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The nonlinear conductance of a one-dimensional quantum wire adiabatically coupled to Fermi liquid
electron reservoirs is determined in the presence of an impurity. We show that electron-electron
interaction in connection with the finite length of the wire leads to characteristic oscillations in the
current as a function of the applied voltage.
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behavior. Thus, experimental observations of LL behavior I 0 F 0
It is well known that Fermi liquid (FL) theory is not
appropriate to describe transport properties of one-di-
mensional (1D) electron systems. Correlation effects
completely destroy Landau’s quasiparticle picture, and
the elementary excitations of a 1D quantum wire (QW)
can be modeled in terms of bosonic plasmon and spin
density modes. An equivalent representation employs
fractionally charged quasiparticles [1,2]. The charge
ge depends on the parameter g < 1 characterizing the
electron-electron interaction strength, where g � 1 cor-
responds to the noninteracting limit and g ! 0 means
strong correlations. An impurity potential in a 1D QW is
strongly renormalized by the interaction [3] and effec-
tively acts as a backscatterer of these fractionally charged
quasiparticles [1].

These well-known properties of 1D fermions are a
natural consequence of the Luttinger liquid (LL) model
[4,5], which generically describes the low energy physics
of QWs. Despite these drastic departures from FL theory,
the strong correlation effects are often disguised in trans-
port measurements. For instance, the conductance of a
clean QW is not affected at all by the electron-electron
interaction within the wire [6,7], and the shot noise of a
wire with an impurity does not reflect the fractional
charge of the backscattered quasiparticles [8,9]. The rea-
son lies in the coupling of the QW to the FL leads at its
ends: experimentally only the chemical potential of elec-
trons in the leads can be manipulated, while the chemical
potential of the fractionally charged quasiparticles is not
controllable. This represents the main difference with
respect to the case of edge currents in fractional quantum
Hall bars, where right and left movers are spatially sepa-
rated (chiral LL), and the chemical potential of the
Laughlin quasiparticles can be controlled by the up-
stream reservoir [10]. In contrast, in a semiconductor
QW or a nanotube right and left movers interact and
interfere in the same channel resulting in a nontrivial
influence of the contacts even for the case of ideal adia-
batic coupling.

Because of the important effects of the leads, a finite
length QW in many respects acts as a complicated scat-
terer in a FL wire, and transport properties obey FL
0031-9007=03=91(26)=266402(4)$20.00
in semiconductor QWs [11,12] and nanotubes [13] are
rather based on the temperature dependence of the con-
ductance, or on modifications by the Coulomb interaction
of resonant tunnelling through quantum dot structures
[14]. Here we show that due to the interaction within the
wire, the nonlinear conductance of a QW with a single
impurity shows oscillatory behavior. In contrast to oscil-
lations in double impurity systems [14] or in wires with
tunneling contacts to the leads [15,16], the oscillations
predicted here are completely absent in a noninteracting
wire. So we do not discuss modifications of an oscillatory
effect already present in FL theory, but nonmonotonic
behavior of the conductance that is a signature of LL
behavior.

To study a QWof finite length coupled to noninteracting
reservoirs, we employ the inhomogeneous LL model
[6,7], where the interaction parameter has a spatial de-
pendence. It varies from g�jxj > L=2� � 1 in the leads to
g�jxj<L=2� � g < 1 in the QW. Although in real physi-
cal systems without backscattering at the contacts the
variation of g�x� from unity to g must be smooth on a
length scale Ls � 	F, where 	F is the Fermi wavelength,
it turns out that, as long as Ls � L, the simpler model of
a g�x� step function already captures the important physi-
cal properties of a QW adiabatically connected to non-
interacting electron reservoirs. Moreover, we have to keep
in mind that only under the assumption Ls � L the QW
has a well-defined length L. Throughout this article we
treat the spin-polarized situation at zero temperature,
leaving finite temperature aspects for a future publication.

For �h � 1, the full Lagrangian of our model is L �
L0 	LI 	LU. In bosonization, see Ref. [5] for a recent
review, the inhomogeneous LL Lagrangian of a clean
system in terms of the phase field ��x; t� reads

L 0 �
1

2

Z
dx

�
1

vF
�@t��

2 

vF
g2�x�

�@x��
2

�
; (1)

where vF is the bare Fermi velocity of noninteracting
right and left movers. The backscattering of an impurity
at position x0 yields the term

L � 
	 cos�
�������
4�

p
��x ; t� 	 2k x  (2)
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FIG. 1. The backscattered current IBS is depicted, in units of
e�	! g

L =!
g
c �2=!L, as a function of u � eU=!L. The interaction

strength is g � 0:25. The solid line corresponds to  0 � 0 and
the dashed line to  0 � 0:25. Decaying oscillations with a
constant period are clearly visible for the case  0 � 0.
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with the ‘‘bare’’ impurity strength 	, whereas the impu-
rity forward scattering omitted here does not affect the
current-voltage characteristics. A third term

L U � 

e����
�

p
Z
dxU�x�@x�; (3)

describes the coupling to an electrostatic potential U�x�,
with eU�x <
L=2� � �L, eU�x > L=2� � �R, and
U�x� � 0 for jxj<L=2. Here, �L and �R are, respec-
tively, the chemical potentials in the left and right reser-
voir, and we assume a symmetrically biased system with
�L � eU=2 and �R � 
eU=2. U�x� describes the shift
of the band bottom due to electroneutrality in the FL
leads [9]. In contrast, the QW itself does not remain
electroneutral in presence of an applied voltage U and
the electrostatics within an interacting QWemerges natu-
rally as a steady-state effect [9,17].

In bosonization, the average current is given by
hIi � 
�e=

����
�

p
�@th��x; t�i, and it is most convenient to

decompose the field operator ��x; t� as [17] ��x; t� �
�p�x; t� 	��x; t�, where �p�x; t� is a particular solution
of the equation of motion following from the action
S�� � S0 	 SI 	 SU that corresponds to Eqs. (1)–(3).
On the other hand, ��x; t� can be regarded as the fluctua-
tion operator which therefore has to fulfill

@th��x; t�i � 0: (4)

Straightforward algebra shows that the particular solu-
tion may be written as

�p�x; t� � 

e�U
 V�
2

����
�

p t	

8<
:

e�U
V�
2
���
�

p
vF

jxj; jxj > L
2 ;


 eg2V
2
���
�

p
vF
jx
 x0j; jxj< L

2 :

(5)

Consequently, the average current reads

hIi �
e2

2�
�U
 V�; (6)

where V is a parameter corresponding to the four-
terminal voltage drop at the impurity site. In order to
determine V, one has to impose the condition (4) defining
the fluctuation field �.

The effective action for � is easily found to read

S�� �
1

2

Z
dt

Z
dx

�
1

vF
�@t��2 


vF
g2�x�

�@x��2
�



eV����
�

p
Z

dt��x0; t� 
 	
Z
dt cos�

�������
4�

p
��x0; t�


 e�U
 V�t	 2kFx0: (7)

For weak backscattering the terms related to the impu-
rity, namely, the second and third line of Eq. (7), can be
treated as perturbations on the free boson part (first line)
employing standard techniques. The conditions when
such a perturbative approach is reliable will be discussed
below. It is convenient to characterize the conductance in
266402-2
terms of the backscattered current IBS � I0 
 hIi �
�e2=2��V, where I0 � �e2=2��U. As can easily be shown,
the lowest order contribution to IBS is of order 	2. Without
loss of generality we assume U > 0 and find, using the
requirement (4), that the backscattered current takes the
form

IBS �
e	2gL
4vF

Z 1


1
d� eiu�e4�C� 0; 0;��; (8)

where u � eU=!L is the ratio of the voltage to the fre-
quency !L � vF=gL characterizing a ballistic traversal
of the wire of length L. Here, the correlation function
C� ; "; �� � h�� ; ����"; 0� 
�2�"; 0�i0 in the absence
of an impurity is expressed in terms of the dimensionless
variables  � x=L, " � y=L, and � � tvF=gL. At the
dimensionless impurity site  0 one can show that

C� 0; 0;���

g
4�

� X
m2Zeven

&jmj ln

�
�'	 i��2	m2

'2	m2

�

	
X

m2Zodd

&jmj ln

�
�'	 i��2	�m
2 0�2

'2	�m
2 0�2

�

;

(9)

where & � �1
 g�=�1	 g�, and ' � !L=!c. Here !c is
the standard high-energy cutoff of the LL model with 	,
eU, !L � !c.

Using Eqs. (8) and (9), the backscattered current can
now be evaluated numerically for arbitrary values of the
parameters g (interaction strength), u (voltage times
length), and  0 (impurity position). Figure 1 depicts the
result as a function of u for two impurity positions (in the
middle and at 1=4 of L), and for an interaction value g �
0:25 characteristic for single-walled metallic carbon
nanotubes [18]. Apparently, the backscattered current
oscillates as a function of u � eU=!L, and the oscilla-
tions die out as u increases.

Analytical expressions for the current can be obtained
in special situations. For a very long wire (u ! 1) one
266402-2
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can perform an asymptotic expansion yielding

IBS � IstBS�U� �1 	 foscBS �u;  0� 	 . . .; (10)

where IstBS is the leading order term while foscBS describes
the dominant oscillating correction. The dots represent
further subleading orders. Explicitly one finds

IstBS�U� �
�2

��2g�
e2U
2�

�	=!c�
2

�eU=!c�
2�1
g�

; (11)
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which is independent of the length L of the wire and the
impurity position, and exhibits a power-law behavior as a
function of the applied voltage U in accordance with the
result for the homogeneous LL (see, e.g., [3]). In contrast,
the corrections explicitly depend on both  0 and L
(through u), clearly showing that oscillations are a fi-
nite-size effect. For 0< j 0j< 1=2 the asymptotic ex-
pansion yields
foscBS �u; 0� �
2��2g�
��g&�

X
s��

D�g; sj 0j�
cos��1
 2sj 0j� u 
 �g�1	 s&=2�

u2g�1
&=2�
�1	 2sj 0j�2g&

�1
 2sj 0j�
g�2
&��16j 0j�

g&
; (12)
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FIG. 2. The backscattered current IBS is plotted, in units of
IstBS, as a function of u � eU=!L for three different values of
the interaction strength: g � 0:25 (dotted line), g � 0:50
(dashed line), and g � 0:75 (solid line). Electron-electron
interaction affects the decay as well as the phase shift of the
oscillations.
where D�g; s 0� is a numerical factor of order unity. A
similar asymptotic expansion has been performed in
Ref. [19], where the crossover from LL to FL behavior
was studied for a tunnel barrier.

The two frequencies appearing in the cosine terms of
Eq. (12) are related to the distances of the impurity from
the two contacts (in units of the wire length L). The phase
shifts us � �g�1� &=2� as well as the decay factors of
the oscillations directly depend on the electron-electron
interaction strength. Importantly, when the interaction in
the wire is switched off (g ! 1), i.e., when one deals with
a homogeneous system, the oscillations vanish since
��g&� ! 1 in this limit. Clearly, IBS also vanishes
when there is no backscatterer, i.e., 	 ! 0.

One can understand the origin of these current oscil-
lations in terms of interference effects of plasmon modes
which are reflected both by the impurity and, in an
Andreev-type process [6], by the wire-lead contacts.
When varying either the length L of the wire, or the
voltage [which appears as a phase shift in the effective
action (7)], one basically changes the interference con-
ditions, which results in the oscillatory behavior of the
current. The period of the oscillations is only independent
of g if the backscattered current is considered as a func-
tion of the dimensionless variable u; however, one has to
keep in mind that u ( � eUgL=vF) has an intrinsic vF=g
dependence.

We also point out that the expression (12) is singular for
 0 ! 0; this is just due to a mathematical complication
when the distances of the impurity from the two contacts
become equal. Then pairs of poles in the correlator merge.
The full expression (8) for the current is, however, per-
fectly regular, and indeed one can still calculate the
asymptotic expansion for this particular impurity posi-
tion, obtaining

foscBS �
��2g�21
2g&

��2g&�
cos�u
 �g�1	 &�

u2g�1
&�
Y1
n�2

�
n2

n2 
 1
�2g&

n
:

It should be emphasized that in the asymptotic expansion
(10) the further subleading orders (represented by dots)
can be shown to become increasingly important the
stronger the interaction is, i.e., the lower the value of g.
In practice, retaining only IstBS and foscBS is a very good
approximation for g * 0:5 and u * 10. Nevertheless,
also for g < 0:5 and/or lower values of u (not too close
to u � 1), Eq. (10) gives a qualitatively correct picture of
the properties of the backscattered current as we have
checked numerically.

We now discuss how the behavior of the backscattered
current changes with the interaction strength g. In Fig. 2
the full numerical result of IBS, Eq. (8), is plotted in units
of IstBS, Eq. (11), for three different values of g. For
simplicity we have considered the case of an impurity
located in the middle. The figure illustrates that the
stronger the electron-electron interaction, the more pro-
nounced the oscillations are. This is due to the fact that
the Andreev-type reflections at the contacts are interac-
tion dependent with a reflection coefficient & �
�1
 g�=�1	 g� [6]. Thus, interference effects are most
pronounced in the limit g ! 0. Furthermore, we see that
the period of the oscillations is the same for any value of
266402-3
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g, namely �u � 2� for  0 � 0, but different values of g
yield different phase shifts.

In the opposite limit of a short wire (u ! 0), the
integral (8) can also be evaluated analytically, and we
find for the backscattered current

IBS � R�	; g�
e2

2�
U (13)

with the cutoff and interaction-dependent reflection
coefficient

R �	; g� � �2N R�g�
�	=!c�

2

�!L=!c�
2�1
g�

; (14)

where the constant N R�g� is of order unity. The power-
law behavior of R�	; g� as a function of the system size L
agrees with the calculation of the linear conductance
from the Kubo formula [20]. Furthermore, Eq. (13) bears
a resemblance to the usual Landauer formula. In the limit
g ! 1 the reflection coefficient approaches the expected
value R�	; 1� � �2�	=!c�

2.
Finally, we discuss the applicability of the perturbative

approach. To be consistent, the backscattered current IBS
has to be small compared to the current I0 in the absence
of an impurity, i.e.,

jIBSj � e2U=2�: (15)

The analytical expressions obtained in the limits of both
large u, Eqs. (10) and (11), and small u, Eqs. (13) and (14),
suggest that the consistency condition can be expressed in
a simple and cutoff independent way, if we introduce
an effective impurity strength 	� � !c�	=!c�

1=�1
g�.
Indeed, Eq. (15) then amounts to 	� � eU for large u,
and 	� � !L for small u, respectively. This is in accor-
dance with general reasoning. It is well known that the
backscattering term (2) is a relevant perturbation to the
LL fixed point, and therefore the RG flow would drive
the system to two disconnected QWs, unless some energy-
scale cuts off the flow of 	. In our case the applied voltage
U or the wire ballistic frequency !L can play such a role.
Therefore, as long as 	� is much smaller than either eU or
!L, the QW remains in the neighborhood of the LL fixed
point and our perturbative treatment is justified. In the
limit g ! 1, the effective impurity strength 	� vanishes,
and perturbation theory is always applicable if 	 � !c.

In summary, we have investigated the backscattered
current of an interacting QW of finite size L that is
coupled to noninteracting electron reservoirs. We have
found that the interplay between electron-electron inter-
action and finite size gives rise to distinct features in the
current-voltage characteristics. In particular, we have
found an oscillation of the backscattered current as a
function of u � eU=!L. For carbon nanotubes one can
estimate a typical ballistic frequency of the order of a few
266402-4
meV. From Figs. 1 and 2, one can see that the oscillations
are visible for eU� 10 � � � 50 meV, a reasonable value,
which is consistent with the cutoff of about 1 eV. Hence,
the predicted effects should be observable.
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