
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

An Intrusion Detection Sensor for the NetVM Virtual Processor / Morandi, Olivier; Risso, FULVIO GIOVANNI OTTAVIO;
Moscardi, G. G.. - (2009), pp. 1-5. (Intervento presentato al convegno IEEE International Conference on Information
Networking 2009 (ICOIN 2009) tenutosi a Chiang Mai (Thailand) nel January 2009).

Original

An Intrusion Detection Sensor for the NetVM Virtual Processor

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2298001 since:

IEEE

An Intrusion Detection Sensor for the NetVM Virtual
Processor

O. Morandi, G. Moscardi, F. Risso

Dipartimento di Automatica e Informatica, Politecnico di Torino, Italy
{olivier.morandi, giorgio.moscardi, fulvio.risso}@polito.it

Abstract— In the wide scenario of packet processing

architectures, the development of ever sophisticated applications
faces the challenge of finding a balance between different
requirements: ever increasing performance, flexibility, and
portability of the software across different platforms and hardware
architectures. The Network Virtual Machine (NetVM) aims at
responding to such defy by taking into account all these elements
and by providing an abstract architecture for developing today’s
packet processing applications. In order to demonstrate that the
NetVM platform can be profitably employed for the development
of complex applications, we developed a Snort-like network
intrusion detection sensor. In this paper we present its architecture
and show that NetVM represents an excellent target for the
dynamic generation of packet processing programs.

I. INTRODUCTION

In order to keep the pace with the everyday increasing
requirements in terms of throughput and flexibility, the design of
high-speed packet processing applications relies always more on
network processors. However, the problem of running a packet
processing application on architectures other than general-
purpose processors is very complex, and it gets more difficult as
the complexity of the application grows. The reasons of this
issue are several and of different nature: differences between the
various architectures and programming paradigms (single-
threaded, multi-threaded, multi-process on a multi-core
processor), difficulties in exploiting the available hardware
resources, like ad-hoc instructions and coprocessors. This
problem is further complicated by the several different
architectures available for packet processing (network
processors, multi-core, systolic processors, etc.).

The problem is only apparently simplified when working with
network processors that are based on a general-purpose
architecture, such as the Cavium Octeon multi-MIPS processor,
because a simple recompilation and minimum changes to the
application enable the production of running code, in spite of
sacrificing the ability to exploit the hardware resources available
on the target machine, such as the Octeon's Deterministic Finite
Automata coprocessors. The problem can be solved by rewriting
some parts of the application, but this solution is not general,
and if the architecture changes again, the work has to be
restarted from scratch. In this scenario, the NetVM virtual

platform [1] represents a general solution for such problems,
because it provides an abstract architecture for packet
processing applications, which is able to hide the differences
between physical platforms.

Even though the presented advantages of the NetVM
platform look promising, it must be noted that some of them are
in fact only claims that need to be further explored and
demonstrated. The aim of this paper is to demonstrate the first
of such claims, i.e. that the NetVM is suitable for the
development of complex real-world applications, and that such
development could be carried out in a relatively easy manner.
To prove this statement, we have built an IDS sensor that
represents one of the typical applications that could run on the
NetVM architecture. This application was chosen due to its
requirements in terms of processing capabilities and the
necessity to deal with multiple protocol layers including deep
packet inspection. In addition, IDSs are suitable for hardware
acceleration because of their extensive use of regular
expressions and lookup tables, which are often assisted by
specialized coprocessors on physical platforms. In addition,
even if this will require deeper studies, this paper will point out
that the code generated for the NetVM is efficient, i.e.
performances are comparable with the same application running
natively on the target platform.

This work is organized as follows. Section II and III present
respectively the related work and a brief recap of the
technologies that are the foundation of this paper. Section IV
presents the architecture of our implementation, while the
evaluation of the results is given in Section V. Finally, Section
VI will present some conclusive remarks.

II. RELATED WORK

The rise of network processors generated the demand for new
programming models for easing the development of packet
processing applications for such highly special purpose
architectures, while still allowing the performances needed for
keeping the pace with ever increasing line rates and traffic
loads. In particular, [2] and [3] propose different software
models for building complete routers through the
interconnection of simple packet processing modules. [4] and

[5] propose two different packet processing languages and
compilers for automatically partitioning the code to be executed
on the microengines of the Intel IXP2400 network processor.
While such solutions are similar to the one proposed by NetVM,
they tend to focus on a specific application (e.g. packet
forwarding), or on a specific architecture (e.g. Intel NPUs).

The implementation of a complete Snort-like intrusion
detection sensor on a network processor was first explored by
[6] that presents a compiler for generating C code from a set of
intrusion signatures to be executed on an Intel IXP1200 NPU.

Since network intrusion detection relies on deep packet
inspection functionalities, such as string and regular expression
matching, great effort has been directed towards solutions for
optimizing and offloading such processor intensive tasks
through efficient algorithms and specialized hardware modules
or coprocessors [7][8][9][10][11][12]. Another approach is
using optimized algorithms targeted over the physical hardware
platform; for example, [13] proposes a modified version of the
Aho-Corasick [14] string-matching algorithm that can be
executed in parallel on several microengines of the Intel
IXP1200 network processor. However, our approach aims at
validating the entire application instead of speeding up specific
functions such as only string and RegEx matching.

III. RELATED TECHNOLOGIES

A. The NetVM Virtual Machine

The Network Virtual machine (NetVM) [1] is an abstract
packet-handling engine that allows the portability of network
processing applications across heterogeneous architectures.

In NetVM a packet-processing program is expressed as a set
of modules called Network Processing Elements (NetPEs),
which represent virtual processors that execute a mid-level
assembly language called NetVM Intermediate Language
(NetIL). The interconnections between different modules
determine the behavior of the entire application. Figure 1 shows
an example on how a simple packet forwarding element can be
implemented as a NetVM application.

NetPE 1
(field extraction)

NetPE 2
(forwarding)

Forwarding
Table

Extract ip.dst fieldExtract ip.dst field
Perform longest prefix
match lookup into the

routing table

Perform longest prefix
match lookup into the

routing table

NetVM

Incoming
packets

Processed
Packets

Figure 1. NetVM Based Forwarding Element.

The elementary execution engine, the NetPE, is a stack-based
processor that is made up of a set of private registers (e.g. stack
pointer, etc) and a memory hierarchy. The code instantiated on a

single NetPE can be mapped on real processing engines on the
physical hardware according to the best strategy. Execution of a
NetVM program on real hardware relies on an implementation
of the virtual machine, which can be an interpreter or a compiler
for the translation of NetIL code to native machine code.

The NetVM has been designed to facilitate the translation of
NetIL into native code: Figure 2 shows the complete
architecture: a high level language (i.e. Snort rules) is used to
produce NetIL code through an appropriate compiler. Then, a
Just-in-Time compiler is used to produce the final binary code,
which can then be executed on the target processing platform.

High level Language

(e.g. Snort rules)

Target CPU

(e.g. Cavium

Octeon)

High-level

Language

Compiler

Packets

Network

User app

NetVM

Assembly Just in Time

Compiler

Native

Assembly

Figure 2. The code generation process in NetVM.

Since packet-processing applications usually rely on a subset
of functionalities that are often implemented directly in
hardware on many network processor architectures (e.g. Content
Addressable Memories for fast table lookups, Deterministic
Finite Automata coprocessors for string and regular expression
matching), the NetVM architecture includes the concept of
virtual coprocessors, i.e. a well-defined interface for making
such features available to the programmer. An application
considers coprocessors as “black boxes” providing specific
operations, accessible through a well-defined interface that
guarantees software portability among different platforms. On
architectures that do not provide any hardware acceleration,
coprocessors could be emulated by software. More details on
the NetVM architecture are presented in [1].

B. Snort

Snort [15] is the implementation of a passive network IDS
that is the de-facto reference in this class of applications; hence
it seemed an obvious choice to design our own IDS by keeping
compatibility with its rules and alerting formats. This way our
IDS would get immediate benefit from the huge database of
already-existing attack signatures, which would also offer an
excellent testing environment.

Snort is currently capable of performing real-time traffic
analysis and packet logging on IP networks. Its architecture is
highly modular, and its capabilities include protocol analysis
and content searching, which can be used to detect a variety of
attacks and probes, such as buffer overflows, stealth port scans,
CGI attacks, SMB probes, and many other security threats.

Snort uses a database of rules to describe the known attacks.
Each rule describes a number of tests that should be performed
on a packet, such as searching for a particular IP address or TCP
port in the packet header, or matching a string or a regular
expression in the payload. If all the tests specified in a rule are
verified, then the corresponding action is undertaken (e.g.
sending an alert and/or logging the packet). For example, the
following rule:

log tcp any any -> 10.1.1.0/24 80 \

 (content: "GET"; msg: "HTTP GET";)

logs every packet coming from any host and directed to port

80 of any machine of the 10.1.1.0/24 network containing the
‘GET’ string. Such packets will be logged with a message
saying “HTTP GET”.

More details on the Snort IDS can be found in [15].

IV. ARCHITECTURE OF THE INTRUSION DETECTION SENSOR

The IDS sensor for the NetVM is not a direct port of Snort:
the two applications share almost no lines of code. Our solution
is based on a custom compiler that takes Snort rules and creates
NetVM assembly. The internal architecture had to be redesigned
from scratch in order to take full advantage of the NetVM
paradigm, which tries to exploit the intrinsic modularization
seen in packet-processing applications that are usually made up
of several short and independent tasks. As the Snort rule format
basically specifies tests that might involve the different
protocols present in a packet, we decided to create different
modules, instantiated on different Network Processing Elements
(NetPEs). Tests on each protocol are performed in the NetPE
responsible for it, with the exception of some special functions
(such as packet analysis and pattern matching) that are not
associated to a single protocol and that are allocated to specific
NetPEs. The final architecture is shown in Figure 3.

 For instance, the rule mentioned before will involve
generation of code in different modules: the IP one will check
that the destination address matches; the TCP module will be
involved for checking the value of the TCP destination port, and
so on. The rule will match only if all the tests are verified.

The NetPE abstraction offers the possibility of an excellent
modularization: each module is almost independent, and
performance can be incremented by simply improving the code
generation for NetPEs that represent the bottleneck,
implementing ad-hoc strategies to minimize the number of tests
to be performed on a packet. For instance, some rarely used
modules (e.g. ICMP) use a very simple algorithm (linear
search), while others implement smarter strategies. Global
optimizations can also be implemented in the NetVM
framework to be able to reduce the size of the target code.

In the NetVM model, NetPEs communicate among
themselves through exchange buffers, i.e. meta-packets that,

besides the packet buffer, contain additional data (e.g. time
stamps) and a dedicated area called info partition, where
modules can store state information that flows through the
NetVM following the same path of the packet. Each module
composing the IDS exploits the info partition for keeping the
matching state of every rule and for communicating it to
subsequent modules. In particular, the info partition is divided in
two parts: the former contains a bit-vector, in which every bit
represents a rule, while the latter is further organised into
several 32-bit slots, each one containing data extracted from the
packet, such as source IP address, port, etc.

Protocol
analysis

String-matching
coprocessor

Packets

RegEx-matching
coprocessor

Content
Matching

Ethernet

IPv4

IPv6 ICMP

UDP
Payload
Options

TCP
Conn.

Tracking

Conn.
Status

Matching

Lookup
coprocessor

Matches

Figure 3. Architecture of the NetVM IDS sensor.

A. Packet-processing workflow

The processing of a new packet starts with the Protocol
Analysis module that extracts information on the protocol
headers present in the packet and records the starting offset of
the payload. This piece of information is stored inside the “info
partition” of the exchange buffer and is therefore made available
to all the following modules in the chain.The next module is
dedicated to Content Matching, which matches the payload
against a set of static patterns and regular expressions specified
in the source rules. This task relies on string and regular
expression matching coprocessors provided by the NetVM
architecture. The location of this module, almost in front of the
processing chain, is due to performance reasons. In fact, the
search is carried out by a modified version of the well-known
Aho-Corasick algorithm [14] that allows several patterns to be
searched at the same time. As a result, if a pattern is found
inside the payload, only the subset of rules based on it needs to
be extensively verified.

Further modules will refine the processing by performing
only the tests that are required on the subset of rules that have
been selected as “possibly matching” in the previous modules.
For instance, the IP, TCP and UDP modules group together all
the rules that have the same addresses/ports, so that they only
have to check each different combination of IP and netmask
once. Another optimization consists in testing the destination
address/port first, and then, if it matches, the source
address/port. This approach is justified by the fact that attacks

come from anywhere (hence no source address is usually
specified in real-world rules), while the addresses of the servers
in the internal network are well-known. Testing if the packet
contains a precise destination address allows discarding a large
number of packets immediately, reducing the ones that need to
be further processed in order to detect a match.

The Ethernet module only checks if the packet contains IPv4
or IPv6, and sends it to the proper module, or just discards it in
case the network-layer protocol is not supported. This module
does not provide any rule matching functionalities.

The IPv4/IPv6 modules implement the tests over source and
destination network addresses, while the TCP and UDP
modules take care of checking the source and destination
TCP/UDP ports of the packet, and the ICMP one checks all the
possible ICMP options, which involve tests on the ICMP type,
code, ID and sequence number.

The Connection Tracking and Connection Status
Matching modules perform stateful TCP connection tracking,
distinguishing who initiated the connection, the direction a
packet is travelling in (i.e., from server to client or vice-versa)
and the state of the connection (i.e., established or still in the
handshake phase). This task is performed with the aid of a
lookup coprocessor that acts as an associative memory holding
information on the current state of active TCP connections.
Finally, the Payload module handles the non-content payload-
related options, such as tests on the payload size.

Connections among the various PEs are organized so that
each incoming packet only traverses the subset of PEs dealing
with the protocols it contains. This could be easily achieved
through a scheme modelled after the TCP/IP protocol stack, as
shown in Figure 3. This architecture has many advantages: first,
each protocol is analysed only once. Second, the knowledge of a
protocol is embedded in a single place, making debugging and
improving the handling of a protocol easier. Furthermore, the
addition of a new protocol simply requires a new NetPE to be
inserted in the chain. Third, the number of traversed NetPEs is
small, i.e. packets traverse only NetPEs responsible of protocols
that are present in the packet (i.e. an UDP packet will not
traverse the NetPE dedicated to TCP), with a clear advantage
from the performance viewpoint. Fourth, the architecture is
suitable for pipelining. At the moment, the application handles
one packet at a time, but potentially it could handle more
packets if the NetPEs can be instantiated on different physical
execution units (e.g. in case of the Octeon multicore chip).

B. The code generation process

The traditional approach in intrusion detection applications is
usually based on iterating over the rules that are represented in
memory as complex data structures. For our IDS we decided to
follow a different approach to the problem. In our
implementation, rule checks are directly embedded in the code.
In particular, instead of producing static programs that iterate

over data structures in memory, the code directly implements all
the checks needed for matching packets against the rules. Such a
choice is based on the consideration that rules data remains
constant throughout the execution of the program and such
information can be exploited in order to emit checks (i.e. branch
instructions) based on constant values (instead of checks based
on values loaded from memory) producing more efficient code
and opening the way to further optimizations.

V. PERFORMANCE EVALUATION

In order to assess the validity of our approach we made a
series of tests using a real Snort rule database. We used an
official ruleset provided by the Snort website in February 2007,
which includes a total of 3058 rules, 1389 of them supported by
our application. Such an apparent limitation is mainly due to the
high number of rules requiring normalization and inspection of
the URI field of HTTP headers (i.e. the uricontent option),
which is a feature currently not supported by our application.
We consider such number a fair one, because it includes all the
rules needing deep packet inspection functionalities (i.e. string
and regular expression matching), and it is in line with other
research works [10][11][12].

Table 1 shows the number of NetIL instructions generated
from the abovementioned ruleset for each module of our IDS. It
is evident that the Content Matching module is the one with the
highest number of instructions. The reason depends on the
complexity of the rules involving content matching options.

TABLE 1
PROFILING THE CODE GENERATED FOR EACH MODULE

Module
Number of NetIL

instructions
Number of x86

instructions
Code size

(bytes)
Analyzer 137 163 613

Content Matching 38872 268.667 1.130.250
ethernet 10 20 104

ip 4531 2.057 13.991
icmp 5547 2.906 16.737
udp 4806 1.838 13.173
tcp 5127 2.100 14.442

Connection Tracking 141 261 1.271
Conn. Status Matching 6228 2.097 14.054

Total 65399 280.109 1.204.635

In order to evaluate the performance of our IDS sensor we

measured the time needed to process a trace of 10M packets
captured on a real network and we compared the results with
those obtained running Snort under the same conditions. All the
tests were performed on a Dual Xeon running at 3,4 GHz
equipped with Linux 2.6.20-15 SMP. The NetVM application
was compiled Just in Time into x86 assembly, while Snort was
compiled through GCC version 4.1.2. Besides, all the features
not supported by our IDS (e.g. flow reassembly) were disabled
in Snort. The tests have been repeated 12 times, and results have
been averaged excluding the best and the worst run. Results are

shown in Table 2.
TABLE 2

THROUGHPUT OF THE TWO APPLICATIONS

Application Packets/Second

NetVM IDS (interpreted) 5.634
NetVM IDS (with x86 JIT) 70.344

Snort (native) 97.922

Results look interesting. Performances of the IDS sensor

interpreted by the virtual machine are discouraging, but this is
expected: a virtual machine is not optimized for performance.
Instead, performances obtained with the same code translated
into native x86 code look promising, with our implementation
running at 70% of the speed of the original Snort, although
performance was not yet an objective at this stage. Differences
in speed are due to several factors: the IDS code that does not
implements all the performance-oriented tricks of Snort, because
of the complexity of generating such code in NetIL assembly. In
addition, the x86 JIT is still in an early stage and it implements
only the most common optimizations, compared to the full set of
optimizations implemented in GCC4. Our belief is that a more
careful implementation of the JIT could further boost the
performance, getting us closer to the original Snort.

VI. CONCLUSIONS

This paper presents the implementation of a network
intrusion detection sensor for the NetVM platform. The
objective of this work is to demonstrate that the NetVM
abstraction is suitable for creating packet-processing
applications both in terms of virtualized primitives (e.g. the
NetPE abstraction, which enables an excellent modularization of
the code) and in terms of performance.

The current status of the IDS sensor is not as mature as the
original Snort. For instance, some features (such as the IP
defragmenter and TCP flow reassembly) are missing, and some
application-layer keywords in the rule language are not
supported. However, our objective was not to create a perfect
clone of Snort running on the NetVM, while creating a
reasonable proof-of-concept application that demonstrates the
validity of the NetVM architecture. From this point of view,
results are interesting: a complex application can be
implemented on the NetVM, and currently it runs at a
reasonable speed. The intrinsic modularization offered by
NetPEs enables the creation of complex applications, while the
NetVM instruction set (and coprocessors) is adequate for
packet-processing software. The biggest problem encountered in
creating the IDS sensor is the lack of a high-level compiler that
can be used to write applications. The data-oriented approach
followed by our ruleset compiler is partially a choice, but
partially a necessity because of the lack of a C-like compiler for
the NetVM. This may be interesting to pursue as the next step in
order to improve the programmability of our platform.

Future works will include the support for more keywords
(which will enable a better coverage of the rule set), a further
refinement of the NetVM development tool chain (e.g. in terms
of backend compilers) in order to achieve even better
performance, and the integration of this code with the NetPDL
language [16], which enables the dynamic generation of code
for locating protocol fields.

An extended version of this paper is available in the
Technical Report DAI-NTG-2008-11, available online at
http://netgroup.polito.it/pubs/pdf/2008/DAI-NTG-2008-11.pdf

REFERENCES

[1] M. Baldi, F. Risso, “Towards Effective Portability of Packet Handling
Applications Across Heterogeneous Hardware Platforms”, in Proceedings of
IWAN 2005, Sophia Antipolis, France, November 2005.
[2] R. Morris, E. Kohler, J. Jannotti and M. F. Kaashoek, “The Click modular
router”, in Proceedings of the 1999 Symposium on Operating Systems
Principles. December 1999.
[3] S. Karlin, L. Peterson, “VERA: an extensible router architecture”, in
Computer Networks, volume 38, number 3, 2002.
[4] M. K. Chen, X. F. Li, R. Lian, J. H. Lin, L. Liu, T. Liu, and R. Ju,
“Shangri-La: achieving high performance from compiled network applications
while enabling ease of programming”, In SIGPLAN Not. Vo 40, n. 6, 2005.
[5] R. J. Ennals, R. W. Sharp, and A. Mycroft (2005), “Task partitioning for
Multi-Core network processors”. In Proceedings of the 14th International
Conference on Compiler Construction, April 2005, Edinburgh.
[6] Y. Charitakis, D. Pnevmatikatos, E. P. Markatos, and K. G. Anagnostakis,
“Code generation for packet header intrusion analysis on the IXP1200 network
processor,” in Proceedings of the 7th International Workshop on Software and
Compilers for Embedded Systems (SCOPES 2003), September 2003.
[7] R. Sidhu and V. K. Prasanna, “Fast Regular Expression Matching using
FPGAs”, In Proceedings of the IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM01), April 2001.
[8] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. W. Lockwood,
“Deep packet inspection using parallel Bloom filters,” in Hot Interconnects,
(Stanford, CA), pp. 44-51, August 2003.
[9] Nathan Tuck, Timothy Sherwood, Brad Calder, and George Varghese.
“Deterministic memory efficient string matching algorithms for intrusion
detection”. In Proceedings of IEEE Infocom 200, pages 333-340.
[10] S. Dharmapurikar, and J. Lockwood, “Fast and scalable pattern matching
for content filtering”, In Proceedings of ANCS 2005, Princeton, NJ, USA,
October 26 - 28, 2005.
[11] F. Yu, Z.. Chen, Y. Diao, T. V. Lakshman, and R. H .Katz, “Fast and
memory-efficient regular expression matching for deep packet inspection”, In
Proceedings of the ANCS 2006, San Jose, CA USA, December 03 - 05, 2006.
[12] Y. H. Cho, and W. H. Mangione-Smith, “A pattern matching coprocessor
for network security”, In Proceedings of the 42nd Annual Conference on
Design Automation (DAC 05). San Diego, California, USA, June 2005.
[13] R. T. Liu, N. F. Huang, C. N. Kao; C. H. Chen, C. C. Chou, “A fast
pattern-match engine for network processor-based network intrusion detection
system”, in Proceedings of the International Conference on Information
Technology: Coding and Computing (ITCC 2004), Volume 1, pp. 97 – 101.
[14] A. V. Aho, and M. J. Corasick, “Efficient string matching: an aid to

bibliographic search”, In Commun. ACM 18, 6 (Jun. 1975), pp. 333-340.
[15] M Roesch, “Snort - Lightweight Intrusion Detection for Networks”, in
Proceedings of the 13th Systems Administration Conference (LISA '99), Seattle,
WA, November 1999, pages 229-238.

[16] F. Risso, and M. Baldi, “NetPDL: an extensible XML-based language for
packet header description,” In Elsevier Computer Networks Volume 50, Issue 5
(April 2006), pp. 688-706.

