developed
a specific procedure for the automated selection of the target tissue based on Support Vector Machines [37], a
theoretically superior machine learning method which has often been shown to achieve great classification per-
formance compared to other learning algorithms across most applications and fields, including image processing
and tissue segmentation [48].

In SVM method input elements (i.e. tissue regions, in this work) are classified as cancerous or non cancerous
on the base of a set of representative characteristics, the so called features vector. To perform a reliable
classification, SVM is preventively trained with a set of pre-classified training instances. The classification is
based on the implicit mapping of data to a higher dimensional space via a kernel function and on the consequent
solving of an optimization problem which leads to identify the maximum-margin hyperplane that separates the
given training instances; the hyperplane is calculated on the base of the boundary training instances (i.e.
elements which are border-line between the two classes) rather than on the base of the entire training dataset:
this leads SVM to a better efficiency w.r.t. other learning techniques (e.g. neural networks), especially with
highly dimensional datasets. This is the reason why SVMs are getting more and more popularity among other
supervised methods, especially for imaging applications. See [37] for more technical details about SVMs.

The SVM procedure we implemented for the selection of the target tissue in IHC images consists in three
sequential steps:

1. Generation of the training vectors. Training vectors are generated by shifting horizontally and
vertically a square window on a set of pre-classified images and by picking out RGB values of the pixels
in the window; vectors with a prevalence of cancerous or non cancerous pixels are labeled with a +1 or a
-1, respectively.

2. Training. The labeled features vectors are fed into the SVM for the training.

3. Classification. The optimized SVM is used to perform tissue classification for new unclassified images.

See our previous work [42] for further details about implementation and parameters of the SVM technique.
In order to compare SVMs to our unsupervised approach we performed experiments on the dataset of real

IHC tissue images described in Section 5.1.1. As for the unsupervised method, the accuracy of SVM technique
was measured through pixel-wise comparison with ground truth consisting in manual segmentations provided
by an expert of the field (see Equation 3); the manual segmentations were the same used to assess the accuracy
of our method in Section 5.1.1. The results achieved by SVMs are reported in the second section of Table 2,
under the label ”supervised SVM approach”.
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Our method achieved the best results, overcoming the accuracy of SVM technique on average of 8.4%.
Cancerous and non cancerous tissues may show very variable characteristics in terms of morphology as well as
color distribution; this is partly intrinsic to tissue images (tissues morphology is determined by a large number
of unpredictable physiologic and pathologic parameters) and partly due to the preparation of the IHC samples,
that is notoriously affected by many sources of variability (see Section 2). The variability of the features that
are representative of the two tissues prevented the SVMs to develop a generalized model able to separate the
two classes. This problem is obviously not limited to SVMs, that have often been shown to achieve better
classification results compared to other learning methods across most applications [49], but it is rather related
to any supervised approach (e.g. supervised ANN).

To the contrary, the performance of our unsupervised method is not compromised by features variability,
since the classification is based on the different characteristics of the two tissues in the current image, rather
than on a fixed model of the ground truth.

In conclusion, our unsupervised technique was shown to provide selection of the target cancerous tissue
highly comparable to manual approach and to overcome the limitations of supervised SVM techniques.

5.2 Segmentation of Nuclei

Since the nuclear segmentation task is conceptually independent from the selection of the target tissue and the
two procedures can be used separately, the experimental datasets used in this section were extracted from real-
life tissue images only in the representative cancerous tumor areas; hence we validated nuclear segmentation
independently from tissue selection. The experimental datasets were taken from both tissue samples with
positive reactions to the EGF-R (membrane activity) and to the TGF-alpha (cytoplasm activity) receptors;
each dataset contained up to 137 cells, for a total number of 712 nuclei.

As for tissue selection task, the accuracy of nuclear segmentation was assessed through comparison with
manual segmentations as well as through comparison with an alternate approach, namely active contours. The
two validations are discussed in the following subsections.

5.2.1 Comparison with Manual Performance

We performed a two-levels evaluation of the performance of nuclear segmentation.
At a first level, we measured the skill of our automated procedure in identifying properly the cancerous nuclei,

avoiding misdetections (e.g. of lymphocytes, neutrophils, sub-particles, etc.) and gross shape discrepancies as
wrongly split or merged particles. A skilled operator was asked to evaluate the nuclear segmentations provided
by our method, deriving from each dataset i) the number of acceptable detections, which may be used without
errors in applications aimed at the automated measure of protein activity; ii) the number of not detected nuclei,
due to the local hard noise conditions or to stains superposition which may have covered the blue component
up; iii) the number of wrong detections, i.e. misdetection of foreign particles (e.g. of lymphocytes, neutrophils,
sub-particles, etc.), particles splitting due to extreme intensity variations or merging of close couples of nuclei.

The achieved results are shown in Fig 6.

Figure 6: Accuracy of nuclear detection: in blue, percentage of nuclei correctly detected; in red, percentage of
nuclei not detected; in yellow, percentage of wrong detections (i.e. misdetection of foreign particles, split nuclei,
merged couples, etc.).

According to the evaluation provided by the expert of the field, our technique was successful for 83% of the
particles; not detected particles were only 10% and errors were limited to 7% of the detections.
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The second level of the validation procedure consisted in the evaluation of the quality of the nuclear bound-
aries provided by our automated technique. This was achieved through a very strict pixel-wise comparison of
the nuclear boundaries provided by the automated method with reference nuclei provided by manual operators.
For each segmented nucleus, segmentation accuracy was estimated as:

Accuracy(%) = 100 ·
[
1−

∑
(R ⊕A)∑
(R +A)

]
, (4)

where R is a binary image where pixels belonging to the reference manual nucleus are set to 1 and A is a binary
image where pixels enclosed by the nuclear boundary provided by the automated procedure are set to 1. As
shown by Fig. 7, R⊕A (logical XOR) returns the pixels that were misclassified by the automated method (i.e.
non-nuclear pixels classified as nuclear and vice-versa), whereas R+ A (logical OR) returns the totality of the
evaluated pixels: therefore accuracy is the complementary of the percentage of misclassification.

Manual segmentation of nuclei may lack reproducibility [29]: to improve the objectivity of our validation
ten skilled operators were asked to outline manually the nuclear membrane of each tested nucleus. Thereafter,
the reference nucleus used for the validation was generated by only those pixels that were enclosed by the most
part of the ten manual boundaries.

The accuracy of nuclear segmentation achieved by our technique was on average 80.4%. This value was
obtained by averaging the accuracy achieved in all the tested nuclei. The achieved results confirmed that our
fully automated procedure provides nuclear segmentations that are comparable to manual segmentations (see
Fig. 7 for an example of nucleus segmented with 80% accuracy).

Figure 7: Calculation of segmentation’s accuracy as in Equation 4.

In order to assess the robustness of our technique, we run experiments also in images of tumors from
anatomical locations different from lung (kidney, liver, prostate and bone marrow, respectively). We tested
our technique on validation datasets equivalent to the ones extracted from lung tissue and then we applied
the same two-levels validation procedure applied to lung images. Therefore for each tissue type a pathologist
quantified respectively the percentage of nuclei correcly detected, the percentage of nuclei not detected and
the percentage of wrong detections. Then we quantified the nuclear segmentation accuracy compared to ten
manual segmentations as in equation 4. The obtained results are reported in Table 3 and show accuracy values
comparable with the lung tissue images.
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5.2.2 Comparison with Active Contours Approach

The performance of our technique was assessed also through extensive comparisons with a well known semi-
automated technique, namely active contours.

Active contours (also called snakes) are a highly popular approach in Computer Vision and medical image
segmentation. They are computer-generated curves that evolve iteratively within the image from an initial
position toward the boundary of the target object (i.e. the nuclear membrane, in our application) through
the minimization of an energy functional, that is generally a combination of an image term based on the
characteristics of the image, an internal term based on the characteristics of the curve (e.g. tension, rigidity,
etc.) and a user-defined constraint term (e.g. external forces, etc.).

Active contours are classified on the base of the image term guiding the evolving curve towards the target
boundary as either i) edge-based snakes, with image energy based on gradient information; or ii) region-based
snakes, with image energy based on global image information (i.e. statistical features of the image). The
former are usually more precise, since the image energy has sharp maxima at the gradient boundary; the latter
are however less sensitive to curve initialization and to noise and they have less difficulties moving into deep
concavities.

In this work we compared the performance of a semi-automated active contours procedure for nuclear
segmentation in IHC tissue with the performance achieved by our morphology-based fully automated technique.
The active contours procedure is based on the parametric spline-based active contour presented by [22], that
is one of the most valuable in literature. Its main prerogatives are the cubic B-splines representation, which
leads to the implicit smoothness of the curve thanks to the minimum curvature interpolation property, and
the formulation of the image energy as linear combination of either edge-based (taking into account gradient
magnitude as well as its direction) and region-based terms, thus inheriting the advantages of both. The simple
modulation of the two terms leads to obtain a general unifying framework which includes all the most widely
used formulations of active contours.

The active contours procedure for nuclear segmentation consists in feeding the above mentioned B-spline
active contours with initial boundaries manually traced by an expert of the field; the information needed for
the calculation of the image term is provided by the monochromatic blue image of Hematoxylin stain, that
identifies the nuclei. This monochromatic image is obtained through the already mentioned automated colors
separation (see Section 3.2.1). The active contours automatically converge from the initial manual boundaries
to the final boundaries through the minimization of their energy functional.

In order to perform an exhaustive comparison, we run experiments with three different formulations of active
contours, respectively edge-based, region-based and mixed (i.e. with equally weighted linear combination of edge
and region terms); as shown by Fig. 8, the active contours were initialized by the operator very close to the
target boundaries, in order to obtain the higher performance achievable; in fact active contours are notoriously
very sensitive to curve initialization.

Figure 8: Example of segmentation performed by active contours (initial manual boundary in blue, final bound-
ary in red).

6 Supervised approach based on SVMs

The accuracy of nuclear segmentation was evaluated as reported in Equation 4 through pixel-wise comparison
with ten manual segmentations (see Section 5.2.1); then the results achieved by the three formulations of
active contours were compared with the results achieved in the same validation dataset by our morphology-
based technique. In particular, we evaluated: i) the mean accuracy achieved by the different techniques, thus
deducing which is statistically the best; ii) the percentage of nuclei in which the best techniques exploited better
accuracy than the other techniques: this adds meaningfulness to the previous result, since mean accuracy may
be biased by few non-representative critical instances.

Our morphology-based technique obtained the best results: in fact its accuracy was on average higher
than edge-based, mixed and region-based active contours’ accuracy respectively of 8.2%, 10% and 11.8%. The
achieved results, grouped according as the protein activity was localized in the cellular membrane (EGF-R
receptor) or in the cytoplasm (TGF-alpha) of the validation samples, are shown in Fig. 9.
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Figure 9: Mean percentage accuracy of nuclear segmentation achieved by respectively morphology-based ap-
proach, edge-based, mixed and region-based active contours in validation samples with membrane (EGF-R
receptor) or cytoplasm (TGF-alpha receptor) activity.

The superiority of the morphology-based approach was confirmed also by the second test, which established
that our technique was more accurate than active contours in the most part of the tested nuclei. In particular
our technique was more accurate than edge-based, mixed and region-based active contours respectively in 64%,
66% and 66% of the nuclei.

In conclusion, the morphology-based technique provides more accurate nuclear segmentations compared to
active contours approach, despite they are manually initialized very close to the target membranes. The achieved
results show that active contours are not expressive enough to handle complex and heterogeneous chromatic
information in IHC: in fact they fail in detecting the nuclear region in presence of intensity gradients inside the
region, as well as in presence of clustered particles (see Fig. 8).

A correct segmentation of nuclei in IHC tissue images requires high-level interpretation of the biological
information carried by the color, which is actually not provided by any available active contours implementation.

6.1 Selection of Cancerous Tissue and Segmentation of Nuclei

In order to evaluate the combined accuracy of our proposed techniques as inserted in a pipeline for automated
IHC analysis, in this Section we provide a measure of how the efficiency of the tissue selection technique impacts
on the following segmentation of pathological nuclei. This measure was obtained on the same dataset of real
IHC images used in Section 5.1, where each sample included both pathological and non pathological tissue. The
experimental procedure for each of the validation images is the following: i) we applied nuclear segmentation
preceded by automated selection of the pathological tissue; ii) we applied nuclear segmentation preceded by
manual selection of the pathological tissue as provided by a pathologist; iii) we had the results obtained at point
i) and ii) evaluated by a pathologist, in order to quantify the number of misdetected nuclei due to imprecise
tissue selection. In particular the pathologist provided: i) the number of nuclei that were missed by the nuclear
segmentation technique due to pathological tissue classified as non pathological and ii) the number of nuclei
that were incorrectly added to the segmentation results due to non pathological tissue classified as pathological.
The obtained results are shown in Table 4.
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Summarizing, in our experiments nuclei missed or added incorrectly due to imprecise tissue selection were
respectively 5.94% and 1.27% in the overall dataset consisting of a total number of 9216 cells, which confirms
the efficiency of our proposed pipeline.

7 CONCLUSIONS

In this paper we presented an automated method for immunohistochemical tissue image segmentation able to
recognize cancerous areas disregarding non pathological connective tissue and to perform accurate and precise
segmentation of nuclear membranes within pathological areas. These two tasks are critical in order to obtain a
reliable and standardized measure of the activity of specific proteins involved in the genesis and development
of multi-factorial genetic pathologies. Moreover, the segmentations provided by our method can be exploited
for any applications that require tissues and cells exploration.

We detailed all the steps of our proposed procedure and we demonstrated the high accuracy achievable thanks
to our approach on a large dataset of real-life tissue images. Our method was able to perform cancer tissue
selection with a 91% accuracy and to detect cancerous nuclei with a 83% accuracy; the pixel-wise comparison
between the nuclear membranes provided by the algorithm and manually traced membranes returned a 95.2%
accuracy value.

We compared our fully-automated techniques with popular approaches in medical imaging and computer vi-
sion, namely support vector machines (SVMs) and active contours. Summarizing, our findings are the following:
i) our unsupervised morphology and color-based technique provides more accurate selection of cancerous tissue
in IHC images compared to supervised SVM approach, whose performance is biased by the heterogeneity of the
tissue features; ii) our morphology and color-based technique provides better nuclear segmentations compared
to semiautomated active contours, that are deviated from the target boundaries by noise or by overlapped and
close particles; iii) our morphology and color-based techniques provide tissue and nuclear segmentations that
are highly comparable to manual segmentations; nevertheless, since our techniques are fully-automated, they
provide standardized and repeatable results.

In conclusion, our results demonstrated that our automated approach is effective and powerful, since it is
able to overcome the limitations of the traditional segmentation methods as well as the slowness and the lack
of repeatability of manual approach.
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