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PHYSICAL REVIEW B, VOLUME 65, 155105

Exact thermodynamics of an extended Hubbard model of single and paired carriers in competition

Fabrizio Dolcint and Arianna Montor$i
Dipartimento di Fisica and UnitdNFM, Politecnico di Torino, 1-10129 Torino, Italy
(Received 11 October 2001; published 27 March 2002

By exploiting the technique of Sutherland’s species, introduced in Phys. Ré8, B21103, we derive the
exact spectrum and partition function of a one-dimensional extended Hubbard model. The model describes a
competition between dynamics of single carriers and short-radius pairs, as a function of on-site Coulomb
repulsion(U) and filling (o). We provide the temperature dependence of the chemical potential, compressibil-
ity, local magnetic moment, and specific heat. In particular the latter turns out to exhibit two peaks, both related
to “charge” degrees of freedom. Their origin and behavior are analyzed in terms of kinetic and potential
energy, both across the metal-insulator transition point and in the strong-coupling regime.

DOI: 10.1103/PhysRevB.65.155105 PACS nuniber71.10.Fd, 71.2%a, 71.30+h, 05.30—d

I. INTRODUCTION reason for the growing interest devoted to finite-temperature
exactresults.

In condensed matter, electron systems in regimes of high The main technique within exact approaches to one-
correlation are known to be suitably modeled by the Hubbardlimensional1D) systems is the Bethe ansaBA), either in
Hamiltoniar? and its generalizatioris® For such models, the € coordinat€ or in the algebraft’ formulation. Such tech-
finite-temperature properties are the ultimate results whict]!dué amounts to guessing for a given model eigenstates of

S L . : : the form proposed by Bethé,and in particular it has been
theoretical investigationgnumerical or analytical aim to

L . i xtensively applied to models of correlated electrons; for in-
reach, in view of comparisons to experimental data. Indee tance, the BA equations for a wide class of integrable ex-

some observables exhibit intriguing features as a function ofanded Hubbard modéfshave been recently derived in Ref.

the temperature, which deserve an accurate interpretation. 27. However, the actual solution of these equations, i.e., the
In particular, the thermodynamics of the standard Hub-evaluation of the quantum numbers characterizing the system

bard model has been widely investigated.Or=1 this was  (quasi momenta is in general quite difficult, and some hy-

done by different exact approaches: in Refs. 10 and 11 and ipothesis on their distributiofstring hypothesf®) has typi-

Ref. 12 for the usual case of nearest-neighbor hopping, whilgally to be conjectured. In order to derive the complete so-

in Ref. 13 for the case of long-range hopping. In dimensiondution and calculate thermodynamic quantities, one is thus

greater than 1 recent results were obtained by exact diag('i@duced to solving a systemlof infinitely many COL.’pled inte-
nalization on  small  clustetd®® and  numerical gral equations, which requires dramatic numerical effort.

. tination<817 wh th B—o has been exam More recently, considerable progress has been achieved
investigations, *~ whereas ine caso = as been exam- through the alternative approach of the quantum transfer
ined in Ref. 18 by iterated perturbation theory.

) , ; _ atrix2® which yields dealing with only a finite number of
All the results show interesting behaviors as a function Ofcoupled integral equations. This has been done for the ordi-

temperature, with varying the filling and the Coulomb repul-nary Hubbard modé&t and for thet-J model*° as well as for
sion. This is the case, for instance, for the specific healyy extended Hubbard model with bond-charge interacfion.
where a double-peak structure as well as the appearance of Nevertheless, determining the actual properties of a model
quasiuniversal crossing points were found, which featuregt finite temperature for arbitrary parameter values remains
were already noticed in some experimental d3f&.In the  in general a very hard task, even when the model is proved to
strong-coupling regime the presence of a two-peak structurge integrable and its ground-state features are possibly de-
is usually related to the so-called “spin” and “charge” de- rived.

grees of freedom. Numerical results in 6heand two In the present paper we present the exact thermodynamics
dimension& " show that, at least at half-filling, such struc- of a one-dimensional extended Hubbard Hamiltoniele-
ture survives also at moderate couplings. scribed in Sec. )iwhose exact analytical ground-state prop-

Contrary to the ordinary Hubbard model, which has beererties were obtained in Ref. 1 by a technique different from
approached through several techniques, for the extendatie BA. We called that technique the Sutherland spe&&s
Hubbard models most finite-temperature results have beetechnique, and here we show how it can be exploited to
carried out by means of mean-field theorids. one dimen-  derive explicitly the whole spectrum and the partition func-
sion, however, it is known that traditional approaches totion of the model(Sec. Ill). In Sec. IV we calculate some
many-body systems such as mean-field or Fermi-liquid thecthermodynamic quantities: namely, the chemical potential,
ries are either unreliable or inapplicable. As a consequencehe compressibility, the local magnetic moment, and the spe-
both numerical techniquetike the density matrix renormal- cific heat. In particular in Sec. IV D we focus on the specific
ization group?!) and nonconventional analytical approachesheat, which turns out to exhibit a two-peaks structure. The
(like bosonizatio”) have to be supported by comparison origin of such structure and the differences with respect to
with exact solutions, whenever available; this is basically thehe standard Hubbard model are discussed in Sec. V.
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Il. MODEL 4-

metal insulator
oe

The Hamiltonian we are interested in reads ]
D III-a III-b
7:[=—t<_2> (1-ni_ el cip(1-n;_,) oo LYoYe
L))o 1
II

+Y<i2j> CFTCLCHC”JFUZ NN - (1)
Herec! ,c;, are fermionic creation and annihilation opera-  -2-
tors on a one-dimensional chain wittsites,o e {1, } is the
spin label,n;,=c/,c;,, and(i,j) stands for neighboring

jo

sites. The Fock spade of the system is the product of the A< " o " n o
four-dimensional vector spac®s related to each sitg each ’ ’ . ' ‘

V; is spanned by the basj$);, D) ]0Y;,[L1);, which we p (filling)

shall also denote in the following de,);, a«=1,...,4,

respectively. We shall adopt for the 1D lattiopenboundary FIG. 1. Ground-state phase diagram of the mddgffor Y=t,
conditions; as usual, these are not expected to affect the rébom Ref. 1. Open, barred, and solid circles, respectively, represent
sults in the thermodynamic limit. empty, singly occupied, and doubly occupied sites in the ground

In the Hamiltonian(1) the three terméwhich will also be  State.

denoted asH;, Hy, and H) represent, respectively, the

kinetics of single carriers, the kinetics of paired carriers, andoth the term inU and the filling, i.e., the density of

the on-site Coulomb repulsion. electrons in the chain. This can be seen by examining the
More explicitly, H; describes the hopping of single elec- case

trons towards empty sites. This term is thus reminiscent of

the so-called U= Hubbard model.” An important differ- Y=—t. ?)

ence must be however highlighted: the latter model reads

P21 }y.0C1oCio P, WhereP=T1;(1—n;;n;,) projects the dou-  Indeed for this value of the coupling constant the model has
bly occupied sites out of the Hilbert spa@ehich in that case  been proved to be integraBfeand the exact ground-state
is actually 3 dimensiona); in contrast, the tern#, in Eq.  phase diagranireported in Fig. Lhas been obtained in Ref.
(1), although not involving pairs, does not exclude their pres-1. TuningU andp the model exhibits interesting features; for
ence in the state of the systefn. instance, even when the value of fillinggs<1 and at mod-
The second term in Eq1) is in contrast a kinetic term of erate (J<2t) Coulomb repulsion, it is energetically favor-
pairs only; it is worth stressing that the model deals withable for the system to form pairs and let them move instead
pairs having a very short radius; in fact, while in modelsof having only singly occupied sites.
such as BCS one has several pairs within a radius of the |n region | the ground statéy.s) is made of only doubly
coherence length, here the radius of a pair is thought of agccupied and empty sites; in region Il we have also singly
small with respect to the lattice constant and is actually takemccupied sitegeither|1) or ||)). In region lll-a the g.s. is
as zero. This kind of term is also used in the so-callecthat of theU = Hubbard model and is made of singly oc-
Penson-Kolb-Hubbard modésee Ref. § where one inves- cupied sites(meta). In region Ill-b the g.s. of the model
tigates the effects of the pair dynamics without explicitly reduces to that of the atomic limit of the Hubbard model
entering the microscopic mechanism vyielding their(insulatoy. At half-filling (p=1) a charge gap,=U—2t
formation® We also point out that the first and second termsppens for anyJ=2t.
in Eqg. (1), though describing the kinetic of different kind of e wish to stress that, unlike many exactly solved elec-
carriers(single and pair, respectivglydo notcommute atall.  tron systems, the modél) is not particle-hole invariant:
The third term is traditionally the most important term for jndeed the first term breaks up the invariance; this leads to

Hubbard-like models; indeed, according to Hubbard’s piC—the Shape of the phase diagram shown in F|g 1, which is
ture, it is the parameter that should drive the metal-insulatogsymmetrical with respect to half-filling.

transition in the d-transition-metal compounds. Loosely
speaking, the ratitJ/t can be thought as proportional to the
inverse of the pressure applied on the sample: by increasing . SPECTRUM OF THE SYSTEM
the pressure one reduces the lattice spacing and thus makes, e following we shall assum¥=
the hopping amplitude more relevant with respectto

The first two terms of the Hamiltonian are in general com-
peting: indeedH; would favor delocalized waves of single
carriers, avoiding the formation of pair{y lowers instead
the energy when electrons form tightly bound pairs moving F= 2 T -+U2 AR 3)
along the chain. This competition is in addition modulated by oo T

—t, since such a
relation allows for the integrability, as observed above. In
this case, the Hamiltoniafl) can be rewritten in the form
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where'AI'i,J- accounts for the first two interaction terms in Eq. determines the actual positions of theh A site along the

(1). The term inU is easily checked to commute with chain. The basis vectors can therefore be referred to as
=71 Due to the conditiori2), T, ;, exhibits the struc- [{S}{J}), where *{ }" is to remind one thatS and J are

ture of ageneralizecff-diagonal permutator between physi- functions. o _

cal speciegPS, which are the local vectorke,)’s. More In realizing that the Hamiltonian can be separately diago-
explicitly, while the ordinary off-diagonal permutator, when nalized within each subspace characterized by a givee-
acting on|e,);®|eg);+1, returns|eg);®|e,);, for any a quencesS, it is also crucial to observe that each such invariant
# B and ZeCFOJ fora,:lﬂ a generalizjed o%é makes the ex- Subspace can be put in a one-to-one correspondence with the
change or gives zero according to the specific values of States ofN, spinless fermion spacer equivalently with a

andg. In our case,'AI'i,j permutes the PS of two neighboring spin-1/2 model with magnetizatidn—N,) as follows:
sites only if one belongs to growpand the other to grouB, N
where T

[{shiah | 1L aym [10), ®)
A=[T)11),[L1), B=|0). (4)

- U i i i
In all the remaining casek, ; gives zero. The above groups wherea' are the creation operators for a spinless fermions
and{S} the sequence of the subspace.

A andB of PS can be identified with the Sutherland species Similarly to what has been done in Ref. 6 for another

of the model(1) (see Ref. L the notion of SS is strictly thended Hubbard model, it is also easy to derive the form of
an effective Hamiltonian for the spinless fermion states: in-

the underlying Hilbert spac®.in D=1 a generalized per- eed, since the first term in E(B) reduces to a permutator

mutator between PS has the same eigenvalues as an ordin Niween SS. it actually acts on the considered subspace in
permutator between the corresponding SS. This is actuall ' y P

e T
what allows us to provide the exact spectrum, as we shall sea< Same way as a free Hamiltoniart.; ;,a;a; acts on the
below. spinless problem space. The second term simply counts the
The Fock spac& of the system iF=®2- ,Hy, Where llumeer of _spemesA of kind [I7), namely, Ny,
Hy is theN-electron Hilbert spaceN=S'_,n;: +n;|). How- =2i=aNini =N=N,. Therefore the spectrum in each sub-
N ertsp =107t space is given by
ever, due to the properties of the Hamiltonian, it turns out to
be useful to rearrang€ in terms ofHNA, i.e., the spaces L

spanned by all vectors that haye a de.finite numigrof E({nA};N)ZE (—2t cosk—U)nﬁ+UN, )
sites occupied by states of species‘ A sites” henceforth k=1
ClearlyNg=L — N4 . According to the properties of the gen-
eralized permutator fulfilled by, the latter commutes with where{n?} are quantum numbers valued 0 orkis 7l/(L
Na=={_;nj;+n; —n;;n;;, and thusHy, is preserved by +1) (I=1,...L), andN is the total number of electrons
the dynamics(this would hold in any dimensionin addi-  (Which ranges fronN, to 2N,). The eigenvectors are given
tion, dealing with an open chain, one can hade Bossible by the antitransform through Ed6) of spinless fermion
sequences of A sites for a fixed numbeX, . Notice also  €igenstate$Il, =}, sin(i)a']|0), where the product is over
that, since(i) the first term of Eq(3) only permuteA with B Na of the L allowed values ok.
and gives zero otherwise ar(d) the second term merely =~ When passing from a subspace ldf, to another, one
counts the number of doubly occupied sites, also the sefinds an identical replica of this spectrum, which amounts to
quenceS is preserved by the dynamics, and it can be idenhaving a degeneracy of the eigenvalues. The degeneyacy
tified with an invariant subspace WithlthA. The dimension corresponds to the different ways in which one can choose a
of each of these ™ subspaces is ), accounting for all SPeciesA at a given site provided th& remains unchanged

A (i.e., one has the freedom to change singly occupiednto

possible actual positions & sites along the chain. One can |1} and vice versa it is therefore easily seen that

repeat the above foliation for &HNA’S (N runs from O tal)

and check that the Fock space is completely recovered: N
A

gE(ngEND =22 TR

€S)

L
L
> SNA( N, =4 ®

Ny=0

To conclude this section, we wish to emphasize that the spec-
so thatF=aL H trum (7) has been derived by means of the Sutherland spe-
~ UNA=OT N . _ cies technique undespenboundary conditions. In fact the

Focusing on a givehly,, one can characterize each of itS game model was also studied undeeriodic boundary
basis vector by specifying two discrete-valued functionsconditions?’ within the algebraic Bethe ansatz approach.
S(m) andJ(m) (m=1,...Na). The former, which is val- However, in the latter case the resulting equations for the
ued 1(for |1)), 2 (for | 1)), or 3 (for || 1)), determines the quantum numbers do not allow a straightforward evaluation
sequenceS of A sites and, thus, the invariant subspace inof the eigenvalues; indeed the thermodynamics of @&g.
which the vector lies; the latter, which is valued 11ltp  had not been derived yet.
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IV. THERMODYNAMICS nonlinearity ofv as a function ofu results in the appearance

. . . of C in the left factor; this causes the relatiop
Thanks to the exact spectrum obtained in the prewouszlu(p;.l.;u) implicitly defined by Eq.(11) to be very differ-

section, we can now pass o the study of its thgr_modynamic%nt from that of a tight-binding model, as we shall explicitly
through the exact calculation of the grand partition function.gho\w in next section.

The Ianguage pf S_utherland’s species turns out to be very Tne two factors in Eq(11) deserve some commenty is
useful to this aim; indeed, due to the rearrangement of thﬁothing but the density oA sites along the chain, defined as

Fock space descAnbed above, one can write pA:”mL—»+oo<NA>/L; the functional dependence pf on 3
Z=Tr(e FH-#N)) and uess is that of a spinless tight-binding model. The left
factor provides information, through the functi@) about
2Na Na the kind of occupancy of the sites of the chain; indeed when
=> > 22NA_N(N_N C~0 most of the occupied sites are singly) occupied,
{miet N=Na A whereas ifC~1 most of the occupied sites are doult))
occupied; intermediate values indicate the percentage of
with respect tos sites.
To conclude this section we wish to comment about the
energy (per site of the system; the latter is obtained By
=—lim__.d(In ZIL)/ 9B+ wp and reads

—B(U—w)N

L
xex;{ —ELZl (-2t cosk—U)n?

L
=> (2+ e‘ﬁ(U‘”))NAexp( kE [ B(2t cosk+ u)]nk
=1

{ne} &V, B, p)
L B 1fwdk —2tcosk—U U
=kl;[l (1+exp{B[2t cosk+ pu+v(U,B,1)]1}), 9 = 7)o T exp Bl — 2t cosk— U B Tr P
where we have defined(U,8,x)=In(2+e AY-my/a, B (14)
=1/(kgT) being the inverse temperature andhe chemical Equation(14) naturally allows one to identify i€ a kinetic
potential as usual. energyk and a potential energ®. The former is defined as

The grand potential is easily obtained @s w(3;U;u)  the weighted integral of-2tcosk and the latter as the
=—lim_ .8~ (In Z/L). After introducing pes=p+ v, o weighted integral of-U, which actually gives—Up,, ac-

reads cording to Eq.(13). In fact the actual potential energy would
. also contain the last tertdp of Eq. (14); however, since this
o(B;U;p) is merely a constant with respect to temperature, we prefer

1 (= not to include it in the definition ofP, so that the latter
=— —f dkIn(1+exp{ B[ 2t cosk+ uesi(U,B, 1) 1}). describes the only temperature-dependent part of the poten-
mBJo tial term Uﬁ”ﬁu . Notice that with this choice the potential
(10 energy is attracting for positivd. Notice also that, although
Remarkably, the grand potential is formally similar to that of’C aqu are clearly rela_ted to the h.opplng terms and to the
on-site Coulomb repulsion, respectively, they are not mutu-

a tight-binding model with areffectivechemical potential . .
ot ally independent: indeeld depends not only ohbut alsoU
Meff- We stress thapes(U,B,u) depends on the on-site ind vice versa foP. We shall come back to this point in

Coulomb repulsion, the temperature, and the chemical pote@. ing th ific heat in Sec. V.
tial in a highly nonlinear way. This yields peculiar features of ISCUSSIng the specific heat In Sec. v.
the model, as we shall show in the following.

- . - A. Chemical potential
In deriving the thermodynamics of the system, it is cus- P

tomary to eliminatew in favor of the filling p; the latter can The chemical potentigk(p; T;U) of our model is shown
be computed ap=— dw/du, and the result turns out to be in Fig. 2 atU=t (a) andU =4t (b) for different values of the
of the following form: terrllperatyre.f_ Con the sold _—
ocusing first on the solid curves, representing the case
p(U.B.p) =[1+C(U.B. 1) 1pa(B: prerdU. B ), 1 T=0, one can realize that even in the ground state the rela-
(11) tion betweenu andp is quite different from that of a spin-
where less tight-binding model, which would reagd(p;T=0)
exii— AU~ w)] = — 2t cos(p).
CU,B,p)= — — (12 In particular, in Fig. 2a) we notice that a “plateau” ap-
2+exd —B(U—u)] . ; :
pears, in correspondence with region Il of the ground-state
and phase diagranfsee Fig. 1 Interestingly, such a shape re-
1 (= dk minds us of that of a coexistence region connecting the phase
PA(B, tetr) = ;J; T+ exd B(— 2t cosk— o)) ] of single carriergregion llI-g) to that of pair carriergregion

1); this would imply that, as the filling is increased, the 1D
(13 . D . .

lattice starts exhibiting macroscopic regions made of only
Notice that differentiatingn with respect tou.¢s instead of  single carriers separated by other macroscopic regions where
to u would yield only the right factop, of Eq. (11); the  only pairs are present. In fact, eigenstates with such features
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5 5
o | —KTit=0 o
~~~~~~~~~ kg T/t=0.1
—— kg T/t=02 !
81 | —-—k,T/t=05 I3
2

u/t

1 A (RS ke T/t=0.1
—— Kk, T/t=02
! — K, T/1=05
244
1/
3 3/
00 05 10 15 20 00 05 10 15 20 p=05
p (filling) p (filling) -1.01

FIG. 2. The relation betweem and . for different temperatures 154 U/t=1.0 I

atU/t=1 (a) andU/t=4 (b). For T=0, the curve in(a) shows a
plateau, related to “phase coexistence” in mixed region Il of Fig. 1,
whereas the curve itb) exhibits a jump inu, due to the opening of 2.0 — 1 . 1 T T 1
charge gap at half-filling. 0.0 0.4 0.8 1.2 1.6 2.0

ky T/t

are certainly present; however, they are degenerate with
other eigenstates, in which single and pair carriers alternate FIG. 3. The behavior of. as a function of temperature for fixed
with no macroscopic order. This is basically due to the deU/t=1 and different values of filling. The asymmetry with respect
generacy ofA sequences in such a region. to the half-filled casgp=1 is ascribed to the lack of particle-hole
In Fig. 2(b) a vertical jump is instead present at half- invariance of the model.
filling, as a hallmark of the opening of the charge gap. The
flat part of the solid curve fop>1 just coincides with the
atomic limit behavior(region IlI-b of Fig. 1. pu=U+kgTIn
Considering now the curves at finite temperature of Fig.
2, one can observe how the edges preseft=ad smoothen
as soon a§>0. A remarkable feature is the presence in Fig.”~ /" &/
2(b) of a nearly universal pointg* =4/3, u* =U), where 7 c0S (~U/21). ,
all the curves of sufficiently low temperature basically inter- In contrast, when the charge gARZU —at _opens(|.e.,
sect. Such kinds of points are in general determined througfit #=1 andU>2t), x acquires a highly nonlinear form
the conditionsiu/dT=0 andd?u/dT?=0. Itis in fact pos-
A, kgT (kBT)

2<5—F>

+0O((kgT/t)?),  (16)
2p—p

but with a coefficient which depends a# sincep=p(U)

sible to calculate that for any > 2t andp>1 (region Ill-b u=2t+ —+——In
4t

1
of Fig. 1) the low-temperature behavior of is given by 2 4 @9

indicating that the behavior is definitely different to that of
2(p—1) _(U—20)keT an intrinsic semiconductor.
—_, | t0o(e B), (19 In Fig. 3 we explicitly examine the behavior @f as a

p . : .
function of temperature for a fixed value of on-site Coulomb
. ) repulsion (J/t=1) and for different fillings. A main differ-

whence the above conditions are both fulfilled up to expoepce has to be emphasized with respect to the case of a
nentially small terms irkgT/t. . tight-binding model: in the latter the curves pfare specular
~ We shall also see in Sec. IV D that nearly universal crossoy fjlling values that are symmetric with respect to half fill-
ing points are exhibited by other observables of the modeli,ng (i.e., u— — u for p—2—p), whereas this is not the case

such as the specific heat. _ _ in our model, due to the fact that it is not particle-hole in-
Equation(15) also points out that in our modellmear  \griant.

low-temperature behavior is possible, differently from the
tight-binding model, where only even powers Thare al-
lowed in the Sommerfeld expansion. In general, in our
model, different behaviors qi arise according to the values = The compressibilityx=dp/du can be easily evaluated
of U andp. For instance, folJ andp belonging to the mixed through Eq(11). In Fig. 4 we have plotted as a function of
region Il of Fig. 1, the chemical potential at low temperaturethe temperature for a fixed value of (namely,U/t=1.0)

has again a linear term, and for different fillings. One can observe the change in the

,U,:U + kBT |I’I(

B. Compressibility

155105-5
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3.0 1

2.5

2.0

: 0.8
154 ¢
: ¥
¥
0.6
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’ 0.4
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kBT/t B

FIG. 4. The compressibility as a function of temperature at fixedf.”. FlG'EiThZiompreSSI?mt}( as affun(_:tl_(t)n gf telmpEratur(T ".’“ fleed
on-site Coulomb repulsiod/t=1.0 and for different filling values. ting p= 2 and for severai vaiues of on-site .oulomD repulsion. As

« diverges asT—O0 for values ofU/t and p belonging to mixed :hfn chrartg(: gt?ph O\E)ie:]eU(>2t), k acquires an exponential low-
region Il of Fig. 1. emperature benhavior.

C. Local magnetic moment
low-temperature behavior when tuning the filling: @t 0.5
the behavior is regular, while at half-filling undergoes a
singularity for T—0; eventually p=1.5) its behavior is
again regular. The reason for the low-temperature singularity 1
atp=1 is that in the ground state the poitd{t=1;p=1) is Ao= lim <— > (ﬁ”—ﬁ”)2>, (18
situated in region I(see Fig. 1, i.e., in the region where the Lo\ L T
chemical potential exhibits the plateau, as shown in Fig. 2;
such a singularity is indeed present for all valueJaind p It characterizes the magnitude of spin at each site, i.e., the

that belong to that region of the ground state. The divergencgegree of localization of electrons. In terms of the density of
of x can be proved to be of the typeT 1. A sites, Ny can be easily rewritten aso=p—2p; =2pa

In contrast the behavior foF—0 atp=0.5 andp=1.5is P> WNerépa can be computed from EL3). In Fig. 6 we
. - p=r.o dlLp= - have reported the local magnetic moment at half-filling for
regular since such filling values belong to regions lil-a and I’dif“ferent values of the on-site Coulomb repulsion. One can
respect_lvely. . . . observe that the behavior ofy, even within a relatively
In Fig. 5 we have examined in detail the case of half-

- . ) ) ~“""small range of values df, is quite rich. In order to describe
filling, plotting « as a function off for different values otJ; it, we first consider the case of small valueslbfinamely,

one can explicitly observe how =2t is the critical value ;=1 4 in the figure; we recall that in the ground state such
separating the divergent behavior tdr< 2t from the regular 5 yalye corresponds to the mixed regior(dee Fig. 1 ap

one for U>2t. Indeed, as soon dd>2t, the divergence =1) meaning that hopping paired electrons are present at
becomes a pronounced peak i the temperaturél* at  T=0; as the temperature is turned an, first increases with
which the peak occurs increases with increadipgimilarly T (indicating that the pairs are broken in favor of single
to what happens in the ordinary Hubbard model, accordingarriers; however, after reaching a maximum at a tempera-
to the results of Ref. 12 Notice that in contrast no singularture T*, \, starts decreasing for highdrs, denoting that
behavior is expected at moderdiis in the ordinary Hub- pairs are now reformed by higher thermal excitations. Ac-
bard model at half-filling, since in that case the system isording to the above observations, it easy to realize that the
insulating for any positiveJ. temperatureT* decreases with increasing; in fact the

The local magnetic moment was first introduced in Ref.
14 and is defined as
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FIG. 7. Specific heat as a function ®fat half filling for differ-

FIG. 6. Local magnetic moment as a function of the temperaturesnt values otJ/t below the metal-insulator transition value: a two-

at half-filling for several values otJ/t. Notice how the low-

peak structure is present, as well as a nearly universal crossing

temperature behavior abruptly changes across the metal-insulatgbint. The low-temperature behavior is linear.

transition point. The figure indirectly provides also the behavior of

Pa, SiNCENG=2pa—p.

maximum disappears fo=1.85, so that\, becomes a
definitely decreasing function of the temperature. Bt
=2t, Ao reaches af =0 the saturation value (all singly

this range ofU’s, C,, also exhibits a nearly universal cross-
ing point atkgT~0.8%; we shall comment on such feature
at the end of this subsection. The peaks eventually merge
into one forU/t~1.85. However, as soon &> 2t (see Fig.

8), a new well-pronounced low-temperature peak appears.

occupied sitel with an infinite derivative with respect to the The recovered double-peak structure is present up-St,
temperature. Passing through=2t, an abrupt change in the where finally only one peak survives.

low-temperature slope occurs: the curvengfsuddenly flat- By comparing Figs. 7 and 8, one can notice that the
tens as soon ad>2t. This reflects the metal-insulator tran- metal-insulator transition poind =2t is also the hallmark of
sition occurring in the ground state; indeed the opening of crossover in the low-temperature behavioiCgf. In par-

the charge gap causes the formation of pairs to be highlyicular, the calculation shows that fad <2t the latter is
unfavored at lowT's.

linear,
D. Specific heat c kg w? N 24(1—;);) kgT
= - n —— _,
In this subsection we present our results on the specific v 2m1—(U/2t)?\ 3 (2p—1)%) t

heat of model1) which can be computed through (20
de 9E  9E dp /| dp wherep is defined as in Eqi16). In contrast, folU >2t, Cy,
Cvzd—T: —kg? %— @ @ @) (19 exhibits an exponential-like behavior given by
where the energy is given by Eq(14). Below we study the ke [Ac\? keT)" Ac
emperature dependence 6f, when varying the physical (4m)Y4\ 2t t 2kgT

parameterd) andp. The exact calculation shows that in our
model a two-peak structure is definitely present not only inwhereA.=U — 2t is the charge gap.

the strong-coupling regime, but also at modetdts.
We start by considering the case of half-filling=€1).
The two peaks appear first for E3)/t<1.8(see Fig. 7, in

To conclude the study at half-filling we have examined

the case of largJ/t (see Fig. 9. The result shows that only

one peak is present, at a temperature which increases almost
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FIG. 8. Specific heat as a function ®fat half filling and dif-
ferent values ofJ/t just above the metal-insulator transition point:
the two-peaks structure definitely disappearsUoe 3t. The low-
temperature behavior is exponential fde>2t.

linearly with U (kgT~0.21U). This result can be under-
stood considering that at larg#/t the spectruni{7) exhibits
two different energy scaledi) a low-energy scale +t),
which describes fluctuations in thke band, whose effective
filling is given by the value ofp,, and(ii) a high-energy
scale(of the order ofU) involving the formation of on-site
pairs, favoring the decrease of the numberAosites. The
former channel is actually active only fpr< 1, since at half-
filling the A band becomes completely filled: indeed in this
case we havp,=1 for kgT~t, as can be deduced from Fig.
6 of the local magnetic moment at larggt.

Only the high-energy channel is thus active, and its con

tribution is well described by the atomic-limit modgle., t
=Y=0), shown by the dotted curve in Fig. 9. The slight
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FIG. 9. Specific heat as a function ®ffor half-filling and 4t
<U=16t. In the strong-coupling regime, the two-peak structure
disappears: the remaining peak is well described from the atomic-
limit model (dotted curvé A similar behavior is obtained also at
anyp>1.

=4t’/U) are active. These kind of excitations are instead ab-
sent in our model; we shall comment in more detail in Sec. V
about this point.

In Fig. 10 we investigate the specific heat for filling val-
ues below half-filling: namelyp=0.75.

As Fig. 10a) shows, a double-peak structure ©f ap-
pears; however, two important differences have to be empha-
sized with respect to the case of half-filling: in the first in-
stance, here the double-peak structure arises and becomes
more evident folarge values ofU’s, whereas at half-filling
it is present amoderate Us; second, the temperatures of the
two peaks are quite higher than the corresponding ones of

the half-filled case. In particular the position of the low-
temperature peak is practically independentUpfwhereas
the high-temperature one strongly depends on it, similarly to

deviations are due to the fact that, as pairs are formed fromyat happens for the only peak present at half-filling in the
singly occupied sites via thermal fluctuations, the number o&tyong-coupling regimérig. 9).

effective speciedA decreases, and the formédholes can
produce(relatively smal) fluctuations withT. However, the

The two peaks of Fig. 1@) have to be related to the two
energy scales emerging in the spectrum whent, as dis-

larger isU/t, the better is the agreement with the specificcussed above; in particular, the low-temperature one is attrib-

heat of the atomic limit.

uted to the fluctuations of th& band, which is now partially

We also wish to emphasize that the behavior is differenfilled, unlike for half-filling. We recall that in this range of
from that of the ordinary Hubbard model, where two peaksthe parametersl andp, the ground state of the model is that
appears at low temperatures in the strong-coupling limit abf the U=« model(region lll-a of Fig. 1; since the forma-
half-filling. In fact, although in the Hubbard model the lower tion of pairs is strongly inhibited for highl’s, the physics of

Hubbard band is filled, spin excitations of low energyJ

low-energy excitations is fairly captured by that of thie

155105-8
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/\. 0.35 -
o @ U/t=10

kg T/t FIG. 11. The specific heat as a function of temperature at strong
coupling andp<<1. The low-temperature behavior is the same for
FIG. 10. The specific heat as a function of temperaturepfor values ofp symmetric with respect tp=0.5: indeed in this case
=0.75. In(a), Cy is plotted for different values dfi/t; (b) at strong  low-energy excitations are well described by tbe=~ Hubbard
coupling U/t=28) the specific heat of the modglolid line) is well model, which is particle-hole invariant around quarter-filling. Dif-
reproduced by the suifdot-dashed lineof the specific heat of the ferences instead emerge at high temperatures.
U= model(dashed lingand of the atomic limi{dotted ling; (c)

this is not the case at moderate coupling, where the energy scales rcgports the results obtained in the strong-coupling case. As
the two models become comparable/(=2). anticipated above, in this case the low-temperature peak is

perfectly recovered from thd = model; notice that, since
=o model at finite temperature, as shown by the solid curvéhe latter is particle-hole symmetric around quarter-filling
in Fig. 10@). In Fig. 10b) the caseU/t=8 is examined in (p=0.5), the low-temperature behavior of curves related to
detail; in this case the sum of the specific heatdJof © filling values that are symmetric with respect pe=0.5 is
model and atomic model practically recovers the ac@al basically identical. In contrast, the higher-temperature peak
of our model. Such agreement improves with increading does not exhibit such symmetry, being related to the atomic
whereas at moderate values Ufthe argument of energy limit of the Hubbard model, which is no more particle-hole
scale separation does not hold: indeed the high-temperatusymmetric around quarter-filling.

peak merges into the low-temperature oneldor 2t, andC,, Figure 12 is concerned with the behavior at modetite
is no longer given as the sum of=«~ and atomic limit§see  (namely,U/t=1.5) as a function of; the remarkable feature
Fig. 100c)]. is the appearance of a nearly universal crossing point at low

We have also considered the case of filling values greateaemperature KgT~0.2t) for a finite range of filling values
than 1. In the strong-coupling regime the ground state has thil.0< p=<1.3). Similarly, a nearly universal crossing point
A band completely filled, the sites of the chain being allalso occurs at fixed filling for varyingJ, as Fig. 7 shows.
occupied(either singly or doubly, as shown in region lll-b of The latter type of behavior is also exhibited by the ordinary
Fig. 1); the low-energy scale is thus frozen, just like in the half-filled Hubbard modet?*31"*8however, to the authors’
case of half-filling. This yields the specific heat behavior beknowledge, theoretical investigations were mostly limited to
actually described by that of the atomic limit, similarly to the case of fixed filling and varying/t. In contrast, here we
Fig. 9. The temperature of the peak grows linearly withhave explored the case of varyipgas well; this is interest-

U [kgT=c(p)U], the coefficientc being an increasing ing in view of a comparison with experimental results, where
function of the filling p. U/t can be roughly interpreted as the inverse pressure and
Figures 11 and 12 examine the filling dependence of theé=|1—p| as the doping. In fact, this type of universal be-
specific heat at fixed coupling values. More precisely, Fig. 1Thavior has been observed in many heavy-fermion com-
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FIG. 12. The specific heat as a function of temperature in the
moderated regime. A nearly universal crossing point with varying

i ) . FIG. 13. The specific heat as a function of temperature at half-
p at fixedU is observed for values gf in the range 0.8 p=<1.3.

filling for negative values ob. (a) The double peak emerges|aH

is increased(b) In the strong-coupling regimeJ/t=—15.0), C,
pounds, such as the cerium ones, both at fixed doping witl$ fairly reproduced by the sum of theX0 contribution(dashed
varying pressuré? and at fixed pressure with varying line) and the atomic limit contributiodotted ling.

doping?° Let us notice that, for the ordmary HL_Jbbard model, V. DISCUSSION

the presence of the nearly universal pointlinhas been

explained in Ref. 35, as a consequence of the fact that the As outlined in the previous section, our results show that
entropyS at high temperatures does not dependlgin that  the specific heat exhibits a two-peak structure for different
case. For our mode§ at high temperatures is also indepen-values of on-site Coulomb repulsidsh and filling p. In the
dent of U; however, it turns out that iloesdepend ornp. present section we wish to discuss the origin of the two
Hence we expect that the argument in Ref. 35 cannot bpeaks, since in the last few years much effort has been made
applied to explain the nearly universal crossing poinjpin to clarify a similar behavior occurring in the ordinary Hub-
shown in Fig. 12. bard model. As mentioned in the Introduction, in the latter

Finally, the specific hedat,, is investigated in Fig. 13 also model the two peaks are usually explained in terms of
for negative values of the Coulomb interaction, at half-“spin” and “charge” excitations.
filing. The behavior is quite different with respect to the  The above argument cannot be applied here, since our
positivelU case for moderate and intermedidte values, model involves only charge degrees of freedom: in fact, from
since no double peak is present. the formal point of view of quantum numbemﬁ, the exci-

In contrast, such structure emerges at higher coupling vakation processes in the spectrii have the typical feature
ues; also in this case two separate energy scales emergsf.charge excitationgin the sense oA species It is, how-
However, the low-temperature peak is now reproduced byver, worth emphasizing that, just like for the ordinary Hub-
that of theXX0 model ¢=0), whose ground state actually bard model, the nomenclature based on quantum numbers
coincides with that of our model, for these valuedondp  does not strictly correspond to ihysicalmeaning. In our
(see region | in Fig. L The high-temperature peak is still case, the charge degrees of freedomAo$pecies actually
due to the negative} atomic limit (t=Y=0). In Fig. 13b)  carry bothchargeandspin density fluctuations: the breakup
it is clearly shown how, in the strong-coupling case, theof a localized pair into two single carriers indeed leads to a
simple sum of the specific heats ®fX0 and atomic limit  redistribution of the charge density as well as to the forma-
perfectly reproduces the result for our model; this is not theion of a triplet replacing a singlet state.
case by at lowelJ values. In our model any peak of the specific heat has thus to be
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In contrast, in the regime of moderdiks the two energy
scales become comparable, and the above argument is not
applicable. This gives rise to a completely different scenario;
for instance, at half-filling we observe that by loweridghe
single strong-coupling peak splits into two, whereas gor
<1 the two strong-coupling peaks merge into a single one.
In practice, while forlU|>t the kinetic and potential terms
decouple, at moderatd’s it is the competitionbetween the
two kinds of energy that determines the actual shape of the
specific heat.

This can be understood by recalling the structure of the
energy spectrumsee Eq.(7)]; both terms can be expressed
in terms of the quantum numben§ , where the total number

: of A sites is not a fixed quantity, but can vary in the range
\ N, e [N/2;N] (the electron numbeX being obviously fixedl
\ This property actually yields the competition betwé&@and
\ KC: indeed the kinetic term may favor the decreas&lgf in
order to eliminate possible positive contributions of
— 2t cosk, whereas the potential term favors the increase of
N N4 (i.e., thg breaking of or_1—site pajrsThis competition 'is
~ already active al =0, causing the appearance of the differ-
~— ent regions in the ground-state phase diagram.

At finite temperature two more mechanisms enter driving
such competition(i) the densityp, of A carriers varies with
T, according also to the values dfandp, and(ii) the kinetic

kB T/t term exhibits the usual thermal fluctuations. The former rep-
resent the crucial difference with respect to an ordinary free

FIG. 14. The kinetic(dashed ling and potential(dotted lin@ spinless fermion model, where only thermal excitations are
contributions to the specific hedsolid ling) at strong coupling present, afixednumber of carriers. Notice also that the vari-
(U/t=16) for p=0.75. The low-temperature peak is basically due ability of p, can happen to contrast the effect of thermal
to K', while the high-temperature peak stems fréth In this re-  fluctuations: this is the case whep decreases witfi, since
gime (U>t), K is also well described by the specific heatwf  this would yield a reduction ok, while thermal fluctuations
=2 Hubbard model an®’ by that of the atomic limi{dashed and  would lead to an increase of it. As a consequence, a further
dotted curves of Fig. 10 competition, concerned with the purely kinetic contribution,

may occur.
ascribed just to charge excitations. We have seen in Sec. In Fig. 15 we plot the derivatives’ andP’ of the kinetic
IV D that, when varying the parametetsand p, the peaks and potential parts for various moderates at half-filling.
can merge into one and possibly reappear. In the followingstarting fromU/t=1.6 we observe that at low temperatures
we shall discuss such a structured behavior through the kboth £’ and P’ exhibit a peak at nearly the same tempera-
netic and potential contributions ©,,: namely, the deriva- ture T4; this is due to the fact that in this regime they are
tives ' andP’ with respect to the temperature fand P, driven by the same mechanigifiormation of pairs from sin-
defined when giving the internal ener¢iA). gly occupied sitels The two contributions of opposite signs

We start by the case of the strong couplingstt), where  do not completely cancel each other; the kinetic one prevail-
our results show a two-peak structure for positiveand p ing, a kinetic low-temperature peak appearsCip. Notice
<1 [see Fig. 1()], as well as for negative) at any filling  that the value ofCy at the peak is relatively small with
[see Fig. 1®)]. Since in these regimes the characteristicrespect to that ofC’ and P’; this is just the hallmark of a
energy scales of the kinetic terf) and the potential term competition between the two contributions.

(U) of the Hamiltonian are well separated, it is expected that At a higher temperaturd=T,, located in between the
each of the two peaks is related to one of these terms. In Figwo peaks ofCy, K’ has a flat minimum and®’ a flat

14 we have thus plotted’’ and P’ for U/t=16 andp maximum. Finally, at still higher values of temperatuk&,
=0.75: the two peaks are indeed in perfect correspondenaexhibits a second maximum at, and P’ is smoothly de-
with the contributions ofC andP. It is also worth stressing creasing; in correspondendg, exhibits the second peak, of
that these two contributions can be quite well described akinetic origin.

strong coupling in terms of two different models: explicitly, ~ As U is increasedFig. 15b)], the value ofT, decreases
the low-temperature kinetic behavior is captured by the and the absolute height of both the above contributions dras-
=00 model for positiveU’s [Fig. 10b)] and by theXX0 tically vanishes, so that the low-temperature peak becomes a
model for negativeU’s [Fig. 13b)]; the high-temperature sort of “shoulder.” At the same time, the minimum of the
potential behavior is instead described by the atomic limit. kinetic contribution and the maximum of the potential con-

p=0.75
U/t=16.0

0.20

0.154

C, /K,

0.10 1

0.05 - \’

0.00 +——4—F—F——F—T7—F—T7T—"—T7—"
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through the pointJ = 2t of the metal-insulator transition, the
nature of the low-temperature peak changes its origin from a
kinetic to a potential one, whereas at modetate a further
peak of kinetic origin appears at higher temperatures. In
; ¥ passing let us also notice that at strong coupling a kinetic
024 § 024 (potentia) peak is a peak to which onlic’' (P') basically

i contributes,P' (K') being almost vanishin¢see Fig. 14 in

0.4

0.2

00 &

-0.41 -0.4

, , , i i , i , contrast, at moderatd’s a kinetic(potentia) peak is a peak
00 04 08 12 16 00 04 08 12 16 for which the kinetic contribution slightly prevailing on the
0.45 kg T/t 047 kg T/t potential (kinetic) one.
@ The results obtained for our model can be compared with
021 those concerning the ordinary Hubbard model. In the strong-
coupling regime of this model the low-temperature peak is
0.01 e attributed to spin excitationghe corresponding temperature
/ being of the order ofJ=4t?/U), whereas the high-
021/ MU/t=20 temperature peak is related to the charge excitatisinge it
/ is located atkgT~U). With lowering U, it is widely ac-
%0 o1 o8 12 16 cepted that the two peaks mergeldt=4t; however, some
. ke T/t investigations have been carried out at still lowks, show-
1295 1.2 ing that a double-peak structure reappear£Xerl (Ref. 11
084 % 08] and D=2 (Refs. 16 and 1y It is customary to relate the
04f - 0ali T U] origin of these new peaks again to spin and charge degrees of
004 0.0_\5/‘ /""/‘__ e freedom, respectively. _ _ N
- The Hubbard model is considered the paradigm within

041} 7

-0.44 / Y
08l o8 strongly correlated systems, so that the presence of a two-

peak structure in the specific heat of such systems tends natu-

b
-1.24 -1.24 ; : :
0o o7 o8 T2 1e AR TR rally to be interpreted as the signature of spin and charge
KT/t K T/t excitations.
B & However, in the authors’ opinion, not enough attention

FIG. 15. The temperature dependence of the kinaiashed _has been Qevo_ted to the effect that_ further intera_ction terms
line) and potential(dotted liné contributions to the specific heat 1N the Hamiltonian have on the specific heat. To this purpose,
(solid ling), in units ofkg, at half-filing and different moderate the exact results obtained for our model show that, when a
values ofU. Contrary to the cas&/>t of Fig. 14, at moderate POssible competition between single and paired carriers is
couplingK’ andP’ are competing, since they have relatively large taken into account, the specific heat turns out to exhibit a
contributions of opposite signs at roughly the same temperaturestructured two-peak behavior, in spite of the fact that only
The peaks ofC, are thus “kinetic” (“potential”) when K’ (P') charge degrees of freedom are involved. Although our model
prevails on the other. Notice that the low-temperature peak changeseglects some terms such as the nearest-neighbor charge in-
it_s origirl from kin_etic to potential across the metal insulator t_ra”Si'teraction fVVF‘ioﬁjg'), we believe that it can reproduce
tion point; the high-temperature one, present upii=2.5, is  some features of realistic materials which are not explicitly
instegd always of kiqetic origir.(For editing reasons the two bot- {5ken into account in the ordinary Hubbard model: namely,
tom figures have a differentaxis scale. (a) the opening of the gap atfmite value of U/t, i.e., at a

finite value of pressure on the sampldy) the lack of
tribution located around’, have become more pronounced, particle-hole symmetry, observed in heavy-fermion com-
andT, itself has decreasddee Fig. 1&c)]. As U reaches the  pounds; andc) the presence of a mechanism favoring the
value 2 of the metal-insulator transition, bothy and T, kinetic of paired carriers, as is the case in cuprate supercon-
vanish and the magnitude of the corresponding extrema beyctors. In view of these observations, we suggest that the
comes infinite[Fig. 15d)]. For U>2t [Figs. 18d) and nterpretation of a two-peak structure @, may not neces-
15(e)], the T, extrema are regularly restored and, since thesarily be related to spin and charge excitations; a comparison
T, extrema have disappeared, they become the new lowwith the behavior of pure spin quantities, such as magnetic
temperature extrema. At this temperat(g exhibits now a  susceptibility, in correspondence of the peaks temperature
new peak. Thus, foJ>2t, the potential contribution pre- would be more probative.
vails on the kinetic one, and the nature of the low-
temperature peak changes with respect to the thset.
Notice thatT, now increases withJ [Figs. 15e) and 15f)].
Finally, at higher temperatures another broad peak originates In this paper we have calculated the exact thermodynam-
from the (old) second maximum of the kinetic part. Such aics of an extended Hubbard model by means of the Suther-
high-temperatureT;) peak is very broad, and it definitely land species technique, which we had previously introduced
disappears wheb is further increased above.3 to determine the ground-state properties of the same nfodel.

The above observations show that at half-filling, passingrhe model describes a competition between the dynamics of

VI. CONCLUSIONS
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single carriers and that of short-radius paired carriers; suchearly universal crossing point and a double-peak structure.
competition is modulated by the values of the electron fillingThe two peaks, which are shown to be related to charge
p and on-site Coulomb repulsidd. We have calculated the degrees of freedom only, are present in rangebl 4if both

partition function of the model and derived the finite- below and above the metal-insulator transition value. We

temperature behavior of different physical

magnetic moment, and the specific heat. We have discuss%g)

quantities
namely, the chemical potential, the compressibility, the locaP

.have discussed the two peaks in terms of the kinetic and
‘potential contributions to the spectrum, outlining the differ-
ences between the cases of strong coupling and moderate
upling, and comparing our results with that of the ordinary

the changes of such observables across the point of the phard model.

metal-insulator transitiond=2t, providing explicit low-
temperature expressions f@, and w; in particular w is

found to undergo an unusual transition from a linear to azation, to further integrable extended Hubbard m

The method presented here to derive the partition function
of our model can be applied, with straightforward generali-
als

TInT dependence. We have then focused on the specifigolving two Sutherland species. Work is in progress along
heat, which turns out to exhibit interesting features, such as these lines.
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