
17 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Increasing Performances of TCP Data Transfers Through Multiple Parallel Connections / Baldini, A; DE CARLI, L; Risso,
FULVIO GIOVANNI OTTAVIO. - STAMPA. - (2009), pp. 630-636. (Intervento presentato al convegno IEEE Symposium
on Computers and Communications (ISCC 09) tenutosi a Sousse (Tunisia) nel July 5-8, 2009)
[10.1109/ISCC.2009.5202274].

Original

Increasing Performances of TCP Data Transfers Through Multiple Parallel Connections

Publisher:

Published
DOI:10.1109/ISCC.2009.5202274

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2298004 since:

IEEE

1

Abstract— Although Transmission Control Protocol (TCP) is a

widely deployed and successful protocol, it shows some limitations

in present-day environments. In particular, it is unable to exploit

multiple (physical or logical) paths between two hosts. This paper

presents PATTHEL, a session-layer solution designed for

parallelizing stream data transfers. Parallelization is achieved by

striping the data flow among multiple TCP channels. This

solution does not require invasive changes to the networking stack

and can be implemented entirely in user space. Moreover, it is

flexible enough to suit several scenarios – e.g. it can be used to

split a data transfer among multiple relays within a peer-to-peer

overlay network.

I. INTRODUCTION

ransmission Control Protocol (TCP) is the de-facto

standard for stream-oriented communication over the

Internet. It provides reliable and in-order delivery of a

data stream, together with flow and congestion control. One of

its characteristics, namely the capability to open only a single

logical channel between two communicating host, appears to

be a limitation in the present-day Internet. The maximum

theoretical speed of a single TCP connection is bounded by the

window size and the Round Trip Time, which often prevent

the full utilization of high-speed links (unless in presence of

specific settings). To overcome the problem, several solutions

– such as XFTP ([1]) – open different parallel TCP

connections in order to achieve higher data rates. However,

synchronization and management of these concurrent channels

has to be done by the application itself.

Another example comes from multi-homed hosts, which can

only use a single network interface when exchanging data with

a remote peer – in fact, TCP is not able to transparently use

two different physical paths as a single logical channel. The

availability of multiple (and concurrent) network connections

in the same place (e.g. wireless Internet access, GPRS/UMTS,

and more) may become quite common in the near future,

thanks to the widespread diffusion of wireless Internet access.

New technologies like Microsoft VirtualWiFi ([2]), whose aim

is to allow a host to connect to multiple WiFi networks using a

single interface, may also play an important role. These

technologies could enable the concurrent use of different WiFi

Fulvio Risso (corresponding author) is with Politecnico di Torino 10039,

Italy (e-mail: fulvio.risso@polito.it, phone +39-011-090.7008).

Lorenzo De Carli is with the Department of Computer Science, University

of Wisconsin-Madison, Madison, WI, USA (e-mail: lorenzo@cs.wisc.edu).

Andrea Baldini is with Cisco Systems, Inc., San Jose, CA, USA (e-mail:

abaldini@cisco.com).

domestic networks, allowing the aggregation of the upstream

bandwidth of different ADSL connections.

A third example relates to relay-based data transfers within

a peer-to-peer network. When two P2P nodes cannot exchange

data directly, communication is established through a relay, i.e.

a machine that is reachable by both hosts and acts as a “pass-

through” for the data flow. This practice is costly for relaying

nodes, which use a portion of their bandwidth to transfer data

they are not interested in. Consequently, communication

through a relay usually uses a limited amount of bandwidth

and is slow. Applying parallelization in this context would

allow splitting a transfer among several relays, improving the

transfer rate without putting excessive load on a single node.

In this paper, we present a generic technique to split a

stream data transfer among multiple TCP connections. The rest

of the paper is organized as follow: in Section II we present

existing work in the field of parallelization of network

transfers. Section III describes a new technique, called

PATTHEL (Parallel TCP Transfers Helper), and discusses its

most important features. Section IV presents experimental

results and Section V gives some conclusive remarks.

II. RELATED WORK

Several techniques for striping a data transfers over multiple

paths – logical or physical – have been proposed in literature.

The potential and the limitations of each solution are closely

related to the ISO/OSI layer to which it belongs.

Layer-II techniques allow the concurrent use of multiple

layer-II links. A well-known example is link aggregation ([3]),

which works between a couple of nodes connected through

multiple Ethernet link – for each link, a dedicated Ethernet

card must be installed on both hosts. By striping data over the

available interfaces, a channel is obtained, whose bandwidth is

equal to the sum of the bandwidth of individual links. The

drawback of this and other similar techniques is that they are

strictly tied to a specific data-link technology. Other solutions

are implemented at higher layers, to achieve a greater level of

abstraction over the hardware.

Mobile IP ([4]) is a set of extensions to the basic IP protocol

that allows a node to change its address while it is sending and

receiving data. During the transition of a mobile host from a

network to another, two paths can be used together to receive

packets both from the old network and the new one. However,

Mobile IP does not use multiple links in parallel to achieve

higher throughput. A layer-III technique for streaming data

across multiple IP links is presented in [5]. This technique has

severe compatibility issues with TCP which may significantly

Increasing Performances of TCP Data Transfers

Through Multiple Parallel Connections

Andrea Baldini, Lorenzo De Carli, Fulvio Risso

T

2

degrade aggregated performances. In fact, TCP flow control is

optimized to work over a single path, and does not perform

well when a connection is split across multiple links. The

problem is likely to affect each layer-III striping solution that

wants to retain compatibility with TCP. Therefore, it is

unlikely that layer-III multipath solutions can achieve

widespread adoption.

Other solutions avoid this issue by implementing multipath

at layer IV. SCTP ([6]) is a transport protocol with support for

multihoming and multipath. Its main limitation is that data

transfers always use only one path, even if multiple ones are

available. The remaining paths are only used for retransmitting

packets when the main path fails. Therefore, SCTP supports

multipath only for reliability purposes. Several recent papers

(e.g. [7]) introduce SCTP variants implementing load sharing.

A drawback of these approaches, as of SCTP in general, is that

the protocol is relatively new and not widely used; spreading it

would require a massive porting of current Internet

applications. Moreover, compatibility problems with existing

network devices – e.g. firewalls, NATs, etc. – are likely to

arise. Other layer-IV solutions aim at adding load-sharing

support to TCP. The study of TCP-like congestion control for

multipath data transfers has been addressed in [8]. However,

results are not easily applicable, as they require source routing

and the static configuration of paths on routers. pTCP ([9]) is a

derivative of TCP that supports striping and load balancing.

The most serious drawback of pTCP is that it is not compatible

with TCP, as it uses a modified version of the TCP header.

Layer-V and VII solutions implement multipath without

affecting widely deployed protocols such as IP and TCP: in

many situations, this is a decisive advantage. Munisocket

([10]) is a layer-V multipath solution that achieves parallelism

by creating several TCP connections and striping data blocks

on them. It targets nodes on the same LAN, typically in a

computing grid; hence, its use is limited to large message

transfers over homogeneous, high-speed local links. SEBAG

([11]) use a similar principle, but it is specialized for the case

of mobile hosts with multiple radio interfaces. Moreover, the

paper lacks details on SEBAG inner working, and on how it is

integrated with applications.

Most of the presented solutions ([3], [5], [7], [9], [10], [11])

share a serious limitation: they are specifically designed for

situations in which multiple network interfaces are available.

On at least one side of the communication, each data pipe must

end on a different network card. Such design cannot be

adapted to the case of an overlay network, where transfers can

be split among paths that terminate at the same endpoints.

Other techniques involve the creation of multiple logical

paths over a single physical link. [12] aims at improving the

performances of multimedia streaming over TCP. To mitigate

the impact of packet losses on the throughput of a single

transfer, media flows are striped among multiple TCP

connections. [1] and [13] use a similar approach to overcome

bandwidth limitations on links with high bandwidth * delay

product. In particular, XFTP ([1]) consists of a modified

version of the FTP protocol, with support for the creation of

multiple sockets on a single link. The main problem of layer-

VII solutions like XFTP is that they are usually developed in

the context of a specific application; reusability is not trivial if

possible at all. Also, it is important to point out that [1], [12]

and [13] cannot exploit multiple physical paths, as their

purpose is only to improve TCP performances on a single link.

The aim of our solution is to implement parallel transfer

capabilities on top of the TCP protocol, therefore limiting the

changes in both the network stack and in user applications,

while introducing the idea of “logical channels”. A logical

channel is a data pipe that can either use a link exclusively, or

share it with other logical channels; the way in which the

available links are shared among logical channels depends on

application needs. This concept enables both the

parallelization of transfers through different physical paths

(either in case of different endpoints, or through different

intermediate relays), and the creation of multiple TCP pipes on

the same link.

III. THE PARALLEL TCP TRANSFER HELPER

The Parallel TCP Transfers Helper (PATTHEL) described

in this paper is a layer-V architecture designed to stripe a TCP

data flow over multiple (physical or logical) channels. This

solution has the advantage of being relatively simple to

implement because it relies on TCP for the physical data

transfer. Hence, it does not require the definition and the

implementation of a new transport protocol, and it does not

have a dramatic impact on the operating system. At the same

time, it is extremely effective because the protocol can be

easily leveraged by all the applications that currently use TCP.

PATTHEL main strengths are the capability to establish

multiple communication channels transparently, a clever (and

simple) scheduling algorithm for striping data over different

channels, and a receiving module that limits the amount of

memory copy operations in the receiver, avoiding – in many

cases – the need for an intermediate receiver buffer.

PATTHEL does not implement the (orthogonal) task of

determining the set of available paths between two hosts,

which can be delegated to mechanisms such as ALEX ([14]).

A. System architecture

Figure 1 depicts a high-level overview of the proposed

architecture. Applications see a single input socket and a

single output socket, but PATTHEL introduces more elements.

Just after the input socket the data stream is split in chunks that

are then distributed to a set of physical TCP channels. In a

complementary way, transferred data are reassembled just

before the output socket, in order to pass them to the

application as a single stream. In addition, PATTHEL

introduces a new TCP connection for controlling the transfer.

The main challenges faced by PATTHEL are (i) how to

spread data across different channels, (ii) how to assign

channels to the active interfaces, and (iii) how to compute the

optimal number of channels. If PATTHEL is used between

multihomed hosts, the number of channels can coincide with

the number of network interfaces. However, PATTHEL can

also be used to create multiple channels on the same path. In

this case, the number of channels that maximizes throughput

must be dynamically computed ([1], [13]). In this paper we

concentrate on tasks (i) and (ii), and leave (iii) as future work.

3

Figure 1. PATTHEL general architecture.

Chunks created by the scheduling algorithm are sent through

a set of TCP channels, with the addition of a PATTHEL

header to each chunk. The PATTHEL network protocol

(presented in section III.D) defines the format of the chunks. It

also specifies how to establish an initial channel, how to open

additional channels and how to close the communication. At

the destination, chunks are reordered using the information

contained in the PATTHEL headers, restoring the original data

stream.

B. The PATTHEL Scheduler

The PATTHEL scheduling algorithm receives a sequence of

application-generated data blocks and outputs a set of chunks,

each one assigned to a data channel. The size of chunks and

the scheduling policy determine the efficiency of the algorithm

in using the available bandwidth. Such efficiency is maximized

if all channels are backlogged during the entire transfer. If D is

the size (in bytes) of a data block passed to the scheduler at a

given time, Fi is the fraction of the block assigned to the i-th

channel (in bytes), and Bi is the bandwidth of the channel (in

bytes/s), the channel will be busy transmitting data for Fi / Bi
seconds. If the transmission on all channels starts at the same

time, the maximum throughput is achieved when the following

equalities hold:

#

#

B

F

B

F

B

F
=== K

2

2

1

1

The fraction Fi of data assigned to the i-th channel can be

written as Fi = fi * D, where fi is a coefficient between 0 and 1,

∑ fi = 1 and D is the total size of the data block. The optimal

fraction of the block associated to the i-th channel is given by:

total

i

#

l l

i
i

B

B

B

B
f ==

∑ =1

 (1)

(see [5] for proof). Note that Bi is the bandwidth exhibited by a

TCP channel, and not by a physical path. It depends on the

bandwidths of the links through which the packets travel, but

also on parameters such as TCP window size, RTT, and losses.

Equation 1 could be used directly to compute the

coefficients fi, but this approach has significant limitations.

Estimating the bandwidth
1
 of a TCP channel is difficult for a

Layer-V solution such as PATTHEL, which cannot access

information inside the TCP/IP driver. However, limited

information can be inferred through the select() system call. In

fact, select() can be used to determine whether the channel is

full or it can accept new data.This information does not exactly

represent the status of the channel, because it is influenced by

the availability of space in driver and OS buffers, and it suffers

from low temporal granularity. Despite these limitations,

results show that its precision is enough for our application.

The PATTHEL scheduler is, in principle, quite simple: each

data block generated by the application is split into chunks,

whose size is configurable – the default behavior is to set the

size of a chunk to the MTU of the interface on which the

chunk is sent. Chunks are then assigned to the available

channels in the following way: when a channel has free space

in the send buffer, the PATTHEL subsystem is notified

(through a select() call) and a new chunk is assigned to that

channel. The process is repeated as soon as a new data block

comes from the application: all the channels are always kept

busy by never letting their input buffers become empty.

Consider a block that must be sent over # parallel channels.

Bi is the rate (in bytes/s) at which the i-th channel can send

data and Btotal is the aggregate bandwidth (i.e. the sum of the

bandwidth of the individual channels). As long as all the input

queues are backlogged, each channel is always busy

transmitting and is hence fully utilized. In this situation, every

second the i-th channel sends Bi bytes of data. In the same time

interval, the system sends a total of Btotal bytes. Therefore, the

fraction of data assigned to the i-th channel is, on average, the

one given by Equation 1, although the scheduler is based on a

different principle.

C. The PATTHEL receiver

The scheduling algorithm just described is simple and

effective, and it has a low impact on CPU and resource usage.

The pitfall is that it cannot guarantee that the chunks will

arrive at the receiver in they same order in which they were

sent. In fact, it does not take into account disparities between

the RTTs of the channels, and delays caused by the operating

system internal buffers. The problem is addressed on the

receiver side, by a mechanism which is able to deal with out-

of-order arrivals without introducing additional buffering.

To ease the receiver’s task, the sender adds a header to each

chunk. The header contains the index and the size of the block

from which the chunk came, the size of the chunk, and the

offset of the chunk from the beginning of the stream. By using

this information, the PATTHEL receiver can place data from

the TCP channels directly within the application buffer,

without any further overhead due to copy operation.

The receiver accepts only chunks belonging to the block

that is currently being received. For example, if a fragment

belonging to the block # arrives on a channel while block #-1

is still being received on the other channels, PATTHEL will

not read data from that channel until block #-1 has been

1 Some scheduling algorithms, such as the one described in [15], also need

an estimation of the RTT to minimize the out-of-order arrivals at the receiver.

We deal with reordering in a different way, described in section III.C.

Data stream

PATTHEL Striping/Scheduling Algorithm

Insertion of PATTHEL Protocol Headers

Input socket

TCP socket

(in)

TCP socket
(out)

PATTHEL

TCP
pipes

Removal of PATTHEL protocol headers

PATTHEL
control

connection

PATTHEL data block reordering

Data stream

Output socket

4

completely received. This behavior limits the amount of

buffering, but it may introduce slowdowns if one or more

packets containing the last bytes of a block are dropped.

However, a more aggressive buffering technique would

introduce additional overhead. The study of such a technique,

which could be used in place of the standard one on loss-prone

wireless links, is left as future work.

A simplified version of the receiver pseudocode is depicted

in Figure 2. WaitForPipes() in line 4 is basically a select()

which waits for data from the pipes. When new data arrive, the

algorithm obtains the size of the block from the header of the

first chunk (lines 7-10). streamOffset keeps track of the global

amount of data received before the current block, while

header.streamOffset indicates the position in the stream of the

chunk that is being received. The offset of the chunk relative

to the beginning of the application buffer is obtained by

subtracting streamOffset to header.streamOffset (line 11). The

receiveChunk() function (lines 12-13) reads header.chunkSize

bytes from pipe and put them in the application buffer starting

from position chunkOffset. The process is iterated until a

whole block has been received.

D. PATTHEL network protocol

The PATTHEL network protocol defines all the phases of a

data session between two hosts. PATTHEL adopts a client/

server model and distinguishes between control information –

which uses a dedicated TCP connection, the control channel –

and data, which use all the other active TCP connections (the

data channels). Control operations require the exchange of

control blocks, consisting of one or more TLV records.

When a client wants to start a new data session, it connects

to the server. The first connection will be used as the control

channel and will stay open for the entire communication. The

use of a dedicated control connection makes implementation

easier and avoids head-of-line blocking. In fact, it is desirable

that commands that manage channels are transferred and

processed as fast as possible, without having to deal with other

in-flight data in TCP buffers.

After the control channel has been created, the client

requests a first data channel. The server replies with a block

containing a randomly generated token, an IP address, and a

TCP port. At this point, the client opens a second connection

towards the address/port just received. The first data sent by

the client on the new channel must be the server-generated

token, allowing the server to recognize the client and to

associate the new data channel to the existing control channel.

Although the transfer can proceed using only the control

channel and one data channel, during a PATTHEL session each

host can request the creation of additional data channels – the

procedure is the same as the creation of the first one. The

number of channels to create is determined by a policy that can

be fine-tuned acting on several parameters such as desired

bandwidth, channel spread and min improvement. The current

policy is to open multiple channels over the same interface till

the number of channels reach channel spread, then moving to

open channels on other interfaces (if any). The channel spread

limit may not be reached in case the aggregated bandwidth is

larger than the desired bandwidth, or the new channel does not

Figure 2. Receiver pseudocode.

lead to an improvement of the aggregated bandwidth of more

than min improvement. Aggregated bandwidth is monitored for

a pre-defined time interval (currently one second), which is

used by PATTHEL to decide if a new channel has to be

opened. In this way, PATTHEL avoid opening many channels

for a short transfer. Note that the desired bandwidth parameter

only allows to set a bandwidth requirement for received data.

There is no parameter to set a target bandwidth for sent data –

it is only possible to set an upper bound. Since the receiver

uses the data, it is coherent that the receiver controls the rate at

which data are provided. When a host issues a new channel

request, the other host can either accept or refuse. The decision

is based on other PATTHEL parameters, such as the maximum

send bandwidth.

A consequence of this policy is that, even if all channels –

being TCP pipes – are bidirectional, they are not always used

in both directions. In particular, when a host requests and

obtains a new channel, it can use the channel only for

receiving data. The only exceptions to this rule – i.e. the only

bidirectional channels – are the control channel and the first

data channel (to guarantee a basic connectivity between the

two hosts as long as the initial negotiation succeeds). This

approach is coherent with the fact that, in many scenarios, the

traffic between two hosts is not symmetric, i.e. the flow in one

direction uses more bandwidth than the flow in the opposite

direction. Hence, the fact that an additional channel is useful

for traffic in one direction does not imply that also the traffic

in the opposite direction needs to be parallelized.

The PATTHEL network protocol also defines the format of

chunks transmitted on data channels. Each data chunk is

accompanied by the header depicted in Figure 3. The Chunk

size field (32 bits) informs the receiver of the size of the chunk

payload, i.e. of how many bytes of data will follow the header.

Stream offset (64 bits) indicates the position of the chunk

within the stream, and it is used to copy the chunk in the right

position of the application buffer. Block size (32 bits) allows

the receiver to check if the block can fit in the application

buffer and, if it is too large, to pre-allocate an additional

temporary buffer. Block index (32 bits) is used to verify that

the chunk belongs to the block currently being received.

01 sizeReceived = false ;

02 receivedData = 0;

03 do {

04 readyPipes = WaitForPipes();

05 foreach pipe in readyPipes {

06 header = GetHeader(pipe);

07 if (!sizeReceived) {

08 blockSize = header.blockSize ;

09 sizeReceived = true;

10 }

11 chunkOffset = header.streamOffset - streamOffset ;

12 receiveChunk(pipe , appBuffer[chunkOffset],

13 header.chunkSize);

14 receivedData += header.chunkSize ;

15 }

16 } while (receivedData < blockSize);

17 streamOffset += blockSize ;

5

Figure 3. PATTHEL chunk header.

E. Application interface

The PATTHEL API is modeled over the Berkeley socket

API. Primitives exported to applications mimic the behavior of

well-known functions as accept(), connect(), send(), receive(),

etc. Therefore, even if existing applications must be modified

and re-compiled to make use of PATTHEL, in most cases the

required changes are minimal.

Besides implementing the PATTHEL scheduler and

receiver algorithms, the API functions transparently manage

the routing policy configuration. A problem of application-

level multipath is that, in modern operating systems (OS), the

networking API does not allow user programs to bind a socket

to a specific network interface. In fact, standard TCP

applications leave to the OS the responsibility of choosing the

best interface for sending data. To accomplish the task, the OS

maintains a structure called routing table, accessed every time

a packet is sent to a remote host. Using the routing table, the

OS decides if the host is reachable and how to reach it. This

situation is not compatible with the functioning of PATTHEL,

because it does not allow the use of different network

interfaces to reach the same destination. To circumvent the

problem, PATTHEL takes care of adding a specific rule to the

routing table each time a new channel is created. The rule

forces the packets belonging to that specific TCP flow to go

through the right interface.

Another issue is backward-compatibility with hosts that are

not PATTHEL-aware. In the current PATTHEL version, a

client application that wants to connect to a server can specify

two different TCP ports, a standard one and a fallback one.

First, the PATTHEL subsystem tries to open a connection to

the standard port, and to negotiate a PATTHEL session. If the

operation fails, another attempt is made toward the fallback

port
2
. In the latter case, PATTHEL assumes that the other host

is not PATTHEL-aware. Therefore, if the second connection

attempt succeeds, PATTHEL wraps a standard TCP session.

The PATTHEL API is simple and immediately usable by

developers already experienced in network-oriented

programming, but lacks the power of expression to deal with

features such as mobility support and channel failure recovery.

Future PATTHEL developments should include an enrichment

of the current API.

IV. EXPERIMENTAL EVALUATION

We implemented PATTHEL as a prototypal Dynamic Link

Library for Windows. For testing, we created a simple file

2 Another solution would consist in using a TCP option; however this was

cumbersome to do in our user-space library and it is left to a future work.

Figure 4. Testbeds.

transfer suite – consisting of a client and a server – capable to

use either PATTHEL connections or standard TCP socket.

Three different testbeds (shown in Figure 4) were used.

In testbed #1, the client was connected through a Fast

Ethernet link and a wireless one (54Mbps), and the server had

a Fast Ethernet link. Both server and client were on the

University network with public IP addresses, and bandwidth

was artificially limited by configuring bandwidth shaping on

intermediate routers (in order to create paths with

reconfigurable bandwidths). In testbed #2, the client was

connected to a single ADSL link (4Mbps download, 240Kbps

upload) and had a private address, while the server

configuration remained the same. In testbed #3, client and

server were connected to the University network through a

Fast Ethernet link, and both had public addresses.

The first test, conducted on testbed #1, aimed at evaluating

the performance gain of PATTHEL compared to standard TCP

in presence of multiple physical paths. We measured the time

required to transfer a file with PATTHEL (using two channels)

against a single TCP connection over the wired link. Results,

reported in Table 1, show that the PATTHEL speedup is

significant and close to the theoretical maximum (1.5 in the

first two tests, 2 in the last ones).

The second test evaluated performances in the case of a

single-channel transfer (over a single path), using only the

wired links of testbed #1. Results (in Table 2) show that the

overhead introduced by the protocol is negligible, with a

penalty (in terms of increased duration of the transfer) of less

than 1%. Another set of tests with the full link bandwidth

showed that the maximum rate obtainable by PATTHEL was

approximately 40 Mb/s – well below the nominal bandwidth of

the link. By profiling the code, we determined that the reason

was the select() system call. In fact, select() depends on the

Operating System timer and reacts slowly when the pipe

empties quickly – e.g. on high-speed LAN paths. However,

this is a limit of our implementation and not of the PATTHEL

mechanism.

The third test evaluated PATTHEL overhead in establishing

new connections. PATTHEL first creates a TCP connection as

the control channel, and then uses it to negotiate data

0 7 15 23 31

Stream Offset

[Block Size]

 [Block Index]

Application data

TCP relay

PATTHEL
client

PATTHEL

server

NAT

Internet

Testbed #1

Testbed #2

PATTHEL
client

PATTHEL
server

Testbed #3

PATTHEL
client

PATTHEL
server

Chunk Size

6

TABLE 1.PATTHEL TRANSFERS SPEEDUP.

TABLE 2. PATTHEL EFFICIENCY ON A SINGLE CHANNEL.

connections. This requires the exchange of at least 9 packets

before the data transfer can start. We transferred a large

number of small (20 KB) files on a single channel, first using

PATTHEL and then TCP. We used testbed #2 because, since

the data had to travel through the Internet, we were able to

observe much wider delays than on the LAN-based testbed #1.

Figure 5 shows the distribution of the setup time of

PATTHEL and TCP, measured over 50 connections; the

results show that PATTHEL setup time is higher than the

corresponding time required to open a TCP connection, and it

is definitely related to the RTT of the connection. This result

confirms that PATTHEL, as expected, inserts a minimum

bound for the setup time, which may become significant in

case of short data transfers. However, PATTHEL was not

designed for short transfers, e.g. the download of e-mail

messages, which do not suffer much from bandwidth

limitations. Note that results in Table 1 show that longer

transfers are not affected by the increased setup time.

The fourth test analyzed the PATTHEL ability to quickly

react to changes in the available bandwidth; it also evaluated

its TCP friendliness. We used testbed #1, setting the

bandwidth of the two links respectively to 4 Mb/s (Ethernet)

and 3 Mb/s (Wireless). We started a TCP file transfer on the

Ethernet link and, after about 15 seconds, a PATTHEL

transfer using both links. The TCP transfer ended shortly

before the PATTHEL one. Figure 6 depicts the bandwidth

dynamics: TCP and PATTHEL were (as expected) able to

share the bandwidth on the Ethernet link; moreover,

PATTHEL was able to exploit all the Ethernet bandwidth as

soon as it became available. Also note that the PATTHEL

channel on the wireless link was not influenced by the

behavior of the wired one. This result suggests that PATTHEL

can manage bandwidth oscillations on a channel without

degrading performances of the other active channels.

The next test aimed at verifying the effectiveness of

PATTHEL in case of relay-based data transfers. Using testbed

#3, we transferred files with different sizes through a different

number of relays; the bandwidth of each channel was limited to

60000 bps. Results (in Figure 7) show that the advantage of

using multiple relays is evident, particularly for large files. In

fact, in this case the aggregated throughput increases linearly as

more channels are added. Shorter transfers show an

improvement as well, but because of the additional overhead

imposed by the time required to open new connections, the

RTT

TCP

PATTHEL

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Time [s]

RTT values

TCP setup times

PATTHEL setup times

Figure 5. Connection setup time.

gain is smaller than the theoretical one (e.g., 471%

improvement with 512KB file size and 6 relays). Additional

measurements (omitted for brevity’s sake) confirm that the

overhead of the protocol is negligible (about 1.3% of

exchanged bytes) and unrelated to the size of the file.

During the next series of tests, we simulated the peculiar

situation in which, during a parallel transfer, a channel exhibits

significant worse behavior – in terms of delay and RTT – than

the others. The purpose was to estimate how much a faulty

channel can influence the aggregate throughput of a transfer.

We used testbed #1, splitting the transfer among three

channels, all established through the wired link. On the path

we installed a Linux machine, acting as a transparent bridge.

Using the popular netem queue discipline ([16]), we

configured the bridge to impose increasing delays and loss

rates on one of the PATTHEL TCP flows (the other flows

were not affected). In undisturbed conditions, the bandwidth of

all the channels was limited at 60000 bps, with 100 ms RTT

and no losses. The delay and the loss rate of channel #3 were

then increasingly incremented
3
, imposing the following

conditions: a) 1% packet losses, 100 ms RTT; b) 5% packet

losses, 200 ms RTT; c) 10% packet losses, 300 ms RTT; d)

15% packet losses, 400 ms RTT. For each different test, the

time needed to transfer a 4 MB file was measured.

Figure 8 depicts the aggregate throughput for each test. The

two horizontal lines are the throughput in undisturbed

conditions using 3 channels and 2 channels. The former

represents an upper bound for the aggregated throughput. The

latter is the throughput beyond which the faulty channel should

be closed, as it worsen the aggregated performances.

PATTHEL was able to obtain good performances with one

channel exhibing light to medium losses and an RTT up to 3x

larger than the RTTs of the other channels. However, when the

third channel was heavily disturbed, the throughout dropped to

less than a half of the throughput with only two channels.

Future work on PATTHEL includes the study of a real-time

channel profiling algorithm, to quickly locate and shut down

channels which exhibit bad behavior.

3 We run tests to decouple the effect of losses and RTT increases.

However, we found that differences in RTT between channels have almost no

effect without losses, and slightly worsen the performances only if coupled

with high loss rates (>10%). We omitted those results for sake of brevity.

Ethernet

link bw

WiFi

link bw
File size

PATTHEL

Transf. time

TCP

Transf.

time

Gain

4 Mb/s 2 Mb/s 20 MB 27.33 s 40.60 s 1.49

16 Mb/s 8 Mb/s 100 MB 34.31s 50.99 s 1.49

4 Mb/s 4 Mb/s 20 MB 20.56 s 40.60 s 1.97

16 Mb/s 16 Mb/s 100 MB 26.73 s 50.99 s 1.91

Channel

bw

File size Transfer time

(PATTHEL)

Transfer time

(TCP)

Penalty

4 Mb/s 20 MB 40.86 s 40.59 s 0.65 %

16 Mb/s 100 MB 51.32 s 50.99 s 0.65 %

7

 0

 1

 2

 3

 4

 5

 0 5 10 15 20 25 30 35

B
a
n

d
w

id
th

 u
s
a
g

e
 [

M
b

/s
]

Time [s]

TCP bw usage

PATTHEL chan. #1 bw usage

PATTHEL chan. #2 bw usage

Channels nominal bws

Figure 6. PATTHEL behavior with background traffic.

50

100

150

200

250

300

350

1 2 3 4 5 6

Number of channels

A
g
g
re

g
a
te

d
 t
h
ro

u
g
h
p
u
t
(K

b
/s

)

512 KB 1 MB

2 MB 4 MB
8 MB

Figure 7. Transfer time with multiple relays and different file sizes.

V. CONCLUSIONS

This paper presents PATTHEL, a solution for data striping

over multiple physical or logical paths. PATTHEL achieves

parallelization by creating multiple TCP channels between two

hosts. Its effectiveness has been demonstrated both in the case

of multi-homed hosts and in the case of relay-based transfers.

Unlike many existing solutions, PATTHEL does not require

invasive changes to the networking stack of hosts, as it is

implemented on top of TCP and operates at layer V.

We created a PATTHEL software prototype and evaluated

its performances. Test results are promising, and show that the

proposed architecture is able to efficiently exploit multiple

paths with a near-to-theoretical speedup, expecially for large

data transfers. Moreover, the PATTHEL protocol causes a

negligible increment in the overhead – compared to TCP –

even when operating on a single channel. This is a significant

advantage for applications, which do not have to switch to

TCP primitives when they only need to use one channel.

A current limitation of PATTHEL relates to the policy that

supervises the opening and the closing of new channels. Such

policy depends on a set of parameters that may need to be fine-

tuned on a case-by-case basis to achieve optimal

performances. Future work will include an algorithm capable

to auto-configure the policy through the profiling of the

performances of active channels. This will allow PATTHEL to

automatically detect the number of channels to open, and to

decide how to distribute them among the available interfaces.

 0

 50

 100

 150

 200

a b c d

A
g

g
re

g
a
te

d
 t

h
ro

u
g

h
p

u
t

[K
b

/s
]

Test index

TCP bw usage (3 chans, disturbed)

3 chans, undisturbed

2 chans, undisturbed

Figure 8. Performance loss caused by a faulty channel.

REFERENCES

[1] M. Allman, H. Kruse, S. Ostermann, “An Application-Level Solution to

TCP’s Satellite Inefficiencies”, Workshop on Satellite-based

Information Services (WOSBIS), November 1996.

[2] Microsoft VirtualWiFi home page,

http://research.microsoft.com/netres/projects/virtualwifi/.

[3] IEEE Standard 802.3: CSMA/CD access method and physical layer

specifications, P802.3, 2005.

[4] C. E. Perkins, “Mobile networking through Mobile IP”, in IEEE

Internet Computing, Jan-Feb 1998, pp. 58-69, vol. 2, issue 1

[5] D. S. Phatak, T. Goff, “A Novel Mechanism for Data Streaming Across

Multiple IP Links for Improving Throughput and Reliability in Mobile

Environments”, IEEE I#FOCOM, New York, NY, June 2002, pp. 773-

781, vol. 2.

[6] RFC 4960 (SCTP), http://tools.ietf.org/html/rfc4960.

[7] M. Fiore, C. Casetti, G. Galante, “Concurrent Multipath

Communication for Real Time Traffic”, COMPUTER

COMMU#ICATIO#S, pp. 3307-3320, 2007, Vol. 30.

[8] H. Han, S. Shakkottai, C. V. Hollot, R. Srikant, D. Towsley, “Multi-

Path TCP: A Joint Congestion Control and Routing Scheme to Exploit

Path Diversity in the Internet”, IEEE/ACM Transactions on

#etworking, Dec 2006, pp. 1260-1271, vol. 14, issue 6

[9] H. Hsieh, R. Sivakumar, “A transport Layer Approach for Achieving

Aggregate Bandwidth on Multi-Homed Mobile Hosts”, in Proceedings

of ACM MOBICOM, Atlanta, GA, USA, Sept. 2002.

[10] N. Mohamed, J. Al-Jaroodi, H. Jiang, D. Swanson, “A Middleware-

Level Parallel Transfer Technique over Multiple Network Interfaces”,

ClusterWorld Conference and Expo, San Jose, California, June 2003.

[11] M. Balakrishnan, R. Mishra, R. R. Rao, “On The Use of Bandwidth

Aggregation Over Heterogeneous Last Miles”, 2nd International

Conference on Broadband #etworks 2005, 3-7 Oct 2005, pp. 1541-

1547, vol. 2.

[12] T. Nguyen, Sen-Ching S. Cheung, “Multimedia streaming using

multiple TCP connections”, 24th IEEE International

Performance, Computing, and Communications Conference, 7-9 Apr

2005, pp. 215-223

[13] H. Sivakumar, S. Bailey, R. L. Grossman, “PSockets: The Case for

Application-level Network Striping for Data Intensive Applications

using High Speed Wide Area Networks”, in Proceedings of the

IEEE/ACM SC2000 Conference, 4-10 Nov 2000.

[14] Mario Baldi, Luca De Marco, Fulvio Risso, Livio Torrero, “Providing

End-to-End Connectivity to SIP User Agents Behind NATs”, IEEE

International Conference on Communications (ICC), May 2008.

[15] K. Chebrolu, R. Rao, “Communication using Multiple Wireless

Interfaces”, IEEE Wireless Communications and #etworking

Conference, 17-21 March 2002, pp. 327-331, vol.1.

[16] Netem configuration and usage,

http://www.linuxfoundation.org/en/#et:#etem.

