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Abstract— In the wide scenario of packet processing
architectures, the development of ever sophisticaeapplications
faces the challenge of finding a balance between ffdrent
requirements: ever increasing performance, flexibity, and
portability of the software across different platfaoms and hardware
architectures. The Network Virtual Machine (NetVM) aims at
responding to such defy by taking into account althese elements
and by providing an abstract architecture for devebping today’s
packet processing applications. In order to demonsite that the
NetVM platform can be profitably employed for the development
of complex applications, we developed a Snort-likenetwork
intrusion detection sensor. In this paper we presérits architecture
and show that NetVM represents an excellent targefor the
dynamic generation of packet processing programs.

I. INTRODUCTION

In order to keep the pace with the everyday inéngas
requirements in terms of throughput and flexibjlitye design of
high-speed packet processing applications religays more on
network processors. However, the problem of run@irmacket
processing application on architectures other tigameral-
purpose processors is very complex, and it gete mifficult as
the complexity of the application grows. The reasof this
issue are several and of different nature: diffeesrbetween the
various architectures and programming paradigmsgiesi
threaded, multi-threaded, multi-process on a nuaie
processor), difficulties in exploiting the availabhardware
resources, like ad-hoc instructions and coprocessdhis
problem is further complicated by the several défe
architectures available for packet processing (0w
processors, multi-core, systolic processors, etc.).

The problem is only apparently simplified when wingkwith

network processors that are based on a generabgerp

architecture, such as the Cavium Octeon multi-MpiP&essor,
because a simple recompilation and minimum changete
application enable the production of running codespite of
sacrificing the ability to exploit the hardware sesces available
on the target machine, such as the Octeon's DetistiniFinite
Automata coprocessors. The problem can be solvedvmjting
some parts of the application, but this solutiomas general,
and if the architecture changes again, the work toade
restarted from scratch. In this scenario, the NetWitual
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platform [1] represents a general solution for spcbblems,
because it provides an abstract architecture fockgia
processing applications, which is able to hide diféerences
between physical platforms.

Even though the presented advantages of the NetVM
platform look promising, it must be noted that sash¢hem are
in fact only claims that need to be further exptbrand
demonstrated. The aim of this paper is to demamesttee first
of such claims, i.e. that the NetVM is suitable ftre
development of complex real-world applications, dmat such
development could be carried out in a relativelgyemanner.
To prove this statement, we have built an IDS serikat
represents one of the typical applications thaictoun on the
NetVM architecture. This application was chosen daoeits
requirements in terms of processing capabilitied ahe
necessity to deal with multiple protocol layersliting deep
packet inspection. In addition, IDSs are suitalne Hardware
acceleration because of their extensive use of laegu
expressions and lookup tables, which are oftenstasbsiby
specialized coprocessors on physical platforms.adidition,
even if this will require deeper studies, this pap#l point out
that the code generated for the NetVM is efficieng.
performances are comparable with the same aplicatinning
natively on the target platform.

This work is organized as follows. Section Il atidpresent
respectively the related work and a brief recap tbé
technologies that are the foundation of this paferction IV
presents the architecture of our implementationjlewhe
evaluation of the results is given in Section Vhdfy, Section
VI will present some conclusive remarks.

Il. RELATED WORK

The rise of network processors generated the defoamiw
programming models for easing the development afkgia
processing applications for such highly special ppse
architectures, while still allowing the performasceeeded for
keeping the pace with ever increasing line rated aaffic
loads. In particular, [2] and [3] propose differesbftware
models for building complete routers through
interconnection of simple packet processing moduyksand

the



[5] propose two different packet processing langsagnd
compilers for automatically partitioning the codebie executed
on the microengines of the Intel 1XP2400 networkg@ssor.
While such solutions are similar to the one propdsgNetVM,
they tend to focus on a specific application (epgcket
forwarding), or on a specific architecture (e.deliNPUSs).

The implementation of a complete Snort-like intoumsi
detection sensor on a network processor was fistoeed by
[6] that presents a compiler for generating C clodm a set of
intrusion signatures to be executed on an IntellR0® NPU.

Since network intrusion detection relies on deegkept
inspection functionalities, such as string and l@gaxpression
matching, great effort has been directed towardstieas for
optimizing and offloading such processor intensitasks
through efficient algorithms and specialized hanéwvaodules
or coprocessors [7][8][9][10][11][12]. Another amarch is
using optimized algorithms targeted over the ptaldiardware
platform; for example, [13] proposes a modifiedsien of the
Aho-Corasick [14] string-matching algorithm that ncebe
executed in parallel on several microengines of theel
IXP1200 network processor. However, our approachsaat
validating the entire application instead of spegdip specific
functions such as only string and RegEx matching.

I1l. RELATED TECHNOLOGIES

A. The NetVM Virtual Machine

The Network Virtual machineNetVM [1] is an abstract
packet-handling engine that allows the portabibify network
processing applications across heterogeneous ectiiés.

In NetVM a packet-processing program is expressed set

single NetPE can be mapped on real processing engin the
physical hardware according to the best strateggc@ion of a
NetVM program on real hardware relies on an impletaigon
of the virtual machine, which can be an interpretea compiler
for the translation of NetlL code to native machiogle.

The NetVM has been designed to facilitate the tedios of
NetlL into native code: Figure 2 shows the complete
architecture: a high level language (i.e. Snorésllis used to
produce NetlL code through an appropriate compildéren, a
Just-in-Time compiler is used to produce the finiakry code,
which can then be executed on the target procepsatiprm.
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Figure 2. The code generation process in NetVM.

Since packet-processing applications usually relasubset
of functionalities that are often implemented dikecin
hardware on many network processor architecturgs @ontent
Addressable Memories for fast table lookups, Deitggtic
Finite Automata coprocessors for string and regalaression
matching), the NetVM architecture includes the @gicof
virtual coprocessors, i.e. a well-defined interféfoe making
such features available to the programmer. An egfin

of modules calledNetwork Processing Elements (NetREs)considers coprocessors as “black boxes” providipgcific

which represent virtual processors that execute idlewel
assembly language calledNetVM
(Netlh). The
determine the behavior of the entire applicatiagufe 1 shows
an example on how a simple packet forwarding eléroan be
implemented as a NetVM application.
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Figure 1. NetVM Based Forwarding Element.

The elementary execution engine, the NetPE, iackdtased
processor that is made up of a set of private tergige.g. stack
pointer, etc) and a memory hierarchy. The codaim&tted on a

operations, accessible through a well-defined fater that

Intermediate Language guarantees software portability among differentfptans. On
interconnections between different modulearchitectures that do not provide any hardware lacaton,

coprocessors could be emulated by software. Motailsleon
the NetVM architecture are presented in [1].

B. Snort

Snort [15] is the implementation of a passive nekw®S
that is the de-facto reference in this class ofiegfons; hence
it seemed an obvious choice to design our own IpRdeping
compatibility with its rules and alerting formatEhis way our
IDS would get immediate benefit from the huge dasabof
already-existing attack signatures, which wouldo atéfer an
excellent testing environment.

Snort is currently capable of performing real-tirtraffic
analysis and packet logging on IP networks. Itdigecture is
highly modular, and its capabilities include pratb@analysis
and content searching, which can be used to dateatiety of
attacks and probes, such as buffer overflows, thtg@airt scans,
CGl attacks, SMB probes, and many other securigatis.



Snort uses a database of rules to describe therkattacks.
Each rule describes a number of tests that shauldebformed
on a packet, such as searching for a particuladtRess or TCP
port in the packet header, or matching a stringaaiegular
expression in the payload. If all the tests spedifn a rule are
verified, then the corresponding action is undemake.g.
sending an alert and/or logging the packet). Famnple, the
following rule:

log tcp any any -> 10.1.1.0/24 80 \
(content: "GET"; nsg: "HITP CGET";)

logs every packet coming from any host and diretbegort
80 of any machine of the 10.1.1.0/24 network contgi the
‘GET’ string. Such packets will be logged with a ssage
saying “HTTP GET".

More details on the Snort IDS can be found in [15].

IV. ARCHITECTURE OF THENTRUSIONDETECTION SENSOR

The IDS sensor for the NetVM is not a direct pdriSoort:
the two applications share almost no lines of c@le. solution
is based on a custom compiler that takes Snors are creates
NetVM assembly. The internal architecture had toduesigned
from scratch in order to take full advantage of thetVM
paradigm, which tries to exploit the intrinsic mdatization
seen in packet-processing applications that arallysmade up
of several short and independent tasks. As thet Suler format
basically specifies tests that might involve theffedént
protocols present in a packet, we decided to crddterent
modules, instantiated on different Network Progeg&lements

besides the packet buffer, contain additional datg. time
stamps) and a dedicated area callatb partition, where
modules can store state information that flows ubfo the
NetVM following the same path of the packet. Eacbdaie
composing the IDS exploits the info partition foeelping the
matching state of every rule and for communicatihgo
subsequent modules. In particular, the info partits divided in
two parts: the former contains a bit-vector, in evhevery bit
represents a rule, while the latter is further arged into
several 32-bit slots, each one containing dataaetad from the
packet, such as source IP address, port, etc.
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Figure 3. Architecture of the NetVM IDS sensor.

A.Packet-processing workflow

The processing of a new packet starts with Bretocol
Analysis module that extracts information on the protocol
headers present in the packet and records théngtaffset of
the payload. This piece of information is storeside the “info

(NetPES$. Tests on each protocol are performed in the EetPartition” of the exchange buffer and is thereforade available

responsible for it, with the exception of some sgeftinctions
(such as packet analysis and pattern matching) dhatnot
associated to a single protocol and that are abdce specific
NetPEs. The final architecture is shown in Figure 3

For instance, the rule mentioned before will iweol
generation of code in different modules: the IP wile check
that the destination address matches; the TCP mauallil be
involved for checking the value of the TCP destoraport, and
so on. The rule will match only if all the teste aerified.

The NetPE abstraction offers the possibility ofexeellent
modularization: each module is almost independeard
performance can be incremented by simply improvirggcode
generation for NetPEs that represent
implementing ad-hoc strategies to minimize the neindf tests
to be performed on a packet. For instance, sonayrased
modules (e.g. ICMP) use a very simple algorithrmegir
search), while others implement smarter strateg@kbal
optimizations can also be implemented
framework to be able to reduce the size of theetargde.

In the NetVM model,

NetPEs communicate amongddress/port first,
themselves througlexchange buffersi.e. meta-packets that,

to all the following modules in the chain.The newbdule is
dedicated toContent Matching, which matches the payload
against a set of static patterns and regular esjomes specified
in the source rules. This task relies on string aedular
expression matching coprocessors provided by thé/Me
architecture. The location of this module, almastront of the
processing chain, is due to performance reasong$adn the
search is carried out by a modified version of wedl-known
Aho-Corasick algorithm [14] that allows severaltpats to be
searched at the same time. As a result, if a paiterfound
inside the payload, only the subset of rules based needs to
be extensively verified.

the bottlgneck Further modules will refine the processing by periog

only the tests that are required on the subsetiletrthat have
been selected as “possibly matching” in the previmodules.
For instance, the IP, TCP and UDP modules groupthay all
the rules that have the same addresses/portsasahtty only

in the NetVMave to check each different combination of IP aetmask

once. Another optimization consists in testing thestination
and then, if it matches, theurs®
address/port. This approach is justified by the that attacks



come from anywhere (hence no source address isllyusuaver data structures in memory, the code direontiyiéments all

specified in real-world rules), while the addresskthe servers
in the internal network are well-known. Testingtlie packet
contains a precise destination address allows wisgaa large
number of packets immediately, reducing the onas rieed to
be further processed in order to detect a match.

the checks needed for matching packets againstite® Such a
choice is based on the consideration that rulea datains
constant throughout the execution of the program anch

information can be exploited in order to emit cheke. branch
instructions) based on constant values (insteache€ks based

The Ethernet module only checks if the packet contains IPvén values loaded from memory) producing more effiticode

or IPv6, and sends it to the proper module, or gistards it in
case the network-layer protocol is not supporteuis Thodule
does not provide any rule matching functionalities.

and opening the way to further optimizations.

V.PERFORMANCEEVALUATION

The IPv4/IPv6 modules implement the tests over source and |, order to assess the validity of our approachmesle a

destination network addresses, while tR€P and UDP
modules take care of checking the source and ddistin

TCP/UDP ports of the packet, and #@MP one checks all the

possible ICMP options, which involve tests on tGdP type,
code, ID and sequence number.

The Connection Tracking and Connection Status

series of tests using a real Snort rule database.ugéd an
official ruleset provided by the Snort website iebFuary 2007,
which includes a total of 3058 rules, 1389 of treipported by
our application. Such an apparent limitation isnfyadue to the
high number of rules requiring normalization andpection of
the URI field of HTTP headers (i.e. th&icontent option),

Matching modules perform stateful TCP connection trackinguynich is a feature currently not supported by oppliation.

distinguishing who initiated the connection, theedtion a
packet is travelling in (i.e., from server to clie@r vice-versa)
and the state of the connection (i.e., establisirestill in the
handshake phase). This task is performed with tdeoh a
lookup coprocessor that acts as an associative nyemadding
information on the current state of active TCP emtions.

We consider such number a fair one, because itdesl all the
rules needing deep packet inspection functionalifiee. string
and regular expression matching), and it is in lvith other
research works [10][11][12].

Table 1 shows the number of NetlL instructions getss
from the abovementioned ruleset for each moduleuofiDS. It

Finally, the Payload module handles the non-content payload eyident that the Content Matching module isghe with the

related options, such as tests on the payload size.
Connections among the various PEs are organizethato
each incoming packet only traverses the subsetesf dealing
with the protocols it contains. This could be easithieved
through a scheme modelled after the TCP/IP protetulk, as
shown in Figure 3. This architecture has many atdges: first,
each protocol is analysed only once. Second, thevlenige of a
protocol is embedded in a single place, making dgimg and
improving the handling of a protocol easier. Funthere, the
addition of a new protocol simply requires a newte to be
inserted in the chain. Third, the number of traedrdletPEs is
small, i.e. packets traverse only NetPEs respamsibprotocols
that are present in the packet (i.e. an UDP pagkitnot
traverse the NetPE dedicated to TCP), with a cielantage
from the performance viewpoint. Fourth, the arddtitee is
suitable for pipelining. At the moment, the appiica handles
one packet at a time, but potentially it could Hantchore
packets if the NetPEs can be instantiated on eiffiephysical
execution units (e.g. in case of the Octeon muidahip).

B. The code generation process

highest number of instructions. The reason depesmishe

complexity of the rules involving content matchimgtions.
TABLE 1
PROFILING THE CODE GENERATED FOR EACH MODULE

Number of NetIL Number of x86 Code size

Module

instructions instructions (bytes)
Analyzer 137 163 613
Content Matching 38872 268.667 1.130.250
ethernet 10 20 104
ip 4531 2.057 13.991
icmp 5547 2.906 16.737
udp 4806 1.838 13.173
tcp 5127 2.100 14.442
Connection Tracking 141 261 1.271
Conn. Status Matching 6228 2.097 14.054
Total 65399 280.109 1.204.635

In order to evaluate the performance of our IDSseemwe
measured the time needed to process a trace of ddiiets
captured on a real network and we compared thdtsesith
those obtained running Snort under the same conditiAll the
tests were performed on a Dual Xeon running at GHz

The traditional approach in intrusion detection lmgpions is eduipped with Linux 2.6.20-15 SMP. The NetVM apation

usually based on iterating over the rules thatrepeesented in Was compiled Just in Time into x86 assembly, wBifert was
memory as complex data structures. For our IDS eded to compiled through GCC version 4.1.2. Besides, @l fiatures
follow a different approach to the problem. In oumot supported by our IDS (e.g. flow reassembly)eadisabled
implementation, rule checks are directly embedaethé code. in Snort. The tests have been repeated 12 timdsesnlts have
In particular, instead of producing static progratiat iterate Pbeen averaged excluding the best and the worsResults are



shown in Table 2.
TABLE 2
THROUGHPUT OF THE TWO APPLICATIONS

Application Packets/Second
NetVM IDS (interpreted) 5.634
NetVM IDS (with x86 JIT) 70.344

Snort (native) 97.922

Results look interesting. Performances of the IR®ser
interpreted by the virtual machine are discouraglg this is
expected: a virtual machine is not optimized forfgenance.
Instead, performances obtained with the same caeslated
into native x86 code look promising, with our immpientation
running at 70% of the speed of the original Snatthough
performance was not yet an objective at this stBifferences
in speed are due to several factors: the IDS cbdedoes not
implements all the performance-oriented tricks wb1$, because
of the complexity of generating such code in Nettisembly. In
addition, the x86 JIT is still in an early staged anhimplements
only the most common optimizations, compared tdfuleset of
optimizations implemented in GCC4. Our belief iattlh more
careful implementation of the JIT could further bbdhe
performance, getting us closer to the original $nor

VI. CONCLUSIONS

Future works will include the support for more keyds
(which will enable a better coverage of the rul®,se further
refinement of the NetVM development tool chain (éngterms
of backend compilers) in order to achieve even ebett
performance, and the integration of this code i NetPDL
language [16], which enables the dynamic generationode
for locating protocol fields.

An extended version of this paper is available e t
Technical Report DAI-NTG-2008-11, available onlinat
http://netgroup.polito.it/pubs/pdf/2008/DAI-NT G-284.1. pdf
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