POLITECNICO DI TORINO Repository ISTITUZIONALE

Kahler immersions of the disc into polydiscs

Original Kahler immersions of the disc into polydiscs / DI SCALA, ANTONIO JOSE'. - (2010), pp. 1-2.

Availability: This version is available at: 11583/2303345 since:

Publisher:

Published DOI:

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)

Kähler immersions of the disc into polydiscs.

Antonio J. Di Scala

Abstract

In this short note we give an example of a non trivial, i.e. non totally geodesic, Kähler immersion of a disc into a polydisc.

In this short note we give an example of a non trivial, i.e. non totally geodesic, Kähler immersion of a disc into a polydisc. This example is a counter-example of a conjecture posed in [CU03]. The author discover this example in 2007 [LA07]. In [M09] Mok produce similar examples to the ones contained in this note but using the half-plane model of the hyperbolic disc. A complete description of this non trivial maps can be found in [Ng09] which is the Ph.D. Thesis at Hong Kong University of Mok's student Sui Chung Ng.

Let $\Delta = (\Delta, \omega_{\text{hyp}})$ be the unit disc endowed with hyperbolic Kähler form given by the potential $N = -\log(1 - |z|^2)$, i.e. $\omega_{\text{hyp}} := \frac{i}{2}\partial\overline{\partial}N$. The polidisc Δ^n is endowed with the Kähler form ω_{poly} given by the potential $\sum_{k=1}^n -\log(1 - |z_k|^2)$. Let $\xi \in S^1 := \{z \in \mathbb{C} : |z| = 1\}$ then the map $f_j(z) = (0, 0, \dots, 0, \xi z_j, 0, \dots, 0)$ is a Kähler embedding of Δ into Δ^n . Such embeddings or the composition of such an embedding with isometries of the disc or the polydisc are the so called *trivial*

Let $z \to f(z) = (f_1(z), f_2(z))$ be a holomorphic immersion of the disc Δ into the bidisc $\Delta \times \Delta$. Then f is a Kähler map if and only if there exists $U \in U(2)$ such that:

$$\begin{pmatrix} f_1 \\ f_2 \end{pmatrix} = U \begin{pmatrix} z \\ f_1 f_2 \end{pmatrix} \,.$$

Let us call $\psi(z) := f_1(z)f_2(z)$. Let U be the following matrix :

$$U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} \; .$$

Then

embeddings.

$$\sqrt{2}f_1 = z + \psi ,$$

$$\sqrt{2}f_2 = z - \psi .$$

So

$$2\psi = z^2 - \psi^2$$

and then

$$\psi(z) = -1 + \sqrt{1 + z^2}$$
.

Conversely, if ψ is as above then we can define f_1 and f_2 by the equations :

$$\sqrt{2}f_1 = z + \psi ,$$
$$\sqrt{2}f_2 = z - \psi .$$

The map $\Psi : z \hookrightarrow (f_1(z), f_2(z)) \in \mathbb{C}^2$ is well defined since there are no problems with the square root in the open disc |z - 1| < 1, i.e. we can take a good branch of the square root by deleting the negative axis.

The map $\Psi: z \hookrightarrow (f_1(z), f_2(z))$ is one to one since $f_1(z) + f_2(z) = \sqrt{2}z$. To show that $\Psi(z) \in \Delta \times \Delta$ notice that for all $z \in \Delta$ we have:

$$0 < 1 - |z|^2 = (1 - |f_1(z)|^2)(1 - |f_2(z)|^2) < 1$$

Observe that $f_1(0) = f_2(0) = 0$ so we get, by continuity reasons, that $(1 > |f_1(z)|^2)$ and $(1 > |f_2(z)|^2)$.

Notice that Ψ is actually an embedding since $\Psi(\Delta) = \{(z_1, z_2) : \sqrt{2}(z_1 - z_2) = 2z_1z_2\} \subset \Delta \times \Delta$.

Finally it is not hard to see that Ψ is a non trivial Kähler embedding of Δ into Δ^n .

References

[LA07] Loi, A.: Private communication (e-mail May 2007).

- [CU03] Clozel, L. and Ullmo, E. Correspondances modulaires et mesures invariantes. J. Reine Angew. Math. 558 (2003), 4783.
- [M03] Mok, N. Local holomorphic isometric embeddings arising from correspondences in the rank-1 case, in Contemporary Trends in Algebraic Geometry and Algebraic Topology, ed. S.-S. Chern, L. Fu and R. Hain, Nankai Tracts in Mathematics, Vol.5, World Scientic, New Jersey 2002, pp.155-165.
- [M09] Mok, N. Extension of germs of holomorphic isometries up to normalizing constants with respect to the Bergman metric. IMR Preprint Series 2009, http://www.hku.hk/math/imr/, Preprint.
- [Ng09] On holomorphic isometric embeddings of the unit n-ball into products of two unit m-balls. IMR Preprint Series 2009, http://www.hku.hk/math/imr/, Preprint.