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Abstract— Although Transmission Control Protocol (TCP) is a 

widely deployed and successful protocol, it shows some limitations 

in present-day environments. In particular, it is unable to exploit 

multiple (physical or logical) paths between two hosts. This paper 

presents PATTHEL, a session-layer solution designed for 

parallelizing stream data transfers. Parallelization is achieved by 

striping the data flow among multiple TCP channels. This 

solution does not require invasive changes to the networking stack 

and can be implemented entirely in user space. Moreover, it is 

flexible enough to suit several scenarios – e.g. it can be used to 

split a data transfer among multiple relays within a peer-to-peer 

overlay network. 

 

I. INTRODUCTION 

ransmission Control Protocol (TCP) is the de-facto 

standard for stream-oriented communication over the 

Internet. It provides reliable and in-order delivery of a 

data stream, together with flow and congestion control. One of 

its characteristics, namely the capability to open only a single 

logical channel between two communicating host, appears to 

be a limitation in the present-day Internet. The maximum 

theoretical speed of a single TCP connection is bounded by the 

window size and the Round Trip Time, which often prevent 

the full utilization of high-speed links (unless in presence of 

specific settings). To overcome the problem, several solutions 

– such as XFTP ([1]) – open different parallel TCP 

connections in order to achieve higher data rates. However, 

synchronization and management of these concurrent channels 

has to be done by the application itself.  

Another example comes from multi-homed hosts, which can 

only use a single network interface when exchanging data with 

a remote peer – in fact, TCP is not able to transparently use 

two different physical paths as a single logical channel. The 

availability of multiple (and concurrent) network connections 

in the same place (e.g. wireless Internet access, GPRS/UMTS, 

and more) may become quite common in the near future, 

thanks to the widespread diffusion of wireless Internet access. 

New technologies like Microsoft VirtualWiFi ([2]), whose aim 

is to allow a host to connect to multiple WiFi networks using a 

single interface, may also play an important role. These 

technologies could enable the concurrent use of different WiFi 
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domestic networks, allowing the aggregation of the upstream 

bandwidth of different ADSL connections. 

A third example relates to relay-based data transfers within 

a peer-to-peer network. When two P2P nodes cannot exchange 

data directly, communication is established through a relay, i.e. 

a machine that is reachable by both hosts and acts as a “pass-

through” for the data flow. This practice is costly for relaying 

nodes, which use a portion of their bandwidth to transfer data 

they are not interested in. Consequently, communication 

through a relay usually uses a limited amount of bandwidth 

and is slow. Applying parallelization in this context would 

allow splitting a transfer among several relays, improving the 

transfer rate without putting excessive load on a single node.  

In this paper, we present a generic technique to split a 

stream data transfer among multiple TCP connections. The rest 

of the paper is organized as follow: in Section II we present 

existing work in the field of parallelization of network 

transfers. Section III describes a new technique, called 

PATTHEL (Parallel TCP Transfers Helper), and discusses its 

most important features. Section IV presents experimental 

results and Section V gives some conclusive remarks. 

II. RELATED WORK 

Several techniques for striping a data transfers over multiple 

paths – logical or physical – have been proposed in literature. 

The potential and the limitations of each solution are closely 

related to the ISO/OSI layer to which it belongs. 

Layer-II techniques allow the concurrent use of multiple 

layer-II links. A well-known example is link aggregation ([3]), 

which works between a couple of nodes connected through 

multiple Ethernet link – for each link, a dedicated Ethernet 

card must be installed on both hosts. By striping data over the 

available interfaces, a channel is obtained, whose bandwidth is 

equal to the sum of the bandwidth of individual links. The 

drawback of this and other similar techniques is that they are 

strictly tied to a specific data-link technology. Other solutions 

are implemented at higher layers, to achieve a greater level of 

abstraction over the hardware. 

Mobile IP ([4]) is a set of extensions to the basic IP protocol 

that allows a node to change its address while it is sending and 

receiving data. During the transition of a mobile host from a 

network to another, two paths can be used together to receive 

packets both from the old network and the new one.  However, 

Mobile IP does not use multiple links in parallel to achieve 

higher throughput. A layer-III technique for streaming data 

across multiple IP links is presented in [5].  This technique has 

severe compatibility issues with TCP which may significantly 
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degrade aggregated performances. In fact, TCP flow control is 

optimized to work over a single path, and does not perform 

well when a connection is split across multiple links. The 

problem is likely to affect each layer-III striping solution that 

wants to retain compatibility with TCP. Therefore, it is 

unlikely that layer-III multipath solutions can achieve 

widespread adoption. 

Other solutions avoid this issue by implementing multipath 

at layer IV. SCTP ([6]) is a transport protocol with support for 

multihoming and multipath. Its main limitation is that data 

transfers always use only one path, even if multiple ones are 

available. The remaining paths are only used for retransmitting 

packets when the main path fails. Therefore, SCTP supports 

multipath only for reliability purposes. Several recent papers 

(e.g. [7]) introduce SCTP variants implementing load sharing. 

A drawback of these approaches, as of SCTP in general, is that 

the protocol is relatively new and not widely used; spreading it 

would require a massive porting of current Internet 

applications. Moreover, compatibility problems with existing 

network devices – e.g. firewalls, NATs, etc. – are likely to 

arise. Other layer-IV solutions aim at adding load-sharing 

support to TCP. The study of TCP-like congestion control for 

multipath data transfers has been addressed in [8]. However, 

results are not easily applicable, as they require source routing 

and the static configuration of paths on routers. pTCP ([9]) is a 

derivative of TCP that supports striping and load balancing. 

The most serious drawback of pTCP is that it is not compatible 

with TCP, as it uses a modified version of the TCP header. 

Layer-V and VII solutions implement multipath without 

affecting widely deployed protocols such as IP and TCP: in 

many situations, this is a decisive advantage. Munisocket 

([10]) is a layer-V multipath solution that achieves parallelism 

by creating several TCP connections and striping data blocks 

on them. It targets nodes on the same LAN, typically in a 

computing grid; hence, its use is limited to large message 

transfers over homogeneous, high-speed local links. SEBAG 

([11]) use a similar principle, but it is specialized for the case 

of mobile hosts with multiple radio interfaces. Moreover, the 

paper lacks details on SEBAG inner working, and on how it is 

integrated with applications. 

Most of the presented solutions ([3], [5], [7], [9], [10], [11]) 

share a serious limitation: they are specifically designed for 

situations in which multiple network interfaces are available. 

On at least one side of the communication, each data pipe must 

end on a different network card. Such design cannot be 

adapted to the case of an overlay network, where transfers can 

be split among paths that terminate at the same endpoints. 

Other techniques involve the creation of multiple logical 

paths over a single physical link. [12] aims at improving the 

performances of multimedia streaming over TCP. To mitigate 

the impact of packet losses on the throughput of a single 

transfer, media flows are striped among multiple TCP 

connections. [1] and [13] use a similar approach to overcome 

bandwidth limitations on links with high bandwidth * delay 

product. In particular, XFTP ([1]) consists of a modified 

version of the FTP protocol, with support for the creation of 

multiple sockets on a single link. The main problem of layer-

VII solutions like XFTP is that they are usually developed in 

the context of a specific application; reusability is not trivial if 

possible at all. Also, it is important to point out that [1], [12] 

and [13] cannot exploit multiple physical paths, as their 

purpose is only to improve TCP performances on a single link. 

The aim of our solution is to implement parallel transfer 

capabilities on top of the TCP protocol, therefore limiting the 

changes in both the network stack and in user applications, 

while introducing the idea of “logical channels”. A logical 

channel is a data pipe that can either use a link exclusively, or 

share it with other logical channels; the way in which the 

available links are shared among logical channels depends on 

application needs. This concept enables both the 

parallelization of transfers through different physical paths 

(either in case of different endpoints, or through different 

intermediate relays), and the creation of multiple TCP pipes on 

the same link. 

III. THE PARALLEL TCP TRANSFER HELPER 

The Parallel TCP Transfers Helper (PATTHEL) described 

in this paper is a layer-V architecture designed to stripe a TCP 

data flow over multiple (physical or logical) channels. This 

solution has the advantage of being relatively simple to 

implement because it relies on TCP for the physical data 

transfer. Hence, it does not require the definition and the 

implementation of a new transport protocol, and it does not 

have a dramatic impact on the operating system. At the same 

time, it is extremely effective because the protocol can be 

easily leveraged by all the applications that currently use TCP. 

PATTHEL main strengths are the capability to establish 

multiple communication channels transparently, a clever (and 

simple) scheduling algorithm for striping data over different 

channels, and a receiving module that limits the amount of 

memory copy operations in the receiver, avoiding – in many 

cases – the need for an intermediate receiver buffer. 

PATTHEL does not implement the (orthogonal) task of 

determining the set of available paths between two hosts, 

which can be delegated to mechanisms such as ALEX ([14]).  

A. System architecture 

Figure 1 depicts a high-level overview of the proposed 

architecture. Applications see a single input socket and a 

single output socket, but PATTHEL introduces more elements. 

Just after the input socket the data stream is split in chunks that 

are then distributed to a set of physical TCP channels. In a 

complementary way, transferred data are reassembled just 

before the output socket, in order to pass them to the 

application as a single stream. In addition, PATTHEL 

introduces a new TCP connection for controlling the transfer.  

The main challenges faced by PATTHEL are (i) how to 

spread data across different channels, (ii) how to assign 

channels to the active interfaces, and (iii) how to compute the 

optimal number of channels. If PATTHEL is used between 

multihomed hosts, the number of channels can coincide with 

the number of network interfaces. However, PATTHEL can 

also be used to create multiple channels on the same path. In 

this case, the number of channels that maximizes throughput 

must be dynamically computed ([1], [13]). In this paper we 

concentrate on tasks (i) and (ii), and leave (iii) as future work. 
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Figure 1. PATTHEL general architecture. 

Chunks created by the scheduling algorithm are sent through 

a set of TCP channels, with the addition of a PATTHEL 

header to each chunk. The PATTHEL network protocol 

(presented in section III.D) defines the format of the chunks. It 

also specifies how to establish an initial channel, how to open 

additional channels and how to close the communication. At 

the destination, chunks are reordered using the information 

contained in the PATTHEL headers, restoring the original data 

stream. 

B. The PATTHEL Scheduler 

The PATTHEL scheduling algorithm receives a sequence of 

application-generated data blocks and outputs a set of chunks, 

each one assigned to a data channel. The size of chunks and 

the scheduling policy determine the efficiency of the algorithm 

in using the available bandwidth. Such efficiency is maximized 

if all channels are backlogged during the entire transfer. If D is 

the size (in bytes) of a data block passed to the scheduler at a 

given time, Fi is the fraction of the block assigned to the i-th 

channel (in bytes), and Bi is the bandwidth of the channel (in 

bytes/s), the channel will be busy transmitting data for Fi / Bi 
seconds. If the transmission on all channels starts at the same 

time, the maximum throughput is achieved when the following 

equalities hold: 
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The fraction Fi of data assigned to the i-th channel can be 
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(see [5] for proof). Note that Bi is the bandwidth exhibited by a 

TCP channel, and not by a physical path. It depends on the 

bandwidths of the links through which the packets travel, but 

also on parameters such as TCP window size, RTT, and losses. 

Equation 1 could be used directly to compute the 

coefficients fi, but this approach has significant limitations. 

Estimating the bandwidth
1
 of a TCP channel is difficult for a 

Layer-V solution such as PATTHEL, which cannot access 

information inside the TCP/IP driver. However, limited 

information can be inferred through the select() system call. In 

fact, select() can be used to determine whether the channel is 

full or it can accept new data.This information does not exactly 

represent the status of the channel, because it is influenced by 

the availability of space in driver and OS buffers, and it suffers 

from low temporal granularity. Despite these limitations, 

results show that its precision is enough for our application. 

The PATTHEL scheduler is, in principle, quite simple: each 

data block generated by the application is split into chunks, 

whose size is configurable – the default behavior is to set the 

size of a chunk to the MTU of the interface on which the 

chunk is sent. Chunks are then assigned to the available 

channels in the following way: when a channel has free space 

in the send buffer, the PATTHEL subsystem is notified 

(through a select() call) and a new chunk is assigned to that 

channel. The process is repeated as soon as a new data block 

comes from the application: all the channels are always kept 

busy by never letting their input buffers become empty. 

Consider a block that must be sent over # parallel channels. 

Bi is the rate (in bytes/s) at which the i-th channel can send 

data and Btotal is the aggregate bandwidth (i.e. the sum of the 

bandwidth of the individual channels). As long as all the input 

queues are backlogged, each channel is always busy 

transmitting and is hence fully utilized. In this situation, every 

second the i-th channel sends Bi bytes of data. In the same time 

interval, the system sends a total of Btotal bytes. Therefore, the 

fraction of data assigned to the i-th channel is, on average, the 

one given by Equation 1, although the scheduler is based on a 

different principle. 

C. The PATTHEL receiver 

The scheduling algorithm just described is simple and 

effective, and it has a low impact on CPU and resource usage. 

The pitfall is that it cannot guarantee that the chunks will 

arrive at the receiver in they same order in which they were 

sent. In fact, it does not take into account disparities between 

the RTTs of the channels, and delays caused by the operating 

system internal buffers. The problem is addressed on the 

receiver side, by a mechanism which is able to deal with out-

of-order arrivals without introducing additional buffering. 

To ease the receiver’s task, the sender adds a header to each 

chunk. The header contains the index and the size of the block 

from which the chunk came, the size of the chunk, and the 

offset of the chunk from the beginning of the stream. By using 

this information, the PATTHEL receiver can place data from 

the TCP channels directly within the application buffer, 

without any further overhead due to copy operation. 

The receiver accepts only chunks belonging to the block 

that is currently being received. For example, if a fragment 

belonging to the block # arrives on a channel while block #-1 

is still being received on the other channels, PATTHEL will 

not read data from that channel until block #-1 has been 

 
1 Some scheduling algorithms, such as the one described in [15], also need 

an estimation of the RTT to minimize the out-of-order arrivals at the receiver. 

We deal with reordering in a different way, described in section III.C. 
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completely received. This behavior limits the amount of 

buffering, but it may introduce slowdowns if one or more 

packets containing the last bytes of a block are dropped. 

However, a more aggressive buffering technique would 

introduce additional overhead. The study of such a technique, 

which could be used in place of the standard one on loss-prone 

wireless links, is left as future work. 

A simplified version of the receiver pseudocode is depicted 

in Figure 2. WaitForPipes() in line 4 is basically a select() 

which waits for data from the pipes. When new data arrive, the 

algorithm obtains the size of the block from the header of the 

first chunk (lines 7-10). streamOffset keeps track of the global 

amount of data received before the current block, while 

header.streamOffset indicates the position in the stream of the 

chunk that is being received. The offset of the chunk relative 

to the beginning of the application buffer is obtained by 

subtracting streamOffset to header.streamOffset (line 11). The 

receiveChunk() function (lines 12-13) reads header.chunkSize 

bytes from pipe and put them in the application buffer starting 

from position chunkOffset. The process is iterated until a 

whole block has been received.  

D. PATTHEL network protocol 

The PATTHEL network protocol defines all the phases of a 

data session between two hosts. PATTHEL adopts a client/ 

server model and distinguishes between control information – 

which uses a dedicated TCP connection, the control channel – 

and data, which use all the other active TCP connections (the 

data channels). Control operations require the exchange of 

control blocks, consisting of one or more TLV records. 

When a client wants to start a new data session, it connects 

to the server. The first connection will be used as the control 

channel and will stay open for the entire communication. The 

use of a dedicated control connection makes implementation 

easier and avoids head-of-line blocking. In fact, it is desirable 

that commands that manage channels are transferred and 

processed as fast as possible, without having to deal with other 

in-flight data in TCP buffers.  

After the control channel has been created, the client 

requests a first data channel. The server replies with a block 

containing a randomly generated token, an IP address, and a 

TCP port. At this point, the client opens a second connection 

towards the address/port just received. The first data sent by 

the client on the new channel must be the server-generated 

token, allowing the server to recognize the client and to 

associate the new data channel to the existing control channel. 

Although the transfer can proceed using only the control 

channel and one data channel, during a PATTHEL session each 

host can request the creation of additional data channels – the 

procedure is the same as the creation of the first one. The 

number of channels to create is determined by a policy that can 

be fine-tuned acting on several parameters such as desired 

bandwidth, channel spread and min improvement. The current 

policy is to open multiple channels over the same interface till 

the number of channels reach channel spread, then moving to 

open channels on other interfaces (if any). The channel spread 

limit may not be reached in case the aggregated bandwidth is 

larger than the desired bandwidth, or the new channel does not 

 

 
Figure 2. Receiver pseudocode. 

lead to an improvement of the aggregated bandwidth of more 

than min improvement. Aggregated bandwidth is monitored for 

a pre-defined time interval (currently one second), which is 

used by PATTHEL to decide if a new channel has to be 

opened. In this way, PATTHEL avoid opening many channels 

for a short transfer. Note that the desired bandwidth parameter 

only allows to set a bandwidth requirement for received data. 

There is no parameter to set a target bandwidth for sent data – 

it is only possible to set an upper bound. Since the receiver 

uses the data, it is coherent that the receiver controls the rate at 

which data are provided. When a host issues a new channel 

request, the other host can either accept or refuse. The decision 

is based on other PATTHEL parameters, such as the maximum 

send bandwidth. 

A consequence of this policy is that, even if all channels – 

being TCP pipes – are bidirectional, they are not always used 

in both directions. In particular, when a host requests and 

obtains a new channel, it can use the channel only for 

receiving data. The only exceptions to this rule – i.e. the only 

bidirectional channels – are the control channel and the first 

data channel (to guarantee a basic connectivity between the 

two hosts as long as the initial negotiation succeeds). This 

approach is coherent with the fact that, in many scenarios, the 

traffic between two hosts is not symmetric, i.e. the flow in one 

direction uses more bandwidth than the flow in the opposite 

direction. Hence, the fact that an additional channel is useful 

for traffic in one direction does not imply that also the traffic 

in the opposite direction needs to be parallelized. 

The PATTHEL network protocol also defines the format of 

chunks transmitted on data channels. Each data chunk is 

accompanied by the header depicted in Figure 3. The Chunk 

size field (32 bits) informs the receiver of the size of the chunk 

payload, i.e. of how many bytes of data will follow the header. 

Stream offset (64 bits) indicates the position of the chunk 

within the stream, and it is used to copy the chunk in the right 

position of the application buffer. Block size (32 bits) allows 

the receiver to check if the block can fit in the application 

buffer and, if it is too large, to pre-allocate an additional 

temporary buffer. Block index (32 bits) is used to verify that 

the chunk belongs to the block currently being received. 

01  sizeReceived = false ; 

02  receivedData = 0; 

03  do { 

04    readyPipes = WaitForPipes(); 

05    foreach pipe in readyPipes { 

06      header = GetHeader( pipe ); 

07      if ( !sizeReceived ) { 

08        blockSize = header.blockSize ; 

09        sizeReceived = true; 

10      } 

11      chunkOffset = header.streamOffset - streamOffset ; 

12      receiveChunk( pipe , appBuffer[chunkOffset], 

13                                   header.chunkSize ); 

14      receivedData += header.chunkSize ; 

15    } 

16  } while ( receivedData < blockSize ); 

17  streamOffset += blockSize ; 
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Figure 3. PATTHEL chunk header. 

E. Application interface 

The PATTHEL API is modeled over the Berkeley socket 

API. Primitives exported to applications mimic the behavior of 

well-known functions as accept(), connect(), send(), receive(), 

etc. Therefore, even if existing applications must be modified 

and re-compiled to make use of PATTHEL, in most cases the 

required changes are minimal.  

Besides implementing the PATTHEL scheduler and 

receiver algorithms, the API functions transparently manage 

the routing policy configuration. A problem of application- 

level multipath is that, in modern operating systems (OS), the 

networking API does not allow user programs to bind a socket 

to a specific network interface. In fact, standard TCP 

applications leave to the OS the responsibility of choosing the 

best interface for sending data. To accomplish the task, the OS 

maintains a structure called routing table, accessed every time 

a packet is sent to a remote host. Using the routing table, the 

OS decides if the host is reachable and how to reach it. This 

situation is not compatible with the functioning of PATTHEL, 

because it does not allow the use of different network 

interfaces to reach the same destination. To circumvent the 

problem, PATTHEL takes care of adding a specific rule to the 

routing table each time a new channel is created. The rule 

forces the packets belonging to that specific TCP flow to go 

through the right interface.  

Another issue is backward-compatibility with hosts that are 

not PATTHEL-aware. In the current PATTHEL version, a 

client application that wants to connect to a server can specify 

two different TCP ports, a standard one and a fallback one. 

First, the PATTHEL subsystem tries to open a connection to 

the standard port, and to negotiate a PATTHEL session. If the 

operation fails, another attempt is made toward the fallback 

port
2
. In the latter case, PATTHEL assumes that the other host 

is not PATTHEL-aware. Therefore, if the second connection 

attempt succeeds, PATTHEL wraps a standard TCP session.  

The PATTHEL API is simple and immediately usable by 

developers already experienced in network-oriented 

programming, but lacks the power of expression to deal with 

features such as mobility support and channel failure recovery. 

Future PATTHEL developments should include an enrichment 

of the current API. 

IV. EXPERIMENTAL EVALUATION 

We implemented PATTHEL as a prototypal Dynamic Link 

Library for Windows. For testing, we created a simple file  

 
2 Another solution would consist in using a TCP option; however this was 

cumbersome to do in our user-space library and it is left to a future work. 

   
Figure 4. Testbeds. 

transfer suite – consisting of a client and a server – capable to 

use either PATTHEL connections or standard TCP socket. 

Three different testbeds (shown in Figure 4) were used. 

In testbed #1, the client was connected through a Fast 

Ethernet link and a wireless one (54Mbps), and the server had 

a Fast Ethernet link. Both server and client were on the 

University network with public IP addresses, and bandwidth 

was artificially limited by configuring bandwidth shaping on 

intermediate routers (in order to create paths with 

reconfigurable bandwidths). In testbed #2, the client was 

connected to a single ADSL link (4Mbps download, 240Kbps 

upload) and had a private address, while the server 

configuration remained the same. In testbed #3, client and 

server were connected to the University network through a 

Fast Ethernet link, and both had public addresses. 

The first test, conducted on testbed #1, aimed at evaluating 

the performance gain of PATTHEL compared to standard TCP 

in presence of multiple physical paths. We measured the time 

required to transfer a file with PATTHEL (using two channels) 

against a single TCP connection over the wired link. Results, 

reported in Table 1, show that the PATTHEL speedup is 

significant and close to the theoretical maximum (1.5 in the 

first two tests, 2 in the last ones). 

The second test evaluated performances in the case of a 

single-channel transfer (over a single path), using only the 

wired links of testbed #1. Results (in Table 2) show that the 

overhead introduced by the protocol is negligible, with a 

penalty (in terms of increased duration of the transfer) of less 

than 1%. Another set of tests with the full link bandwidth 

showed that the maximum rate obtainable by PATTHEL was 

approximately 40 Mb/s – well below the nominal bandwidth of 

the link. By profiling the code, we determined that the reason 

was the select() system call. In fact, select() depends on the 

Operating System timer and reacts slowly when the pipe 

empties quickly – e.g. on high-speed LAN paths. However, 

this is a limit of our implementation and not of the PATTHEL 

mechanism. 

The third test evaluated PATTHEL overhead in establishing 

new connections. PATTHEL first creates a TCP connection as 

the control channel, and then uses it to negotiate data 
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TABLE 1.PATTHEL TRANSFERS SPEEDUP. 

 
TABLE 2. PATTHEL EFFICIENCY ON A SINGLE CHANNEL. 

 

connections. This requires the exchange of at least 9 packets 

before the data transfer can start. We transferred a large 

number of small (20 KB) files on a single channel, first using 

PATTHEL and then TCP. We used testbed #2 because, since 

the data had to travel through the Internet, we were able to 

observe much wider delays than on the LAN-based testbed #1. 

Figure 5 shows the distribution of the setup time of 

PATTHEL and TCP, measured over 50 connections; the 

results show that PATTHEL setup time is higher than the 

corresponding time required to open a TCP connection, and it 

is definitely related to the RTT of the connection. This result 

confirms that PATTHEL, as expected, inserts a minimum 

bound for the setup time, which may become significant in 

case of short data transfers. However, PATTHEL was not 

designed for short transfers, e.g. the download of e-mail 

messages, which do not suffer much from bandwidth 

limitations. Note that results in Table 1 show that longer 

transfers are not affected by the increased setup time. 

The fourth test analyzed the PATTHEL ability to quickly 

react to changes in the available bandwidth; it also evaluated 

its TCP friendliness. We used testbed #1, setting the 

bandwidth of the two links respectively to 4 Mb/s (Ethernet) 

and 3 Mb/s (Wireless).  We started a TCP file transfer on the 

Ethernet link and, after about 15 seconds, a PATTHEL 

transfer using both links. The TCP transfer ended shortly 

before the PATTHEL one. Figure 6 depicts the bandwidth 

dynamics: TCP and PATTHEL were (as expected) able to 

share the bandwidth on the Ethernet link; moreover, 

PATTHEL was able to exploit all the Ethernet bandwidth as 

soon as it became available. Also note that the PATTHEL 

channel on the wireless link was not influenced by the 

behavior of the wired one. This result suggests that PATTHEL 

can manage bandwidth oscillations on a channel without 

degrading performances of the other active channels. 

The next test aimed at verifying the effectiveness of 

PATTHEL in case of relay-based data transfers. Using testbed 

#3, we transferred files with different sizes through a different 

number of relays; the bandwidth of each channel was limited to 

60000 bps. Results (in Figure 7) show that the advantage of 

using multiple relays is evident, particularly for large files. In 

fact, in this case the aggregated throughput increases linearly as 

more channels are added. Shorter transfers show an 

improvement as well, but because of the additional overhead 

imposed by the time required to open new connections, the 

RTT

TCP

PATTHEL

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

Time [s]

RTT values

TCP setup times

PATTHEL setup times

 
Figure 5. Connection setup time. 

gain is smaller than the theoretical one (e.g., 471% 

improvement with 512KB file size and 6 relays). Additional 

measurements (omitted for brevity’s sake) confirm that the 

overhead of the protocol is negligible (about 1.3% of 

exchanged bytes) and unrelated to the size of the file. 

During the next series of tests, we simulated the peculiar 

situation in which, during a parallel transfer, a channel exhibits 

significant worse behavior – in terms of delay and RTT – than 

the others. The purpose was to estimate how much a faulty 

channel can influence the aggregate throughput of a transfer. 

We used testbed #1, splitting the transfer among three 

channels, all established through the wired link. On the path 

we installed a Linux machine, acting as a transparent bridge.  

Using the popular netem queue discipline ([16]), we 

configured the bridge to impose increasing delays and loss 

rates on one of the PATTHEL TCP flows (the other flows 

were not affected). In undisturbed conditions, the bandwidth of 

all the channels was limited at 60000 bps, with 100 ms RTT 

and no losses. The delay and the loss rate of channel #3 were 

then increasingly incremented
3
, imposing the following 

conditions: a) 1% packet losses, 100 ms RTT; b) 5% packet 

losses, 200 ms RTT; c) 10% packet losses, 300 ms RTT; d) 

15% packet losses, 400 ms RTT.   For each different test, the 

time needed to transfer a 4 MB file was measured. 

Figure 8 depicts the aggregate throughput for each test. The 

two horizontal lines are the throughput in undisturbed 

conditions using 3 channels and 2 channels. The former 

represents an upper bound for the aggregated throughput. The 

latter is the throughput beyond which the faulty channel should 

be closed, as it worsen the aggregated performances. 

PATTHEL was able to obtain good performances with one 

channel exhibing light to medium losses and an RTT up to 3x 

larger than the RTTs of the other channels. However, when the 

third channel was heavily disturbed, the throughout dropped to 

less than a half of the throughput with only two channels. 

Future work on PATTHEL includes the study of a real-time 

channel profiling algorithm, to quickly locate and shut down 

channels which exhibit bad behavior. 

 
3 We run tests to decouple the effect of losses and RTT increases. 

However, we found that differences in RTT between channels have almost no 

effect without losses, and slightly worsen the performances only if coupled 

with high loss rates (>10%). We omitted those results for sake of  brevity. 

Ethernet 

link bw 

WiFi 

link bw 
File size 

PATTHEL 

Transf. time 

TCP 

Transf. 

time 

Gain 

4 Mb/s 2 Mb/s 20 MB 27.33 s 40.60 s 1.49 

16 Mb/s 8 Mb/s 100 MB 34.31s 50.99 s 1.49 

4 Mb/s 4 Mb/s 20 MB 20.56 s 40.60 s 1.97 

16 Mb/s 16 Mb/s 100 MB 26.73 s 50.99 s 1.91 

Channel 

bw 

File size Transfer time 

(PATTHEL) 

Transfer time 

(TCP) 

Penalty 

4 Mb/s 20 MB 40.86 s 40.59 s 0.65 % 

16 Mb/s 100 MB 51.32 s 50.99 s 0.65 % 
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Figure 6. PATTHEL behavior with background traffic. 
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Figure 7. Transfer time with multiple relays and different file sizes. 

V. CONCLUSIONS 

This paper presents PATTHEL, a solution for data striping 

over multiple physical or logical paths. PATTHEL achieves 

parallelization by creating multiple TCP channels between two 

hosts. Its effectiveness has been demonstrated both in the case 

of multi-homed hosts and in the case of relay-based transfers. 

Unlike many existing solutions, PATTHEL does not require 

invasive changes to the networking stack of hosts, as it is 

implemented on top of TCP and operates at layer V. 

We created a PATTHEL software prototype and evaluated 

its performances. Test results are promising, and show that the 

proposed architecture is able to efficiently exploit multiple 

paths with a near-to-theoretical speedup, expecially for large 

data transfers. Moreover, the PATTHEL protocol causes a 

negligible increment in the overhead – compared to TCP – 

even when operating on a single channel. This is a significant 

advantage for applications, which do not have to switch to 

TCP primitives when they only need to use one channel.  

A current limitation of PATTHEL relates to the policy that 

supervises the opening and the closing of new channels. Such 

policy depends on a set of parameters that may need to be fine-

tuned on a case-by-case basis to achieve optimal 

performances. Future work will include an algorithm capable 

to auto-configure the policy through the profiling of the 

performances of active channels. This will allow PATTHEL to 

automatically detect the number of channels to open, and to 

decide how to distribute them among the available interfaces. 
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Figure 8. Performance loss caused by a faulty channel. 
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