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The current noise of a voltage biased interacting quantum wire adiabatically connected to metallic
leads is computed in the presence of an impurity in the wire. We find that in the weak backscattering
limit the Fano factor characterizing the ratio between noise and backscattered current crucially depends
on the noise frequency ! relative to the ballistic frequency vF=gL, where vF is the Fermi velocity, g is
the Luttinger liquid interaction parameter, and L is the length of the wire. In contrast to chiral Luttinger
liquids the noise is not only due to the Poissonian backscattering of fractionally charged quasiparticles
at the impurity, but it also depends on Andreev-type reflections at the contacts, so that the frequency
dependence of the noise needs to be analyzed to extract the fractional charge e� � eg of the bulk
excitations.
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action strength and implies crucial differences between charge e� � eg can be extracted from noise data.
Shot noise measurements are a powerful tool to observe
the charge of elementary excitations of interacting elec-
tron systems. This is due to the fact that in the Poissonian
limit of uncorrelated backscattering of quasiparticles
from a weak impurity, the low frequency current noise
is directly proportional to the backscattered charge [1].
This property turns out to be particularly useful in
probing the fractional charge of excitations in one-
dimensional (1D) electronic systems, where correlation
effects destroy the Landau quasiparticle picture and give
rise to collective excitations, which in general obey un-
conventional statistics, and which have a charge different
from the charge e of an electron [2]. In particular, for
fractional quantum Hall (FQH) edge state devices, which
at filling fraction � � 1=m (m odd integer) are usually
described by the chiral Luttinger liquid (LL) model, it
has been predicted that shot noise should allow for an
observation of the fractional charge e� � e� of backscat-
tered Laughlin quasiparticles [3]. Indeed, measurements
at � � 1=3 by two groups [4,5] have essentially confirmed
this picture. The question arises whether similar results
can be expected also for nonchiral LLs, which are be-
lieved to be realized in carbon nanotubes [6] and single
channel semiconductor quantum wires [7]. Although a
nonchiral LL can be modeled through the very same
formalism as a pair of chiral LLs, some important dif-
ferences between these two kinds of LL systems have
to be emphasized. In particular, in chiral LL devices
right- and left-moving charge excitations are spatially
separated, so that their chemical potentials can be inde-
pendently tuned in a multiterminal Hall bar geometry. In
contrast, in nonchiral LL systems, right and left movers
are confined to the same channel, and it is possible to
control only the chemical potentials of the Fermi liquid
reservoirs attached to the 1D wire. This in turn affects the
chemical potentials of the right- and left-moving charge
excitations in a nontrivial way depending on the inter-
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chiral and nonchiral LLs; for instance, the conductance
in the former case depends on the LL parameter g � �
[8], while in the latter case it is independent of g [9–11].
Hence, the predictions on shot noise properties of FQH
systems are not straightforwardly generalizable to the
case of nonchiral LLs, which therefore deserve a specific
investigation. Previous theoretical calculations of the shot
noise of nonchiral LL systems have shown that, even in
the weak backscattering limit, the zero frequency noise of
a finite-size nonchiral LL does not contain any informa-
tion about the fractional charge backscattered off an
impurity [12,13] but is rather proportional to the charge
of an electron. This result, as well as the above mentioned
interaction independent dc conductance, prevents easy
access to the interaction parameter g.

On the other hand, a quantum wire behaves as an
Andreev-type resonator for an incident electron, which
gets transmitted as series of current spikes [9]. The re-
flections of charge excitations at both contacts are called
Andreev-type reflections because they are momentum
conserving as ordinary Andreev reflections [9,14]. Since
the transmission dynamics in the Andreev-type resonator
depends on g, finite frequency transport can resolve in-
ternal properties of the wire. This is, in fact, the case for
the ac conductance [9,11,15]. However, finite frequency
conductance measurements are limited in the ac fre-
quency range since the frequency must be low enough to
ensure quasiequilibrium states in the reservoirs in order
to compare experiments to existing theories. The better
alternative is to apply a dc voltage and measure finite
frequency current noise. Here, exploring the out of equi-
librium regime, it is shown that the noise as a function of
frequency has a periodic structure with period 2
!L,
where !L � vF=gL is the inverse of the traversal time
of a charge excitation with plasmon velocity vF=g
through the wire of length L. The Fano factor oscillates,
and we show that by averaging over 2
!L, the effective
 2004 The American Physical Society 226405-1
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In order to analyze the noise of nonchiral LLs it is
essential to study the inhomogeneous LL (ILL) model
[9,10], which takes the finite length of the interacting
wire and the coupling to the reservoirs explicitly into
account. This model is governed by the Hamiltonian
H � H 0 �H B �H V , where H 0 describes the inter-
acting wire, the leads, and their mutual contacts, H B
accounts for the electron-impurity interaction, and H V
represents the coupling to the electrochemical bias ap-
plied to the wire. Explicitly, the three parts of the
Hamiltonian read

H 0 �
�hvF
2

Z 1

�1
dx

�
�2 �

1

g2�x�
�@x��2

�
; (1)

H B � � cos�
�������
4


p
��x0; t� � 2kFx0
; (2)

H V �
Z 1

�1

dx����



p ��x�@x��x; t�: (3)

Here, ��x; t� is the standard Bose field operator in boson-
ization and ��x; t� is its conjugate momentum density
[16]. The Hamiltonian H 0 describes the (spinless) ILL,
which is known to capture the essential physics of a
quantum wire adiabatically connected to metallic leads.
The interaction parameter g�x� is space dependent, and its
value is 1 in the bulk of the noninteracting leads and g in
the bulk of the wire (0< g< 1 corresponding to repul-
sive interaction). The variation of g�x� at the contacts
from 1 to g is assumed to be smooth, i.e., to occur within
a characteristic length Ls fulfilling �F � Ls � L, where
�F is the electron Fermi wavelength. Since the specific
form of the function g�x� in the contact region does not
influence physical features up to energy scales of order
�hvF=Ls, we, as usual, adopt a steplike function. The
Hamiltonian H B is the dominant 2kF backscattering
term at the impurity site x0 and introduces a strong
nonlinearity in the field �. Finally, Eq. (3) contains the
applied voltage. In most experiments leads are normal 2D
or 3D contacts, i.e., Fermi liquids. However, since we are
interested in properties of the wire, a detailed description
of the leads would, in fact, be superfluous. One can
account for their main effect, the applied bias voltage at
the contacts, by treating them as noninteracting 1D sys-
tems (g � 1). The only essential properties originating
from the Coulomb interaction that one needs to retain are
(i) the possibility to shift the band bottom of the leads and
(ii) electroneutrality [13]. Therefore, the function ��x�
appearing in Eq. (3), which describes the externally
tunable electrochemical bias, is taken as piecewise con-
stant ��x <�L=2� � �L, ��x > L=2� � �R corre-
sponding to an applied voltage V � ��L ��R�=e. In
contrast, the quantum wire itself does not remain electro-
neutral in the presence of an applied voltage, and its
electrostatics emerges naturally from Eqs. (1)–(3) with
� � 0 for jxj<L=2 [11,17].

In bosonization, the current operator is related to the
Bose field � through j�x; t� � ��e=

����



p
�@t��x; t�.
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Moreover, the finite frequency noise is defined as

S�x; y;!� �
Z 1

�1
dtei!thfj�x; t�;j�y; 0�gi; (4)

where f ; g denotes the anticommutator and j�x; t� �
j�x; t� � hj�x; t�i is the current fluctuation operator. Since
we investigate nonequilibrium properties of the system,
the actual calculation of the averages of current and noise
are performed within the Keldysh formalism [18].

The average current I � hj�x; t�i can be expressed as
I � I0 � IBS, where I0 � �e2=h�V is the current in the
absence of an impurity, and IBS is the backscattered
current. For arbitrary impurity strength, temperature,
and voltage, the backscattered current can be written in
the compact form

IBS�x; t� � �
�h

����



p

e2

Z 1

�1
dt0 0�x; t; x0; t0�hjB�x0; t0�i!;

(5)

where  0�x; t; x0; t0� is the nonlocal conductivity of the
clean wire derived in [9,11,15]. In Eq. (5), we have
introduced the ‘‘backscattered current operator’’

jB�x0; t� � �
e
�h
!H B

!��x0; t�
��� A0�; (6)

where A0�x0; t� is a shift of the phase field emerging when
one gauges away the applied voltage. For a dc voltage this
shift simply reads A0�x0; t� � !0t=2

����



p
with !0 � eV= �h

and IBS does not depend on x and t. Furthermore, we have
introduced a ‘‘shifted average’’ h� � �i!, which is evalu-
ated with respect to the shifted Hamiltonian H! �
H 0��
 �H B��� A0
. A straightforward though
lengthy calculation shows that the finite frequency cur-
rent noise (4) can (again for arbitrary impurity strength,
temperature, and voltage) be written as the sum of three
contributions

S�x; y;!� � S0�x; y;!� � SA�x; y;!� � SC�x; y;!�: (7)

The first part of Eq. (7), S0�x; y;!�, is the current noise in
the absence of a backscatterer and can be related to the
conductivity  0�x; y;!� by the fluctuation dissipation
theorem [19]

S0�x; y;!� � 2 �h! coth

�
�h!

2kBT

�
Re� 0�x; y;!�
: (8)

The conductivity can be expressed by the Kubo formula
 0�x; y;!� � 2�e2=h�!CR0 �x; y;!�, where

CR0 �x; y;!� �
Z 1

0
dtei!th���x; t�;��y; 0�
i0

is the time-retarded correlator of the equilibrium ILL
model in the absence of an impurity. It is important to
note that usually the relation (8) is valid only in thermal
equilibrium, and the Kubo formula is based on linear
response theory. However, due to the fact that in the
absence of an impurity the current of a quantum wire
226405-2
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FIG. 1. The periodic function F�!�, which determines the
Fano factor, is shown as a function of !=2
!L, for the case of
an impurity at the center of the wire (x0 � 0) and three
different values of the interaction strength: g � 0:25 (solid
line), g � 0:50 (dashed line), and g � 0:75 (dotted line).
In the regime !=!L � 1, the function tends to 1 independent
of the value of g, but for! & !L the curve strongly depends on
the interaction parameter g. In particular, g can be obtained as
the average over one period.
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attached to Fermi liquid reservoirs is linear in the applied
voltage [9,11], Eq. (8) is also valid out of equilibrium.

The other two terms in Eq. (7) arise from the parti-
tioning of the current at the impurity site. The second
term is related to the anticommutator of the backscattered
current operator jB and reads

SA�x;y;!� �
1




�
h

2e2

�
2
 0�x;x0;!�fA�x0;!� 0�x0; y;�!�

(9)

with

fA�x0; !� �
Z 1

�1
dtei!thfjB�x0; t�;jB�x0; 0�gi!;

where jB�x; t� � jB�x; t� � hjB�x; t�i!. Finally, the third
part of Eq. (7) is related to the time-retarded commutator
of jB and can be expressed as

SC�x;y;!� �
h

2e4!
fS0�x;x0;!�fC�x0;�!� 0�x0; y;�!�

� S0�y;x0;�!�fC�x0;!� 0�x0; x;!�g

(10)

with

fC�x0; !� �
Z 1

0
dt�ei!t � 1�h�jB�x0; t�; jB�x0; 0�
i!:

The fractional charge is expected to emerge only in the
limit of weak backscattering through the ratio between
shot noise and backscattered current. We thus focus on the
case of a weak impurity, retaining in the expressions (5)
and (7) only contributions of second order in the impurity
strength �. Furthermore, we concentrate on the shot noise
limit of large applied voltage.

The backscattering current (5) may be written as IBS �
�e2=h�RV, where R is an effective reflection coefficient.
Contrary to a noninteracting electron system, R depends
on voltage and interaction strength [8,20]. In the weak
backscattering limit R � 1, and its actual value can
readily be determined from a measurement of the current
voltage characteristics. Importantly, for temperatures in
the window eVR � kBT � f �h!; �h!Lg the noise can be
shown to be dominated by the second term in Eq. (7) and
to take the simple form

S�x; x;!� ’ 2eF�!�IBS; (11)

where x � y is the point of measurement (in either of the
two leads). On the right-hand side of Eq. (11), additional
terms of order kBT=eVR are neglected. The Fano factor

F�!� �
h2

e4
j 0�x; x0;!�j

2 (12)

is given in terms of the nonlocal conductivity  0�x; x0;!�
relating the measurement point x to the impurity position
x0, and reads explicitly

F�!� � �1� &�2
1� &2 � 2& cos�2!�'0�1=2�

!L
�

1� &4 � 2&2 cos�2!!L�
: (13)
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The latter expression is, in fact, independent of the point
of measurement x and of temperature. On the other hand,
it depends, apart from the frequency !, on the (relative)
impurity position '0 � x0=L and on the interaction
strength through & � �1� g�=�1� g�.

The central result (11) shows that the ratio between the
shot noise and the backscattered current crucially de-
pends on the frequency regime one explores. In particular,
for !! 0, the function F tends to 1, independent of the
value of the interaction strength. Therefore, in the regime
!� !L the observed charge is just the electron charge.
In contrast, at frequencies comparable to !L the behavior
of F as a function of ! strongly depends on the LL
interaction parameter g, and signatures of LL physics
emerge. This is shown in Fig. 1 for the case of an impurity
located at the center of the wire. Then, F�!� is periodic,
and the value at the minima coincides with g2.
Importantly, g is also the mean value of F averaged
over one period 2
!L,

hS�x; x;!�i! �
1

2
!L

Z 
!L

�
!L

S�x; x;!� ’ 2egIBS; (14)

where again terms of order kBT=eVR are neglected.
Seemingly, Eq. (14) suggests that quasiparticles with a
fractional charge e� � eg are backscattered off the im-
purity in the quantum wire.

Let us discuss the physical origin of this appearance of
the fractional charge. We first consider the case of an
infinitely long quantum wire. In the limit L! 1, i.e.,
!L ! 0, '0 ! 0, the function F�!� becomes rapidly os-
cillating, and its average over any finite frequency inter-
val approaches g. Hence, we recover in this limit the
result for the homogeneous LL system [3], where the
shot noise is directly proportional to the fractional charge
e� � ge backscattered off the impurity. However, as
226405-3
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FIG. 2. The Fano factor F�!� is shown for the interaction
strength g � 0:25 and three different values of the (relative)
impurity position '0 � x0=L: '0 � 0 (solid line), '0 � 0:10
(dashed line), and '0 � 0:25 (dotted line).
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shown above, the value of the fractional charge e� can be
extracted not only in the borderline case !� !L, but
already for frequencies ! of order !L. This is due to the
fact that, although the contacts are adiabatic, the mis-
match between electronic excitations in the leads and in
the wire inhibits the direct penetration of electrons from
the leads into the wire; rather a current pulse is decom-
posed into a sequence of fragments by means of Andreev-
type reflections at the contacts [9]. These reflections are
governed by the coefficient & � �1� g�=�1� g�, which
depends on the interaction strength. The zero frequency
noise is sensitive only to the sum of all current fragments,
which add up to the initial current pulse carrying the
charge e. However, when 2
=! becomes comparable to
the time needed by a plasmon to travel from the contact to
the impurity site, the noise resolves the current fragmen-
tation at the contacts. The sequence of Andreev-type
processes is encoded in the nonlocal conductivity
 0�x; x0;!� relating the measurement point x and the
impurity position x0. This enters into the Fano factor
(12) and allows for an identification of e� from finite
frequency noise data.

When the impurity is located away from the center of
the wire, F�!� is no longer strictly periodic, as shown in
Fig. 2. In that case, the combined effect of Coulomb
interactions and an off-centered impurity can lead to a
very pronounced reduction of the Fano factor for certain
noise frequencies (see Fig. 2). Moreover, even if the
impurity is off centered, the detailed predictions (11)
and (13) should allow one to gain valuable information
on the interaction constant g from the low frequency
behavior of the Fano factor determined by

F�!� � 1� �1� g2��1� 4g2'0�1� '0�

�
!L
2vF

�
2
�� � � :

The latter expression is valid in the parameter regime
eVR � kBT � �h!L � �h!.

In conclusion, the appearance of fractional charge e� �
eg in the finite frequency noise of nonchiral LLs is due to
226405-4
a combined effect of backscattering of bulk quasipar-
ticles at the impurity and of Andreev-type reflections of
plasmons at the interfaces of wire and leads. The frac-
tional charge e� can be extracted from the noise by
averaging it over a frequency range ��
!L;
!L
 in
the out of equilibrium regime. For single-wall carbon
nanotubes we know that g � 0:25, vF � 105 m=s, and
their length can be up to 10 �m. Thus, we estimate

!L � 100 GHz–1 THz, which is a frequency range
that seems to be experimentally accessible [21,22].
Moreover, the requirement eV � �h!L should be fulfilled
in such systems for eV � 10–50 meV, a value which is
well below the subband energy separation of about 1 eV.
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