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ABSTRACT
In recent years the research community has developed many
techniques to estimate the end-to-end available bandwidth
of an Internet path. This important metric has been pro-
posed for use in several distributed systems and, more re-
cently, has even been considered to improve the congestion
control mechanism of TCP. Thus, it has been suggested
that some existing estimation techniques could be used for
this purpose. However, existing tools were not designed for
large-scale deployments and were mostly validated in con-
trolled settings, considering only one measurement running
at a time. In this paper, we argue that current tools, while
offering good estimates when used alone, might not work
in large-scale systems where several estimations severely in-
terfere with each other. We analyze the properties of the
measurement paradigms employed today and discuss their
functioning, study their overhead and analyze their inter-
ference. Our testbed results show that current techniques
are insufficient as they are. Finally, we will discuss and pro-
pose some principles that should be taken into account for
including available bandwidth measurements in large-scale
distributed systems.

1. INTRODUCTION
The end-to-end available bandwidth (avail-bw) is one of the
most important characteristics of an Internet path. This
metric is fundamental for the operation of many emerging
applications, such as video streaming, online gaming, peer-
to-peer and content delivery systems. Thus, the attention of
the research community has focused in recent years on the
problem of the avail-bw estimation, and several techniques
and inference methods have been proposed in literature [1,3,
5,8,14,17], so that both accurate and fast estimation of the
end-to-end avail-bw can today be obtained. More recently,
the attention of the research community has then moved
on how to exploit the avail-bw knowledge, so that it has

∗This work is supported by the “NAPA-WINE” Project
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been proposed for use in several algorithms: for i) server
selection [7], ii) route selection [10], iii) admission control [2],
iv) congestion control (in TCP as well) [11], and v) for peer-
to-peer systems optimization [19].

The performance of avail-bw estimations techniques has been
discussed in several articles where the tools have been tested
separately in different settings and traffic conditions (see [15]
and citations therein). However, existing studies analyze the
performance of each tool in a controlled setting, where one
single path is probed by only one pair of hosts at a time.
In a more realistic scenario, instead, where a certain tech-
nique is employed by many hosts in the Internet, several
nodes want to estimate the path properties simultaneously.
Consider for example a P2P system, in which several thou-
sands of peers periodically probe each other to optimize the
content distribution. It is therefore not clear if the tech-
niques proposed are suitable to be employed in large-scale
distributed systems as well, and, if not, which modifications
are required. The question we will try to answer is: what
if several hosts measure simultaneously? Or, alternatively,
would current avail-bw estimation tools interfere with each
other in large-scale deployments? Finally, notice that the
problem is particularly important on “critical” links, such
as peering links between ASs or links connecting aggrega-
tion nodes (e.g., DSLAM or BRAS nodes) to the backbone,
where a large number of hosts may perform measurements.
To the best of our knowledge, this is the first paper that
clearly points out this problem in the context of the avail-
bw estimation.

The contributions of this article are the following: we ana-
lyze the properties of three popular avail-bw tools, namely
Spruce, Pathload and pathChirp, which represent the promi-
nent measurement methodologies presented in literature. We
discuss their functioning, study their impact and analyze the
interference caused by running several measurements at the
same time. Our results show that all current techniques suf-
fer from severe interference, some of them providing rather
inaccurate results. Finally, we discuss some possible modifi-
cations to include avail-bw measurement techniques in large-
scale distributed systems.

2. INTERFERENCE AND OVERHEAD IN
CURRENT ESTIMATION TOOLS

Several bandwidth estimation tools have been proposed in
the literature. They can be coarsely split into two classes,
based on the probing techniques: Probe Gap Model - PGM,



and Probe Rate Model - PRM. In the PGM, the avail-bw
is directly inferred by observing the inter-packet-gap (IPG)
measured on a packet pair injected by the sender. By ob-
serving the IPG“dispersion”of several probes, an estimation
of the avail-bw is obtained. In the PRM, the sender itera-
tively injects trains of packets at different rates, allowing
the receiver to understand if the path avail-bw is exceeded
or not, e.g., by observing increased One-Way-Delay (OWD),
or RTT. Table 1 reports a summary of some popular tools
and the methodology they adopt.

Tool Algorithm Methodology Inference Metric
IGI [8] Iterative PGM Dispersion

Spruce [17] Direct PGM Dispersion
Pathload [5] Iterative PRM One-way Delay

pathChirp [14] Direct1 PRM One-way Delay
BFind [1] Iterative PRM RTT

Table 1: Available Bandwidth Estimation tools.

In this paper, we limit the investigation to Spruce, Pathload
and pathChirp, which represent the classic measurement
methodologies today in use. Several other tools have been
proposed in the literature, and the majority of them rely ei-
ther on the Probe Gap or the Probe Rate model. Thus, we
expect that results gathered using the three previous men-
tioned tools are indicative of PGM and PRM tools.

2.1 Spruce
Overview: Spruce estimates the avail-bw using direct prob-
ing. A packet pair is sent at the capacity rate C of the bot-
tleneck link, i.e. with and input gap ∆in = S/C, being S
the size of each packet. The output gap ∆out between the
packets is then measured at the receiver. The avail-bw is
computed as

A = C ×
(

1− ∆out −∆in

∆in

)
(1)

which has been proved to be an exact model at least in the
case of single-hop scenarios. The technique used in Spruce is
a classic example of Probe Gap Model paradigm because the
relationship between the input and output gap of the probes
is used explicitly to estimate the avail-bw. The PGM model
requires the capacity C of the bottleneck to be known and
assumes there is only one bottleneck on the path. Although
the PGM model has been formally proved inaccurate in
some multi-hop scenarios [12], other studies have shown that
in practice Spruce performs similar to other tools [15–18].
Before providing the avail-bw estimate, Spruce repeats the
measurement 100 times, with measurements emulating Pois-
son sampling, and the result is averaged among all samples.

Interference analysis: In a scenario where several mea-
suring hosts are running Spruce at the same time, there are
chances that two or more packet pairs will overlap as shown

1In [9], pathChirp has been classified as “iterative” because
it does not use Eq. 1 to compute the avail-bw, and uses the
OWD instead. However, since each packet train provides an
independent avail-bw estimate without need of successive
iterations, we prefer classifying the tool as “direct” instead.

in Fig. 1. In this case, one of the two packets will be trans-
mitted in between the other pair(s) and the initial probing
gap ∆in will be inflated to k ×∆in, where k is the number
of overlapping pairs. Note that already with two pairs over-
lapping, an output gap of ∆out = 2×∆in will lead in Eq. 1
to an avail-bw estimate of zero, i.e., an error of 100% on a
single probe!

Figure 1: Interference between packet pairs.

When more Spruce senders interfere (or when the bottleneck
link is overloaded), the ∆out increases further, leading to a
negative value of the avail-bw. Unfortunately, negative val-
ues cannot be blindly ignored because they represent tran-
sient periods of time in which the bottleneck queue fills up,
which happens periodically in normal operating conditions.
Therefore, the idea of distinguishing and filtering affected
measurements by detecting negative estimates is not viable.

Overhead: Regarding the measurement overhead, the over-
all probing rate is set to be the minimum between 240 kbps
and 5% of the bottleneck capacity C. While this overhead
seems acceptable for a single running instance of Spruce,
it becomes intolerable already with a handful of measuring
hosts, with the double risk of (i) quickly congesting the bot-
tleneck link and (ii) obtaining useless avail-bw estimates, be-
cause of the high probability of pairs interfearing with each
other. Additionally, reducing the probing rate can reduce
the total overhead, at the cost of waiting longer times to get
the final estimation.

2.2 Pathload
Overview: Pathload is a classic example of PRM tool.
The basic idea is to use the self-induced congestion prin-
ciple. Let A be the avail-bw of the path. The sender in-
ject a train of packets at rate R. If R is lower than the
avail-bw (R < A,) then the probes will reach the receiver
without any change. On the contrary, if the probing rate is
too high (R > A), packets will queue at the bottleneck link
and the probes will be received with increasingly high delay,
and lower rate. By iteratively changing R, Pathload con-
verges at the avail-bw value A performing a “binary-search”
and updating a minimum and maximum bound: when it is
detected that R < A, the Rmin bound is updated to R (re-
spectively Rmax = R if R > A) and at the next iteration
R = (Rmin + Rmax)/2. This way, Pathload captures the
avail-bw minimum and maximum ranges, converging to A.
The initial values of the bounds are Rmin = 0 and Rmax =
ADR2. The algorithm stops once a predefined measurement
resolution is achieved (by default 4% of the ADR).

Interference analysis: Predicting the bias caused by sev-
eral hosts running Pathload simultaneously is a challenging

2The Average Dispersion Rate (ADR) is the rate at which
a burst of back-to-back packets is received, and has been
proved to be an upper bound of the avail-bw [6].



task for several reasons. Depending on the interaction be-
tween the measurements, Pathload can take erroneous de-
cisions at various stages of the binary-search process, with
different consequences: an error in the final stages of the
search, when the Rmin and Rmax bounds are already close
to each other, has little impact on the final results; con-
versely, a wrong decision at the beginning of the process
leads to a large measurement error. Notice that Pathload
repeats the measurement 12 times, and then it takes the de-
cision if R > A or not only if the results agree in 70% of the
cases. Finally, each probe is composed of 100 equally spaced
packets, thus several competing measurements will share the
avail-bw A in different proportions depending on the actual
overlap, if complete or only partial. Also, the idle time be-
tween each probe at the same rate and between probes at
different rate is automatically computed, so that predicting
the overall interference is very complex. In our experimental
evaluation, however, we will show that already few hosts can
interfere destructively, heavily biasing the final results.

Overhead: Like other PRM tools, Pathload probes tend
to consume all the available bandwidth, as the probing rate
R converges to the avail-bw A. Therefore, the measure-
ment overhead is very high. When the bandwidth is low,
the pausing time between different probes is computed to
reduce the average overhead to approximately 10% of avail-
bw. However, when more measurements coexists, the bot-
tleneck bandwidth may be easily consumed by parallel runs.
Note that, compared to Spruce, the overhead introduced by
Pathload is proportional to the avail-bw instead of the capac-
ity. This has two important advantages: first, the additional
traffic is guaranteed to consume part of the avail-bw with-
out damaging on-going connections; second, the overhead
automatically “scales” with the avail-bw and is accordingly
reduced when the avail-bw is low.

2.3 PathChirp
Overview: PathChirp uses particular packet trains, called
chirps, which consist ofN packet-pairs sent with inter-packet-
gap that is exponentially reduced. Each consecutive“packet-
pair” probes the path with increasing rate. PathChirp thus
probes for a wide range of rates sending a single train, from
a lower rate L (the first two packets sent) up to an upper

rate U = γ(N−1) × L. For fixed N , the spread factor γ con-
trols both the granularity of the estimates and the range of
rates probed for. The receiver detects which is the rate Rl of
the last packet pair l received with the expected IPG after
which the rate of the pairs is higher than the avail-bw A.
Indeed, packets after pairs after pair l queue up at the bot-
tleneck, so that additional delay is observed at the receiver.
Fig. 2 shows an example of the queuing delay seen by the re-
ceiver. In more details, a delay increase (or excursion) is a
symptoms of self-induced congestion and the path avail-bw
is computed as a weighted average of the “per-pair” avail-bw
Ai, defined as

Ai =

{
Ri if delay is increasing AND transient excursion
Rl otherwise

where Ri is the rate at which pair i is received. With “tran-
sient” excursions, we refer to all excursions that terminate

before the end of the chirp and, in general, before rate Rl is
reached – which represents the beginning of the final excur-
sion. A more detailed description of the avail-bw estimation
process can be found in [14].

Figure 2: Queuing delay of a chirp (from [14]).

Interference analysis: PathChirp uses a sophisticated al-
gorithm to compute the avail-bw. It takes into account both
the last rate Rl above which it exceeds the avail-bw A and
also the evolution of the queuing delay across the rest of
the packet chirp before this point. Therefore, when another
chirp interferes, either (i) it can generate a transient excur-
sion on the other chirp, if the interfering chirp ends early
enough, or (ii) the excursion caused by the interfering chirp
overlaps with the last excursion and the avail-bw rate is
reached in advance – the rate Rl is detected lower. In both
cases, the avail-bw will be underestimated. An additional
complication comes from the fact that pathChirp averages
the results among several chirps (11 by default). Finally, de-
synchronization among different pathChirp instances causes
variable overlapping periods, thus, it becomes almost im-
possible to predict the interference introduced by competing
measurements. Our results show that in some conditions the
results become very inaccurate because of competing chirps.

Overhead: pathChirp has many tunable parameters, from
the spread factor γ, to the upper and lower rates U and L,
from the average probing rate R (300 kbps by default), to the
number of chirps to average over. Additionally, pathChirp
automatically tunes the U and L bounds so that the avail-
bw A is well in between, i.e. L < A < U . Therefore,
even when only one host is running pathChirp, part of the
chirp will consume more then the actual path avail-bw. This
creates spikes of bursty traffic which can affect other traffic.
While nodes could absorb the impact of one chirp, several
overlapping chirps quickly fill the bottleneck buffer so that
severe losses may occur. Reducing the average probing rate
R increases the pausing time between chirps but also makes
the estimation process slower and does not reduce the total
amount of probing traffic nor the impact of the chirps on
the queues.

3. EXPERIMENTAL EVALUATION
In this section we compare quantitatively the performance of
the different techniques when multiple hosts are simultane-
ously estimating the avail-bw. We used a dedicated testbed
composed of a total of 62 identical machines equipped with
100 Mbps network cards and connected through Ethernet
switches. All hosts run the same version of Linux. Half of
the hosts acted as senders and the other half as receivers.
For experiments that required traffic load, two additional
hosts where used to inject and drain UDP traffic. We cre-
ated a single bottleneck topology, with one host routing all
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Figure 3: Interference between measurement tools. Existing techniques clearly underestimate the avail-bw.

the traffic between the senders and the receivers, and we
forced the router NIC to 10 Mbps. This topology is sim-
ilar to the ones used in [11, 14] and it is the simplest and
less problematic topology possible. Therefore, the perfor-
mance will further deteriorate in the real Internet, where
cross-traffic on non-bottleneck links, or multiple bottlenecks
are typically present. We emphasize that our goal is to ob-
serve the mutual interference, rather then the accuracy of
each single tool.

To better control the number of overlapping measurements,
we ran the tools continuously on the probing hosts. In order
to randomize the interference between measurements and
avoid synchronization, the starting instant was set according
to an exponentially distributed time, with average chosen to
be half of the measuring time of each tool. We then let the
experiments run for several minutes. An increasing number
of active hosts N where present in each experiment. Each
tool parameters were left to their default values. Fig. 3 com-
pares the performance of Spruce, Pathload3 and pathChirp
with different values of N . In this first set of experiments, no
background traffic was present so that A = C = 10 Mbps.
From the figures it is clear that

• when N = 1, all estimations are very close to the ac-
tual avail-bw, proving that in this simple scenario, they
provide good results.

• when N increases, all tools suffer from mutual inter-
ference and they can significantly underestimate the
avail-bw.

• Spruce, which has a simple and linear estimation al-
gorithm, reports an avail-bw value which is approx-
imately equal to the actual avail-bw minus the tool
overheads (reported vertical bars at valuesA−240Nkbps).

• Pathload shows very bad performance with few over-
lapping measurements. Interestingly, most of estimates
are concentrated around certain specified values (10, 5,
7.5, 2.5 Mbps, etc). The reason behind this lays, in the
binary-search process used by Pathload: depending on

3In all the experiments, Pathload provided upper and lower
bounds very close to each other. For easiness of presentation,
we consider the average between the two in our results and
refer the reader to [4] for more details.

the interference, the tool took wrong decisions at dif-
ferent steps of the decision process, converging to the
similar values.

• pathChirp seems to deviate less from the actual avail-
bw even when several measurements overlap. The fig-
ure shows that some of the measurements are severely
affected (with a worst case error above 80%) but the
majority showed less bias. Since the tool automat-
ically computes the upper and lower rates U and L,
some pathChirp instances erroneously reduce the up-
per rate, causing the underestimation. This holds true
especially in the experiments with 10 and 20 hosts.

We repeated these experiments with different avail-bw val-
ues. This way we can study the sensitiveness of the tools
at different levels of link load, verifying if the accuracy of
the tools changes with different avail-bw values. In Fig. 4,
we compare the three methods together. Due to space con-
straints, we show here the results obtained with 20 active
hosts and refer the reader to [4] for additional results. The
results are quite surprising: while Spruce always under es-
timates the avail-bw by a fixed 3-4 Mbps (which approx-
imately corresponds to the tool overhead), Pathload and
pathChirp become insensitive to the actual avail-bw changes.

We have also tested all the three tools simultaneously, run-
ning 9 hosts for each different technique, with a total of 27
senders interfering. The result in a scenario without cross-
traffic (A = 10 Mbps) is shown in Fig. 5. The measure-
ment tools severely underestimate the avail-bw. Note that 9
Spruce measurements plus 9 pathChirp measurements alone
consume almost 5 Mbps. With the addition of the Pathload
hosts, it is clear that the measurement overhead becomes un-
sustainable, with probes consuming almost all the capacity
of the link. On the other hand, if we consider the measure-
ment traffic as “in-band”, e.g. if the probes are piggy-backed
on data traffic, then the tools do not perform much better:
on average, pathChirp reports an avail-bw which is higher
than 6 Mbps and Spruce shows more than 4 Mbps. How-
ever, since different tools have different measurement dura-
tions and since Pathload varies the transmission rate signif-
icantly, deeper investigations are required to understanding
which tool performs best. We are currently undertaking sev-
eral measurement campaigns to asses this problem.
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Figure 4: Sensitivity to traffic. Pathload and pathChirp become almost insensitive to bandwidth changes.
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Figure 5: All tools interfering together.

4. DISCUSSION
From the presented results, it is clear that current techniques
cannot be applied in large-scale distributed systems as they
are. All tools have shown to underestimate the avail-bw sig-
nificantly and to introduce an unacceptable overhead. To
reduce the overhead, an alternative to injecting measure-
ment packets is to piggy-back the probes on ongoing data
flows, i.e., to shape “normal” traffic in packet pairs, trains or
chirps depending on the chosen technique. This eliminates
the overhead problem provided that there is enough data to
be sent on the desired path. However, the problem of the
interference between coexisting measurements is unchanged.
In particular, from the results shown in the previous section,
the sophisticated technique used in pathChirp seems not ro-
bust enough to tolerate multiple overlapping chirps and the
exponential change in rate is probably too brutal to be em-
ployed at large. Pathload can not be used as well because
the binary-search algorithm leads to unpredictable errors in
presence of interference. Also, shaping the traffic in rela-
tively long trains of various rates might add too much delay,
especially for real time applications such as video stream-
ing. Spruce seems to maintain a certain coherence in the
results: if the other probes are considered as actual traffic,
then the estimated avail-bw is fairly accurate, i.e., it reflects
the “avail-bw” left free by the total probing process. This

suggests that if the probing is performed as “in-band” pro-
cess, it can be successfully exploited. For example, shaping
actual data packets so as to inject packet-pairs should not
be an issue, but injecting additional pure probing packets
causes biased results and congestion.

In general, the results showed by Spruce suggest that avail-
bw measurements in large-scale systems are possible pro-
vided that the measurement traffic is (i) piggy-backed as
much as possible on existing data flows, (ii) the traffic shape
is “smooth”, with minimum impact on the network flows,
and (iii) the inference algorithm is direct (PGM) or needs
less iterations possible. Regarding the use of the PGM
model, however, the possible inaccuracies pointed out in [12]
remain unchanged. Using longer train instead of only two
packets, as suggested in [13], could increase the accuracy of
PGM tools but might have a higher impact on the network,
as several packets would be sent at full capacity rate. In
this sense, there is probably some research space for finding
an optimal network operating point. Finally, it would be in-
teresting to develop new hybrid techniques able to empower
both the lightness of the PGM-model and the robustness of
the PRM model.

5. CONCLUSION
In this paper, we raised the problem of interference between
coexisting avail-bw measurements. We showed that current
tools will not work in large-scale distributed systems. We
studied the properties of three prominent measurement tools
and discussed their functioning, their overhead and their
performance in case of concurrent measurements. We used
a dedicated testbed composed of 62 measurement hosts to
analyze the bias introduced and we showed that all exist-
ing methods severely underestimate the avail-bw. Finally,
we discussed some principles for estimating the avail-bw in
large-scale distributed platforms.
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