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Design of quadrature rules for Müntz and Müntz-logarithmic
polynomials using Monomial Transformation

Guido Lombardi∗

Dipartimento di Elettronica, Politecnico di Torino, 10129 Torino, Italy.

SUMMARY

A method for constructing the exact quadratures for Müntz and Müntz-logarithmic polynomials is
presented. The algorithm does permit to anticipate the precision (machine precision) of the numerical
integration of Müntz-logarithmic polynomials in terms of number of Gauss-Legendre quadrature
samples and monomial transformation order. To investigate in depth the properties of classical Gauss-
Legendre quadrature we present new optimal asymptotic estimates for the remainder. In boundary
element integrals this quadrature rule can be applied to evaluate singular functions with end-point
singularity, singular kernel as well as smooth functions. The method is numerically stable, efficient,
easy to be implemented. The rule has been fully tested and several numerical examples are included.
Copyright c© 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The Boundary Element Method (BEM) and Finite Element Method (FEM) often require the
numerical evaluation of multiple integrals with singular kernels and/or singular basis functions,
see for example fracture mechanics and electromagnetic diffraction. The singularity is typically
of two kinds: logarithmic functions and/or nonclassical polynomials as Müntz polynomials, see
[1, 2] and references therein.

The Gauss-Legendre quadrature is not efficient in the evaluation of such singular integrals,
therefore specific quadrature have been studied.

The classical Gauss quadrature method (1814) has been extended to non-polynomials
functions, i.e. a system of linearly independent functions. The systematic treatment of arbitrary
weight functions using orthogonal polynomials and the definition of the generalized Gaussian
quadrature was developed by Christoffel in 1877 and by Stieltjes in 1884 [3]. Several authors
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2 G. LOMBARDI

have defined algorithms to obtain the generalized Gaussian quadrature of important systems
of functions, see for example [4]-[9].

The algorithms of generalized Gaussian quadrature for nonclassical polynomials (in
particular logarithmic functions or Müntz polynomials) are often ill conditioned, see [7], or in
general need some effort to be implemented, see [9]. In particular the algorithm of [9] is stable
and it is based on the high precision numerical evaluation of orthogonal Müntz polynomials
to safely construct quadrature rules. However it is practically impossible to list all the tables
of nodes and weights for all kind of Müntz systems and the computational cost of run-time
generalized Gaussian quadrature is high.

Our paper aims to present a new strategy to define quadratures readily available for
BEM/FEM codes where the integrands are Müntz polynomials or/times higher order
logarithmic functions.

This method (in the following called monomial quadrature rule) is based on the study of
the capabilities of the classical Gauss-Legendre quadrature to integrate nonclassical (singular)
polynomial functions using monomial transformations [16]-[28] of noninteger transformation
order. We propose a quadrature scheme that allows to anticipate the precision of the numerical
integration of Müntz and Müntz-logarithmic polynomials (see section 2.1 for definitions) in
terms of number of Gauss-Legendre quadrature samples and monomial transformation order.

To investigate in depth the properties of classical Gauss-Legendre quadrature we present
new optimal asymptotic estimates for the remainder [10]-[16].

The proposed quadrature can be applied to a wide class of functions, including smooth
functions, as well as functions with end-point singularities, such as those in boundary-
contact value problems, integral equations, finite methods, etc. These functions are efficiently
approximated using polynomial series, logarithmic functions and/or Müntz polynomials.

The proposed quadrature shows rapid convergence, positive weights and quick
implementation without high computational cost, even if they are not “optimal” in the sense
of generalized Gaussian quadrature. We have extensively used this technique in computational
electromagnetics for diffraction problems, see for example [29].

This paper is organized as follows. Section 2 presents the Müntz polynomials in (0, 1),
their extension and the basic definitions to represent the remainder for Gaussian quadrature.
Asymptotic estimates of the remainder for Gauss-Legendre quadrature are presented in section
3 with integrands of logarithmic and/or Müntz kinds. Section 4 is devoted to the design
of the monomial quadrature rule. Finally, in section 5 we present several numerical tests to
validate the proposed quadrature scheme. In the Appendix we report some special sets of
Müntz polynomials with their properties.

The reader could first read sections 4.2 and 5 to immediately appreciate the advantages of
the monomial quadrature rule for Müntz and Müntz-logarithmic polynomials (see the other
sections for definitions).

2. Mathematical background

2.1. Müntz and Müntz-logarithmic polynomials

We recall the definition of Müntz polynomials M(Λn) which are linear combinations (span) of
a Müntz system for a given sequence of real numbers Λn where λk ≤ λk+1, k ∈ N0, k ≤ n, see

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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DESIGN OF QUAD RULES FOR MÜNTZ AND MÜNTZ-LOG POLYNOMIALS 3

for a full description [1, 2] and references therein:

Λn = {λ1, λ2, ..., λn}, λk > −1, k = 1..n (1)

M(Λn) = span{xλ1 , xλ2 , ..., xλn} (2)

We define λmin = min(λk) > −1 and λmax = max(λk) for a given Λn.

We define the Müntz-logarithmic polynomials as the combination of two sub-systems.
The first subset is classical Müntz system, the second subset is constituted by the linear
combinations of Müntz system times log(x) function (where log is the natural logarithm);
i.e. the Müntz-logarithmic polynomials are constituted by terms of the following kind:
{xλ, xλ log(x)}. We can extend the Müntz-logarithmic polynomials to higher order logarithmic
terms, i.e. the generalized monomial is: xλ[log(x)]µ with λ > −1 and µ ∈ N.

We define the extended Müntz-logarithmic polynomials M(Λn,m) which are linear
combinations (span) of a system for a given sequence of pairs of number (one real and one
integer) Λn,m:

Λn,m = {(λ1, µ1), ..., (λk, µh), ..., (λn, µm)} (3)

where λk > −1, k = 1..n and µh ∈ N, h = 1..m.

M(Λn,m) = span{xλ1 [log(x)]µ1 , ..., xλk [log(x)]µh , ..., xλn [log(x)]µm} (4)

We define λmin = min(λk), λmax = max(λk), µmin = min(µh) and µmax = max(µh) for a given
Λn,m. Note that the Müntz-logarithmic polynomials and the Müntz polynomials are particular
cases of the extended Müntz-logarithmic polynomials.

In this paper we intend to construct an efficient quadrature algorithm for these polynomials
and we observe that the polynomials presented here include and extend the functions presented
in [7, 9] where the generalized Gaussian quadrature is applied.

2.2. Definitions for quadrature rules

The problem of numerical quadrature is to evaluate efficiently the integral I(f) by a sum In(f)
that satisfies a target precision in terms of relative error Rn(f) (for example, the machine-
double precision d.p.†).

En(f) is the remainder, i.e. the error committed in integrating an analytic function f(x)
times a non-negative weight-function w(x) by an arbitrary integration rule given in terms of
n weights wk and n sample points xk.

I(f) =

b∫

a

w(x)f(x)dx =

n∑

k=1

wkf(xk) + En(f) (5)

†In the following, without loss of generality, we consider the machine precision the one defined for IEEE
Double-Precision Format [30] in 32-bit programming which yields a floating-point relative accuracy eps =
2−52 = 2.2204 ∗ 10−16, log10(eps) = −15.6536.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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4 G. LOMBARDI

In(f) =

n∑

k=1

wkf(xk) (6)

En(f) = I(f) − In(f) (7)

Rn(f) =
En(f)

I(f)
(8)

In the framework of Gaussian quadrature formulas a basic expression for the remainder is
provided in [10] as a contour integral (9):

En(f) =
1

2πi

∮

C

Πn(s)

Pn(s)
f(z)ds (9)

where the contour C is chosen to enclose the open interval (a, b), Pn(s) are the orthogonal
polynomials with weight function w(s) and

Πn(s) =

b∫

a

Pn(t)w(t)

t − s
dt s ∈ C\[a, b] (10)

This formula is extended and applied to regular functions and functions with end-point
singularity, see [11]-[18] and references therein.

3. Asymptotic estimates of the remainder for Gauss-Legendre quadrature rule

In this section we review the asymptotic estimates of the remainder for Gauss-Legendre
quadrature available in literature, see for example [10]-[16]. In particular we define estimates
that are valid for Müntz-logarithmic polynomials with non-integer degree λ up to and higher
than the Gaussian limit 2n − 1 (where n is the number of sample points).

We consider Gaussian quadrature in the interval (a, b) = (0, 1) with weight-function
w(x) = 1. It yields that Pn(x) and Πn(x) are respectively the Legendre polynomials and
the Legendre functions of the second kind, besides the {wk, xk} are referred to the classical
Gauss-Legendre quadrature formula in (0, 1). We assume that the integrand function f(x) is
a Müntz or a Müntz-logarithmic polynomial, see section 2.1. Since the analytical continuation
of the integrand f(x) has a branch point singularity at the origin and Πn(s)/Pn(s) is analytic
in C\[0, 1], we can evaluate (9) along the plane cut constituted by the real axis from 0 to −∞.

In the following we assume the problem of the quadrature in the interval (0, 1) for two
reasons: 1) the Müntz polynomials are defined for x > 0 and their quadrature is usually
considered in (0, 1), 2) the numerical quadrature of nonclassical singular polynomials suffers
from the effect of numerical cancellation when the singularity is located out of the origin, as
the quadrature points tends to be clustered around the singular point.

3.1. Müntz polynomials

By using the procedure proposed in [12, 16] we present a new estimate of the remainder (9)
for Müntz monomial. First of all we reframe the evaluation of the integral of a monomial xλ

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
Prepared using nmeauth.cls



DESIGN OF QUAD RULES FOR MÜNTZ AND MÜNTZ-LOG POLYNOMIALS 5

in (0, 1) in the interval (−1, 1) by using the real mapping x = (1 − y)/2:

I(xλ) =

1∫

0

xλdx = 2−(1+λ)

1∫

−1

(1 − y)λdy =
1

1 + λ
, x =

1 − y

2
(11)

We observe that, due to the change of interval, the integral and the remainder of the Müntz
monomial are 2−(1+λ) times the one presented in [16], but, of course, it yields the same relative
error (8).

In fact, from (9) we obtain:

En(xλ) =
1

2πı

∮

Cs

Πn(s)

Pn(s)
sλds =

2−(1+λ)

2πı

∮

Cz

Πn(z)

Pn(z)
(1 − z)λdz (12)

where x = Re[s], y = Re[z], s = (1 − z)/2 is the complex mapping and the contours path Cs

and Cz are reported in Figure 1.

Figure 1. The contours Cs and Cz used to evaluate the remainder (9) for Müntz polynomials.

The integrand (1 − z)λ has a branch point singularity at the point 1 and Πn(z)/Pn(z)
is analytic in C\[−1, 1]. We evaluate (12) along the plane cut constituted by the real axis
(y = Re[z]) from 1 to +∞, see [12, 16]. We recall and reframe (7) of [16]:

En(f) = −2−(1+λ) 2 sin(πλ)J1 (13)

where:

J1 =
1

2π

+∞∫

1

Πn(y)

Pn(y)
(y − 1)λdy ≃ J1a =

+∞∫

1

(y +
√

y2 − 1)−(2n+1)(y − 1)λdy (14)

J1a =

+∞∫

0

e−(2n+1)ξ(2(sinh2(ξ/2))λ sinh ξdξ (15)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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6 G. LOMBARDI

with y = cosh(ξ). The fundamental assumptions in (14) are y > 1 and n ≫ 1 in order to
obtain the one term approximation for the ratio Πn(z)/Pn(z) reported in [17]. Note that:

1

2π

Πn(y)

Pn(y)
≃ e−(2n+1)ξ (16)

We observe that J1a converges if λ < 2n. While [16] suggests to use sinh(ξ) ≈ ξ to estimate
(15) by obtaining

J
(JE)
1a = 2−λ(1 + 2n)−2−2λΓ(2 + 2λ) (17)

we evaluate exactly (15) without approximations:

J1a = 2−λ λ

(
Beta(2λ, 2n−λ)

2n+λ
− Beta(2λ, 2 + 2n−λ)

2 + 2n+λ

)
(18)

where Beta(·, ·) is the special function:

Beta(z, w) =

∫ 1

0

tz−1(1 − t)w−1dt =
Γ(z)Γ(w)

Γ(z + w)
(19)

By using (18), we obtain a new estimate of the remainder (13) that shows a wider λ-range
of validity even for modest values of n.

Figure 2 shows the relative error Rn(f) (8) derived from (13) with (18), the actual
relative error using tabulated Gauss-Legendre formulas and the relative error derived from
the remainder presented in [16] (labelled J-E) using (17). In order to show the convergence
it has been used absolute values, 31-digits precision (Quad-Precision Format) and decimal
logarithmic scale.

The new estimate (13) defined with (18) is valid for λ > −1 and in particular for λ > 2n−1
which is the Gaussian limit for exact integration. Note that the integral (15) does not converge
for λ ≥ 2n, therefore we extend the domain of J1a using the closed-form explicit expression
(18).

The estimate is zero for 0 ≤ λ ≤ 2n − 1, λ ∈ N, thus it agrees with the theory of Gauss-
Legendre quadrature (see negative peaks in Figure 2).

We observe that for an appropriate range of n the relative error is lower than the (IEEE
Double-Precision Format, see footnote † at the beginning of section 2.2) floating point relative
accuracy for non-integer values of λ ∈ [0, 2n−1] and even for non-integer values of λ > 2n−1.
The estimate of the remainder can be used to find efficiently the range of λ as a function of n
to obtain a fixed target precision of relative error.

This property is used to design exact quadrature rule for Müntz polynomials using the
monomial transformation, see section 4. The exactness is establish for a fixed working precision
(for example, we consider IEEE double precision).

3.2. Müntz-logarithmic polynomials

In this section we extend the procedure to find new optimal estimates to Müntz-logarithmic
polynomials revising the estimate proposed in [16]. First of all we reframe the evaluation of
the integrals of the monomial xλ log(x) over x ∈ (0, 1) by taking the integration interval
y ∈ (−1, 1):

I(xλ log(x)) =

1∫

0

xλ log(x)dx = 2−(1+λ)

1∫

−1

(1 − y)λ [log(1 − y) − log(2)] dy = −
1

(1 + λ)2
(20)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
Prepared using nmeauth.cls



DESIGN OF QUAD RULES FOR MÜNTZ AND MÜNTZ-LOG POLYNOMIALS 7

Figure 2. Müntz polynomials: a) Plots of the relative error and its estimates are reported in log10 scale
for n = 16, 24. We have reported the actual value, the estimated value derived from (13) with (17)
[16, 18] (with J-E label) and the value obtained by (13) with (18). We observe that the actual value
and the estimate using (18) have approximately coincident values for any λ, as clearly shown from the
detailed view reported in b). In a) the constant black solid line is the double precision (IEEE Format)
relative accuracy level log10(eps) = −15.6536, eps = 2−52. The actual value is limited to 31-digits

precision.

where x = (1 − y)/2. The remainder can be written as the sum of two terms:

En(xλ log(x)) =
2−(1+λ)

2πı

∮

C

Πn(z)

Pn(z)
log(1 − z)(1 − z)λdz −

2−(1+λ) log(2)

2πı

∮

C

Πn(z)

Pn(z)
(1 − z)λdz (21)

While the second integral has been estimated in the previous sub-section, we need to find an
optimal estimate for the first one:

1

2πı

∮

C

Πn(z)

Pn(z)
log(1 − z)(1 − z)λdz (22)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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8 G. LOMBARDI

The integrand log(1−z)(1−z)λ has a branch point singularity at the point 1 and Πn(z)/Pn(z)
is analytic in C\[−1, 1]. We evaluate (22) along the plane cut constituted by the real axis
(y = Re[z]) from 1 to +∞ and it becomes:

− cos(πλ)

+∞∫

1

Πn(y)

Pn(y)
(y − 1)λdy − sin(πλ)

π

+∞∫

1

Πn(y)

Pn(y)
log(y − 1)(y − 1)λdy (23)

It yields:

En(xλ log(x)) = 2−(1+λ){−2π cos(πλ)J1 − 2 sin(πλ)J2} − 2−(1+λ) log(2){−2 sin(πλ)J1} (24)

where the brackets highlight the first and the second part of (21), J1 is defined in (14), and

J2 =
1

2π

+∞∫

1

Πn(y)

Pn(y)
log(y − 1)(y − 1)λdy ≃ J2a =

+∞∫

1

(y +
√

y2 − 1)−(2n+1) log(y − 1)(y − 1)λdy (25)

J2 is approximated using the one term approximation for the ratio Πn(z)/Pn(z) when y > 1
and n ≫ 1 [17].

It is useful to apply the change of variable y = cosh(ξ) to (25):

J2a =

+∞∫

0

e−(2n+1)ξ log(2 sinh2(ξ/2))(2(sinh2(ξ/2))λ sinh ξdξ (26)

We observe that J2a converges if λ < 2n.
We propose also a compact approximated formulation of (24) which uses the definition of

J̃2a instead of J2a:

J̃2a = J2a − J1a log(2) =

+∞∫

0

e−(2n+1)ξ log(sinh2(ξ/2))(2(sinh2(ξ/2))λ sinh ξdξ (27)

and it yields:

En(xλ log(x)) ≃ 2−(1+λ){−2π cos(πλ)J1 − 2 sin(πλ)J̃2a} (28)

Also J̃2a converges if λ < 2n.
We propose two approximations of the remainder En(xλ log(x)) with different range of

validity: 1) type A is valid for “small” λ (λ . n), 2) type B is valid for “non-small” λ (λ & n).

Type A: by applying the approximation sinh ξ ≃ ξ to (26) and using the definition (17) we
obtain

J
(A)
2a = 2−λ+1

+∞∫

0

e−(2n+1)ξ log(ξ)ξ2λ+1dξ − J
(JE)
1a log(2) = (29)

J
(A)
2a = −21−λ(1 + 2n)−2−2λΓ(2 + 2λ)

[
log(1 + 2n) − Ψ(2 + 2λ) +

1

2
log(2)

]
(30)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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DESIGN OF QUAD RULES FOR MÜNTZ AND MÜNTZ-LOG POLYNOMIALS 9

where Ψ(z) denotes the digamma function. Using (24), (30) and (18) we obtain the the following
approximation of the remainder (type A):

E(A)
n (xλ log(x)) = 2−(1+λ){[−2π cos(πλ) + 2 log(2) sin(πλ)]J1a − 2 sin(πλ)J

(A)
2a } (31)

The use of (28) instead of (24) with sinh ξ ≃ ξ yields a worse estimation of the remainder.

Type B: we approximate the argument of the logarithm sinh ξ ≃ eξ/2 in (27):

J̃
(B)
2a = 2λ

+∞∫

0

e−(2n+1)ξξ(sinh(ξ/2))2λ sinh(ξ)dξ (32)

J̃
(B)
2a = 2λλ Γ(2λ)[Υ1 + Υ2] (33)

where




Υ1 = Γ(2+2n−λ)
Γ(3+2n+λ)

[
1

2n−λ + 1
1+2n−λ − 1

1+2n+λ − 1
2+2n+λ + Ψ(2n − λ) − Ψ(1 + 2n + λ)

]

Υ2 = Γ(2n−λ)
Γ(1+2n+λ) [−Ψ(2n − λ) + Ψ(1 + 2n + λ)]

(34)

Using (28), (33) and (18) we obtain the the following approximation of the remainder (type
B):

E(B)
n (xλ log(x)) = 2−(1+λ){−2π cos(πλ)J1a − 2 sin(πλ)J̃

(B)
2a } (35)

The use of (24) instead of (28) with sinh ξ ≃ eξ/2 yields a worse estimation of the remainder.

Figure 3 shows the relative error Rn(f) derived from type A estimate (31), the actual relative
error using tabulated Gauss-Legendre formulas and the relative error derived from (24) using
the approximations presented in [16] (labelled J-E). In order to show the convergence of the
estimates it has been used absolute values, 31-digits precision and decimal logarithmic scale.

In particular the new estimate (type A) is valid for λ . n and it shows some spurious ripples
for λ > 2n − 1 which is the Gaussian limit for exact integration fo polynomials. Note that
(26) does not converge for λ ≥ 2n. Figure 3b shows, in detail, that the envelope of the type
A estimate is good, however the zeros (negative peaks) are shifted in positions. The estimate
(J-E) shows errors both in the envelope and in the position of the zeros of the relative error,
in particular when λ is with significant values.

Figure 4 shows the relative error Rn(f) derived from type B estimate (35), and the actual
relative error using tabulated Gauss-Legendre formulas.

In particular the new estimate (type B) is valid for λ & n and it does not show any spurious
ripples for λ > 2n − 1 in comparison with type A estimate.

The new estimate (35) defined with (33) is valid for λ > −1 and moreover for λ > 2n − 1.
Note that the integral (27) does not converge for λ > 2n, therefore we extend the domain of

validity of J̃
(B)
2a using closed-form explicit expression as (33).

Figure 4b shows good agreement between type B estimate and the actual relative error
(λ & n), even for significant values of λ. On the contrary Figure 4c shows, for small values of
λ, that the envelope of the type B estimate is not good as the type A, and the zeros (negative
peaks) are shifted in positions.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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10 G. LOMBARDI

Figure 3. Müntz-logarithmic polynomials: a) Plots of the relative error and its estimates are reported
in log10 scale for n = 16, 24. We have reported the actual value, the estimated value derived using
the approximations of [16, 18] (with J-E label) and the value obtained from type A estimate (31).
We observe that the actual value and the estimate (31) have approximately coincident envelopes for
λ < 2n−1 value, as clearly shown from the detailed view reported in b). In a) the constant black solid
line is the double precision (IEEE Format) relative accuracy level log10(eps) = −15.6536, eps = 2−52.

The actual value is limited to 31-digits precision.

We observe that for an appropriate range of n the relative error is lower than the IEEE
Double-Precision Format floating point relative accuracy for non-integer values of λ ∈ [0, 2n−1]
and even for non-integer values of λ > 2n − 1. The estimate of the remainder can be used to
find efficiently the range of λ as a function of n to obtain a fixed target precision of relative
error.

This property is used to design exact quadrature rule for Müntz-logarithmic polynomials
using the monomial transformation, see section 4. The exactness is establish for a fixed working
precision (for example, we consider IEEE double precision).

3.3. Extended Müntz-logarithmic polynomials

In this section we illustrate the procedure to find new optimal estimates to extended Müntz-
logarithmic polynomials, i.e. polynomials with monomials of xλ[log(x)]µ kind with λ > −1
and µ ∈ N. The exact integral of a monomial is:

I(xλ[log(x)]µ) =

1∫

0

xλ[log(x)]µdx = (−1)µ µ!

(1 + λ)µ+1
(36)

From (9) we obtain the following expression of the remainder:

En(xλ[log(x)]µ) =
1

2πı

∮

Cs

Πn(s)

Pn(s)
sλ[log(s)]µds (37)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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DESIGN OF QUAD RULES FOR MÜNTZ AND MÜNTZ-LOG POLYNOMIALS 11

Figure 4. Müntz-logarithmic polynomials: a) Plots of the relative error and its estimates are reported
in log10 scale for n = 16. We have reported the actual value, and the value obtained from type B
estimate (35). We observe that the actual value and the estimate (35) have almost coincident values for
λ & n value, as clearly shown from the detailed view reported in b). c) The position of zeros (negative

peaks) are rather shifted for λ . n in comparison with the ones identified by type A estimate.

We define the complex function f(s) as the analytical continuation of the integrand xλ[log(x)]µ:

f(s) = sλ[log(s)]µ = |s|λeıθλ [log(|s|) + ıθ]
µ

(38)

where θ = arg(s). Since f(s) has a branch point singularity at the origin and Πn(s)/Pn(s) is
analytic in C\[0, 1], we evaluate (37) along the plane cut constituted by the real axis from 0
to −∞ (see Figure 1):

En(xλ[log(x)]µ) =

0∫

−∞

Πn(x)

Pn(x)
(−x)λMλ,µ(x)dx (39)
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12 G. LOMBARDI

where

Mλ,µ(x) =
1

2πı

{
eıπλ [log(−x) + ıπ]µ − e−ıπλ [log(−x) − ıπ]µ

}
(40)

and using the binomial expansion:

Mλ,µ(x) =
1

π

⌊µ/2⌋∑

k=0

(
µ
2k

)
(ıπ)µ−2k log(−x)2kTµ(λ) +

(
µ

2k + 1

)
(ıπ)µ−2k−1 log(−x)2k+1Tµ+1(λ) (41)

where

Tµ(λ) =

{
sin(πλ) even µ
cos(πλ)/ı odd µ

(42)

We define:

Ĵµ = −2λ+1

2π

0∫

−∞

Πn(x)

Pn(x)
(−x)λ[log(−x)]µdx (43)

Note that the previously defined J1 and J̃2 are Ĵµ respectively with µ = 0, 1. From (39), using
(40)-(43), we obtain:

En(xλ[log(x)]µ) =
1

π

⌊µ/2⌋∑

k=0

(
µ
2k

)
(ıπ)µ−2kTµ(λ)Ĵ2k +

(
µ

2k + 1

)
(ıπ)µ−2k−1Tµ+1(λ)Ĵ2k+1 (44)

In order to give explicit estimates of (44) we propose two approximations of Ĵµ with different
range of validity: 1) type A is valid for “small” λ (λ . n), 2) type B is valid for “non-small”
λ (λ & n). First of all we apply to (43) the change of variable x = −(sinh(ξ/2))2 and we use
the approximation (16):

Ĵµ ≃ Ĵµa = 2λ+1

+∞∫

0

e−(2n+1)ξ(sinh(ξ/2))2λ[log(sinh(ξ/2)2)]µ
sinh(ξ)

2
dξ (45)

We observe that Ĵµa converges if λ < 2n.

Type A: we approximate the argument of the logarithm sinh ξ ≃ ξ in (45)

Ĵ (A)
µa = 2−λ+µ

+∞∫

0

e−(2n+1)ξξ2λ[log(ξ/2)]µdξ (46)

Explicit expression of (46) are numerical stable and easy to be computed for µ ∈ N in terms
of the gamma function Γ(z), digamma function Ψ(z) and its nth derivatives Ψ(n, z) with
n = 0..µ − 1. For example for µ = 2:

Ĵ
(A)
2a = 22−λΓ(2+2λ)

(1+2n)−2(1+λ) ·

·
{
log(2)2 + log(1 + 2n) log(4 + 8n) − 2 log(2 + 4n)Ψ(2 + 2λ) + Ψ(2 + 2λ)2 + Ψ(1, 2 + 2λ)

} (47)

From (44) and (46) we obtain the first type (type A) of the estimate of the remainder,

labelled E
(A)
n (xλ[log(x)]µ).
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DESIGN OF QUAD RULES FOR MÜNTZ AND MÜNTZ-LOG POLYNOMIALS 13

Type B: we apply the approximation sinh ξ ≃ eξ/2 to (45) only to the logarithmic argument:

Ĵ (B)
µa = 2λ+µ

+∞∫

0

e−(2n+1)ξξ(sinh(ξ/2))2λ[ξ/2 − log(2)]µ sinh(ξ)dξ (48)

and using the binomial expansion it yields:

Ĵ (B)
µa = 2λ+µ

µ∑

k=0

(
µ
k

)
(− log(2))µ−k

+∞∫

0

e−(2n+1)ξξ(sinh(ξ/2))2λ[ξ/2]k sinh(ξ)dξ (49)

Explicit expression of (49) are computed for µ ∈ N in terms of the gamma function Γ(z),
digamma function Ψ(z) and its nth derivatives Ψ(n, z) with n = 0..µ − 1.

From (44) and (49) we obtain the second type (type B) of the estimate of the remainder,

labelled E
(B)
n (xλ[log(x)]µ).

0 10 20 30 40 50 60
−35

−30

−25

−20

−15
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µ=11
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µ=2

Figure 5. Plots of the actual relative error in log10 scale for extended Müntz-logarithmic monomials
with µ = 2, 6, 11 using 24 samples Gauss-Legendre quadrature.

Figure 5 shows the actual relative error for Müntz-logarithmic monomials with µ = 2, 6, 11
obtained by using Gauss-Legendre quadrature with 24 samples. As expected, the error increases
by increasing µ.

Figures 6a and 6b show the relative error derived from type A estimate and the actual
relative error using tabulated Gauss-Legendre formulas (24 samples) and with µ = 6. In order
to show the convergence of the proposed estimates it has been used absolute values, 31-digits
precision and decimal logarithmic scale.

In particular the new estimate (type A) is valid for “small” λ (λ . n) and it shows spurious
ripples for λ > 2n − 1. Note that the type A estimate does not converge for λ > 2n.

Figures 6c and 6d show the relative error derived from type B estimate and the actual
relative error using tabulated Gauss-Legendre formulas (24 samples) and with µ = 6.

In particular, unlike type A estimate, the type B estimate is valid for λ & n.
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14 G. LOMBARDI

Figure 6. Extended Müntz-logarithmic polynomials: a-b) Plots of the relative error and its type A
estimate reported in log10 scale for µ = 6 and using Gauss-Legendre quadrature with 24 samples.
c-d) Plots of the relative error and its type B estimate reported in log10 scale for µ = 6 and using

Gauss-Legendre quadrature with 24 samples.

The new estimate is valid for λ > −1 and in particular for λ > 2n−1. Note that the integral
(45) does not converge for λ > 2n, therefore we extend the domain of Ĵµa by using closed-form
explicit expression of (49) that are available through symbolic computational software and/or
table of integrals [31].

Figure 6d shows good agreement between type B estimate and the actual relative error,
even for significant values of λ: some convergence problem is experienced only for significant
integer values of λ (see spurious spikes for λ = 48, 49, 50...).

We observe that for an appropriate range of n the relative error is lower than the double-
precision floating point relative accuracy for non-integer values of λ ∈ [0, 2n − 1] and even for
non-integer values of λ > 2n− 1. The estimate of the remainder can be used to find efficiently
the range of λ as a function of n to obtain a fixed target precision of relative error.

As for the other kinds of polynomials, this property will be used to design exact quadrature
rule for extended Müntz-logarithmic polynomials using the monomial transformation.
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DESIGN OF QUAD RULES FOR MÜNTZ AND MÜNTZ-LOG POLYNOMIALS 15

4. Design of Monomial transformations

We recall the well-known in literature monomial transformation:

γr(t) = tr (50)

where the order of the transformation r is a real positive number. This transformation
maps the interval (0, 1) onto itself. This transformation is related to the (1/m)th sigmoidal
transformation as m → +∞, see [19]. The monomial transformation is also a particular
kind of polynomial transformation that have been used in quadrature schemes for evaluating
integrands with endpoint singularity since two decades [20], see for details [18]-[28] and
references therein.
Our work examines the capability of the monomial transformation using Gauss-Legendre
quadrature and it provides an algorithm to anticipate the machine precision for the numerical
integration of extended Müntz-logarithmic polynomials.
By applying the monomial transformation (50) to the monomial xλ[log(x)]µ (extended Müntz-
logarithmic polynomial) we obtain:

1∫

0

xλ[log(x)]µdx =

1∫

0

rµ+1 trλ+r−1 [log(t)]µdt (51)

Note that the integrand in t is again an extended Müntz-logarithmic monomial with µ
logarithmic order and (rλ + r − 1) Müntz order.
The design of the quadrature is based on the choice of r in order to shift the monomial orders
in the region of convergence for a fixed target precision. Given an extended Müntz-logarithmic
polynomial and a target precision for the numerical integration we need to:

• define λmin, λmax, µmin, µmax in relation to the polynomial, see section 2;

• define β
(n)
min, β

(n)
max as the lower and upper bound of β to obtain a relative error (8) in

the evaluation of
1∫
0

xβ [log(x)]µdx below the target precision as functions of n (number

of samples), i.e. the range of β(n) that yields the relative error Rn(xβ [log(x)]µ) < eps
where eps is the relative accuracy level;

• therefore the constraints are:
{

rλmin + r − 1 > β
(n)
min

rλmax + r − 1 < β
(n)
max

(52)

The quadrature is defined by the pairs of number (n, r) enforcing the previous constraints.

From (52) we obtain that the design of transformation order r must satisfy:

1 + β
(n)
min

1 + λmin
< r <

1 + β
(n)
max

1 + λmax
(53)

Once we have selected (n, r) we apply first the monomial transformation and then the
classical Gauss-Legendre quadrature to the integral I(f):
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16 G. LOMBARDI

I(f) =

1∫

0

f(x)dx =

1∫

0

f(t) r tr−1dt ≃ Ir
n(f) =

n∑

k=1

w
(x)
k f(xk) =

n∑

k=1

w
(t)
k f(tk)r tr−1

k (54)

We obtain the quadrature {xk, w
(x)
k } (k = 1..n) in the original domain x using:

{
xk = trk

w
(x)
k = r tr−1

k w
(t)
k

(55)

where {tk, w
(y)
k } are respectively points and weights of the classical Gauss-Legendre quadrature

in (0, 1).

4.1. Lower and upper bound of β

The algorithm presented in the previous section is effective when the computation of lower
and upper bound of β as functions of n is efficient (Note that we use β as quadrature design
parameters while λ are the exponents of the polynomial to be integrated). These values may
be computed and tabulated by using the actual relative error for different values of n but, for
a general procedure, they can be derived from the estimates of section 3.

In particular we need to find the β values so that the envelope of the estimates of the relative
error is equal (or lower) than the target precision (for example IEEE double precision). In
order to satisfy this requirement it is possible to apply standard algorithms to find roots to
the envelope of the relative error estimates (Newton’s method, secant method ...). First of all
we need to find the envelopes of the estimates for the remainders reported in section 3, i.e.

remove the spikes and the modulation when infinite precision occurs, see Figures 2-6. This is
not a trivial task for the general case of extended Müntz-logarithmic polynomials.

From section 3.1 we obtain the envelope of the estimate for classical Müntz polynomials
modifying (13):

Eenv
n (xβ) =

{
−2−(1+β) 2J1a −1 < β < 2n − 1/2
−2−(1+β) 2 sin(πβ)J1a β ≥ 2n − 1/2

(56)

Note that the envelope and the estimate for β ≥ 2n − 1/2 coincide.
From section 3.2 we obtain the envelope of the estimate for Müntz-logarithmic polynomials

modifying (35):

Eenv
n (xβ log(x)) =

{
2−(1+β){−2πJ1a − 2J̃

(B)
2a } −1 < β < 2n − 1/2

2−(1+β){−2π cos(πβ)J1a − 2 sin(πβ)J̃
(B)
2a } β ≥ 2n − 1/2

(57)

Note that the envelope coincides with the type B estimate for β ≥ 2n − 1/2.
In general for the extended Müntz-logarithmic polynomials we define the envelope of the

estimates for the relative error modifying (44) and using type A and B definitions proposed in
section 3.3:

Eenv
n (xβ [log(x)]µ) =

1

π

⌊µ/2⌋∑

k=0

(
µ
2k

)
(ıπ)µ−2kT̃µ(β)Ĵ2k +

(
µ

2k + 1

)
(ıπ)µ−2k−1T̃µ+1(β)Ĵ2k+1 (58)
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Table I. Table of the lower and upper bound of β for double precision case.

n xβ xβlog(x) xβ [log(x)]3

12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
84
88
92
96

⌈β
(n)
min⌉ ⌊β

(n)
max⌋

10.55 21.42
7.48 33.36
6.30 47.87
5.61 65.79
5.14 86.98
4.80 111.42
4.53 139.09
4.31 169.99
4.13 204.10
3.98 241.43
3.85 281.98
3.74 325.74
3.63 372.71
3.54 422.90
3.46 476.31
3.39 532.92
3.32 592.75
3.26 655.79
3.20 722.05
3.15 791.51
3.10 864.19
3.06 940.09

⌈β
(n)
min⌉ ⌊β

(n)
max⌋

- -
8.99 31.59
7.36 44.29
6.47 60.11
5.89 78.82
5.46 100.36
5.14 124.68
4.88 151.77
4.66 181.62
4.48 214.22
4.33 249.56
4.19 287.65
4.08 328.46
3.97 372.01
3.88 418.28
3.79 467.26
3.71 518.97
3.64 573.39
3.58 630.52
3.52 690.36
3.46 752.91
3.41 818.15

⌈β
(n)
min⌉ ⌊β

(n)
max⌋

- -
16.01 29.12
12.75 40.77
10.70 55.22
9.30 74.01
8.05 95.68
7.91 121.06
7.62 143.61
7.34 171.10
7.08 195.16
6.86 222.50
6.66 252.28
6.48 284.24
6.32 318.29
6.18 354.37
6.05 392.43
5.93 432.47
5.82 474.45
5.72 518.36
5.63 564.19
5.54 611.93
5.46 661.57

with

T̃µ(β) =





1 even µ&β < 2n − 1
−ı odd µ &β < 2n − 1
sin(πβ) even µ&β ≥ 2n − 1
cos(πβ)/ı odd µ &β ≥ 2n − 1

(59)

The definition of (44) in terms of T̃µ(β) instead of Tµ(β) remove the spikes giving the envelope
of the estimates.

Figures 7 report the envelopes of the relative error estimates and the actual relative errors
respectively for (a) Müntz polynomials, (b) Müntz-logarithmic polynomials and (c) extended
Müntz-logarithmic polynomials with µ = 3, when n = 24 Gauss-Legendre quadrature rule is
applied.

In Table I we report an estimation of the lower and upper bound of β versus n for the three
type of polynomials under investigation when the target precision is set to be double precision.
These values are derived applying the Newton’s method to the proposed envelopes.

From Table I we note that, for double precision case, it is possible to derive useful regression

curve to fit β
(n)
min and β

(n)
max. In particular the following fitting schemes hold for the three kind

of polynomials under investigation, see Figure 8.
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18 G. LOMBARDI

Figure 7. Plots of the envelopes of the relative error estimates (gray lines) and the actual relative errors
(black solid line) respectively for (a) Müntz polynomials, (b) Müntz-logarithmic polynomials and (c)
extended Müntz-logarithmic polynomials with µ = 3; when n = 24 Gauss-Legendre quadrature rule is
applied. Note that in Figure (a) and (b) the envelope approximately overlaps the actual relative error
except for the ripple. In Figure (c) two envelopes are reported: dashed-dot line is referred to type A
estimate which approximately overlaps the actual relative error for β . n except for the ripple, and
the gray solid line is referred to type B estimate which approximately overlaps the actual relative error

for β & n except for the ripple.





β
(n)
min = 3

√
1

c1n+c0

β
(n)
mx = d2n

2 + d0

(60)

Table II reports the fitting parameters for β
(n)
min and β

(n)
max (60) used in Figure 8.

Note that (60) are particular useful to quickly design the monomial quadrature rule for
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Figure 8. Regression curve (a) βmin (b) βmax. The scale are chosen properly in order to show the
validity of the curve fitting reported in (60).

Table II. Table of fitting parameters for βmin and βmax.

c1 c0 d2 d0

xβ

xβlog(x)
xβ [log(x)]3

4.1296 ∗ 10−4

3.0285 ∗ 10−4

7.3104 ∗ 10−5

−4.0693 ∗ 10−3

−3.4647 ∗ 10−3

−7.4999 ∗ 10−4

1.0123 ∗ 10−1

8.7825 ∗ 10−2

7.0035 ∗ 10−2

7.8147
1.0918 ∗ 101

2.5611 ∗ 101

Müntz, Müntz-logarithmic and extended Müntz-logarithmic polynomials, see next section.

4.2. Design Algorithm for IEEE Double Precision Quadrature

The double precision monomial quadrature rule of Müntz, Müntz-logarithmic and extended
Müntz-logarithmic polynomials with minimum sampling points can be obtained by following
the algorithm described below. The algorithm also gives the monomial transformation order
r. Note that the algorithm is valid for polynomials with a single value of µ but this limitation
can be overcome as reported in example 5 of section 5.

Step 1 Collect/Select λmin and λmax for the polynomial under investigation.

Step 2 To obtain the minimum number of sampling points, from (53), we enforce the equation

1 + β
(n)
min

1 + λmin
=

1 + β
(n)
max

1 + λmax
(61)
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20 G. LOMBARDI

and substitute the curve fitting (60) for β
(n)
min and β

(n)
max, i.e. we solve the following

polynomial equation of degree 7:

(c0 + c1n)
[
(1 + d0 + d2n

2)(1 + λmin) − 1 − λmax

]3 − (1 + λmax)
3 = 0 (62)

Step 3 The zeros of the polynomial equation are constituted by 3 couple of complex conjugate
solutions and 1 real solution (nr). The smallest integer greater than or equal to the real
solution is the minimum number of sampling point for double precision quadrature rule

(nmin = ⌈nr⌉). nmin is always greater than 10 for double precision as β
(n)
min ≤ β

(n)
max.

Step 4 Substituting nr (real value) in (61) we obtain the monomial transformation order

r =
1 + β

(n)
min

1 + λmin
=

1 + β
(n)
max

1 + λmax
(63)

Step 5 Use (55) and the readily available tables of Gauss-Legendre quadratures to obtain the
quadrature.

Step 2 is the basic design constraint: from (52)-(53) we enforce that the transformed
minimum/maximim λ order becomes the minimum/maximum β(n) values for a fixed target
quadrature precision as functions of n.

The algorithm can be generalized for target precision different from double precision and for
different values of µ (extended Müntz-logarithmic polynomials) by evaluating specific curve

fitting parameters for β
(n)
min and β

(n)
max. Besides, if no fitting is available the estimates reported

in section 4.1 can be used to find β
(n)
min and β

(n)
max.

In the Appendix we report some special sets of Müntz polynomials with their properties.

5. Numerical results

This section demonstrates the efficacy and the efficiency of the proposed algorithm. We reports
several numerical examples, some of them are reported in the classical literature, see example
2, 3, and 4. Note that we report only examples where the singularity is located at the origin
to avoid cancellation error in quadrature sample points which tend to be clustered near the
singular points for high transformation order r. Therefore if we want to integrate a singular
function with singularity out of the origin we suggest to reframe the problem in the interval
(0, 1). The performance of the proposed quadrature scheme is established in terms of actual
relative error (64) where Ir

n(f) is defined in (54):

Rr
n(f) =

|I(f) − Ir
n(f)|

|I(f)| (64)

Without loss of generality, in the numerical examples we often use the most common in practice
and readily available in literature Gauss-Legendre rules (for example see pp. 916-917 [32] which
reports the quadrature rules for n > 10: n = 12, 16, 20, 24, 32, 40, 48, 64, 80, 96). In the following
examples the target precision is set to be double (see footnote at the beginning of section 2.2
for definition) and d.p. denotes that double precision relative accuracy is obtained.
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5.1. Example 1

The first example is a simple application of the algorithm described in section 4.2: consider
the integral

f(x) = 5x−π
4 − x− 1

2 + 1 + 10x2 + e xe+ 1
4 (65)

I(f) =

1∫

0

f(x)dx =
7

3
+

4e

4e + 5
+

20

4 − π
≃ 26.31729737648832 (66)

The integrand is a Müntz polynomial with

Λ5 = {−π

4
,−1

2
, 0, 2, e +

1

4
} (67)

that contains monomials with singular irrational and rational exponents, classical polynomial
terms and monomials with non singular irrational exponent. Following the algorithm of section
4.2, we note that λmin = −π/4 and λmax = e + 1/4 [Step 1]. Using (62) and Table II [Step 2]
we obtain that the required number of sampling point for double precision quadrature is [step
3]:

nmin = ⌈nr⌉ = ⌈31.284201303977138⌉ = 32 (68)

Using (63) we obtain
r = 27.187743291832103 (69)

(only the first digits can be considered) [step 4].
We define the quadrature by selecting n = nmin = 32 Gauss-Legendre quadrature points to

satisfy the requirement (68) and by applying the transformation rule (55) [step5] with (69).
The numerical integration, as expected, gives double precion relative error (Rr

32(f) < 2−52 =
2.22 ∗ 10−16). Besides if we try to apply the algorithm to an n < nmin Gauss-Legendre rule, as
expected, we obtain lower precision: selecting 24 Gauss-Legendre points and (69) we obtain the
following actual relative error Rr

24(f) = 4.51710−11. Besides we note that if the the classical
Gauss-Legendre rule with 32 samples is applied, we obtain relative error higher than 10−1.

5.2. Example 2

In boundary element application quadratic basis functions times logarithmic kernel need to be
integrated. Without loss of generality we reframe the example reported in [18] in the interval
(0, 1). The quadratic basis functions are





φ0(x) = (−1 + x)(−1 + 2x)

φ 1
2
(x) = −4x(−1 + x)

φ1(x) = x(−1 + 2x)

(70)

and the boundary source integral is:

I(φk) =

1∫

0

log(x)φk(x)dx, k = {0,
1

2
, 1} (71)

The integrands are Müntz-logarithmic polynomials, see definition in section 2.1, with

Λ3,1 = {(0, 1), (1, 1), (2, 1)} (72)
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Table III. Table of results for Example 2.

f I(f) Rr
16(f) Rr

12(f)

φ0(x) log(x)

φ 1
2
(x) log(x)

φ1(x) log(x)

log(x)

x log(x)

x2 log(x)

−17/36

−5/9

1/36

−1

−1/4

−1/9

d.p.

d.p.

1.9984 ∗ 10−15

d.p.

d.p.

d.p.

6.43984 ∗ 10−8

1.09477 ∗ 10−7

1.09477 ∗ 10−6

1.08802 ∗ 10−14

1.88738 ∗ 10−15

1.36847 ∗ 10−7

Note that λmin = 0 and λmax = 2 [Step 1]. The required number of sampling point for double
precision quadrature is [step 2 and 3]:

nmin = ⌈nr⌉ = ⌈15.108671538771373⌉ = 16 (73)

Using (63) we obtain

r = 10.655328168802873 (74)

(only the first digits can be considered) [step 4].

Therefore we select n = 16 Gauss-Legendre quadrature points to satisfy the requirement
(73) and we apply the transformation rule (55) [step5] with (74).

In Table III we report the exact value of the integral, the relative error for approximate
result using the proposed quadrature and the relative error for approximate result using the
proposed quadrature but reducing the number of samples. It is interesting to compare this
table of results with Table 7 of [18] where similar transformations with uncontrolled (not
designed) transformation orders have been applied (note that φ0(x), φ 1

2
(x), φ1(x) correspond

to the J1, J4, J3 of [18]). The rules proposed in Table 7 of [18] do not allow to anticipate the
precision. We observe that the designed quadrature performs better than all the quadrature
proposed in Table 7 of [18] as the double precision (d.p.) is anticipated by the proposed
algorithm.

Note that in column 3-row 3 we would expect d.p. instead of 1.9984 ∗ 10−15: the small error
is due to cancellation error in sampling φ1(x).

5.3. Example 3

This example is reported in [9], where a generalized Gaussian type quadrature rule for Müntz
system has been applied. Once the table of nodes and weights for a specific Müntz system is
evaluated the algorithm of [9] is more efficient than the one proposed in section 4.2; however
it is practically impossible to list all the tables of nodes and weights for all kind of Müntz
systems and the computational cost of run-time generalized Gaussian quadrature is high. On
the counterpart the algorithm of section 4.2 needs only the classical Gauss-Legendre quadrature
readily available in literature.
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Table IV. Table of results for Example 3.

Rr
32(f) Rr

24(f) Rr
20(f) rel.err. rel.err. rel.err. rel.err.

ref. [9] ref. [9] ref. [9] ref. [9]
GG n = 10 GG n = 15 GL n = 100 GL n = 600

d.p. 7.5258 ∗ 10−14 7.31675 ∗ 10−13 1.3 ∗ 10−15 d.p. 1.2 ∗ 10−3 3.3 ∗ 10−5

The test integral is:

I(f) =

1∫

0

B0(x)(1 + log(x))dx = 1F2

(
{1

2
}, {1,

3

2
},−1

4

)
− 2F3

(
{1

2
,
1

2
}, {1,

3

2
,
3

2
},−1

4

)
(75)

where B0(x) is the Bessel function and where pFq(a,b, z) is the generalized hypergeometric
function. The integrand can be approximated with a polynomial function of degree 14 times
(1 + log(x)), therefore we can define λmin = 0 and λmax = 14 [Step 1]. The required number
of sampling point for double precision quadrature is [step 2 and 3]:

nmin = ⌈nr⌉ = ⌈31.23058891461433⌉ = 32 (76)

Using (63) we obtain
r = 6.505205732881846 (77)

(only the first digits can be considered) [step 4].
Therefore we select n = 32 Gauss-Legendre quadrature points to satisfy the requirement

(76) and we apply the transformation rule (55) [step5].
In Table IV we report the relative error for approximate result using the proposed quadrature

and the relative error for approximate result using the proposed quadrature but reducing the
number of samples with respect to nmin. Besides we report the numerical results of [9] where
GG and GL are referred to respectively the generalized Gaussian quadrature rule for the Müntz
system under test and the Gauss-Legendre quadrature rule with n samples.

5.4. Example 4

Taking inspiration from Table 4 and 8 of [7] we present the following test case. The integrand

is f(x) = x25x− 2
3 . First of all we have to distinguish if we want to integrate in double precision

only the monomial x25x− 2
3 or the Müntz system M(Λ26) with

λk = k − 2/3, k = 0..25 (78)

In the first case (the integrand is just f(x)) the proposed algorithm provides:

nmin = ⌈nr⌉ = ⌈10.240745585502083⌉ = 11 (79)

r = 0.7670123938807416 (80)
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Table V. Table of relative errors for f(x) in Example 4.

n Rr
n(f) GL rel.err. ref. [7]

10

12

15

16

20

2.20435 ∗ 10−13

d.p.

d.p.

d.p.

d.p.

3.78334 ∗ 10−8

3.56844 ∗ 10−13

d.p.

d.p.

d.p.

1.6142 ∗ 10−3

−

3.3992 ∗ 10−8

−

1.0371 ∗ 10−14

where we have supposed λmin = λmax = 73/3 and therefore the quadrature is “exact” for λ
near 73/3. In Table V the actual relative error is reported for n = 12 with r defined in (80).
Besides we report also the direct application of classical Gauss-Legendre (GL) quadrature
(without monomial transformation) to the integrand f(x) with n = 12, 16. The last column of
Table V reports the numerical results of [7] where a generalized Gaussian quadrature algorithm
is used with n = 10, 15, 20.

In the second case, let us consider g(x) ∈ M(Λ26), i.e. g(x) = (1 + x25)x− 2
3 . The proposed

algorithm provides:
nmin = ⌈nr⌉ = ⌈58.5235362118078⌉ = 59 (81)

r = 14.033995434911114 (82)

where we have supposed λmin = −2/3 and λmax = 73/3. The first column of Table VI reports
the actual relative error using the monomial transformation quadrature with (82) and different
number of Gauss-Legendre samples.

In the Appendix we report a simplified scheme to evaluate Müntz polynomials with
rational exponent. This technique requires only the classical Gauss-Legendre quadrature tables
and it is particularly suitable for Müntz system with rational exponents as M(Λ26). The
main difference from the algorithm proposed in section 4.2 is that the simplified scheme
integrates only polynomials constituted by monomials with rational exponents while the the
algorithm of section 4.2 integrates polynomials constituted by monomials with real exponents
λmin ≤ λ ≤ λmax. Using the algorithm of the Appendix we find that q = 3, mmax = −2 and
kmax = 25 therefore from (100):

nmin =
γmax + 1

2
(83)

and in our case nmin = 38. The second column of Table VI reports the actual relative error
of a monomial quadrature based on integer monomial transformation order r = q and Gauss-
Legendre points and weights. Due to the performance of Gauss-Legendre rules with high
number of samples it is possible to reduce the quadrature points to integrate almost “exactly”
the integral under test (we can mix the property that we have used to derive the algorithm
of 4.2 and the properties of Müntz polynomials with rational exponent). For this purpose we
also report in Table VI the actual relative error for n < nmin.

Table V and VI also report the actual relative error for the generalized Gaussian quadrature
proposed in [7] that must be computed for each Müntz system and the algorithm needs
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Table VI. Table of relative errors for g(x) in example 4.

n Rr
n(g) Rq

n(g) rel.err. ref. [7]

10

15

20

24

32

40

48

56

64

1.15239 ∗ 10−2

4.58915 ∗ 10−3

8.34589 ∗ 10−4

1.32755 ∗ 10−4

1.01898 ∗ 10−6

1.64433 ∗ 10−9

5.57838 ∗ 10−13

2.92215 ∗ 10−16

4.38322 ∗ 10−16

3.07588 ∗ 10−4

3.87017 ∗ 10−7

1.84626 ∗ 10−11

4.38322 ∗ 10−16

2.92215 ∗ 10−16

d.p.

d.p.

d.p.

d.p.

2.09641 ∗ 10−5

4.41448 ∗ 10−10

d.p.

expected d.p.

expected d.p.

expected d.p.

expected d.p.

expected d.p.

expected d.p.

Table VII. Table of relative errors for h(x) in Example 4.

n Rr
n(h) Rq

n(h) rel.err. ref. [7]

3

20

0.895479

d.p.

d.p.

d.p.

−

2.31536 ∗ 10−5

quad-precision for double precision weights and points. We assess, as in Example 3, that
it is practically impossible to list all the tables of nodes and weights for all kind of Müntz
systems and the computational cost of run-time generalized Gaussian quadrature is high. On
the contrary the algorithm of section 4.2 and of the Appendix needs only the classical Gauss-
Legendre readily available in literature.

We observe that the simplified algorithm of the Appendix integrate exactly monomials xλk,m

where λk,m = m/q + k for each |m| < q (see definition (96)) while [7] integrate exactly only
non classical monomials for a fixed value of m together with classical monomials with integer
exponents.

Let us consider h(x) = x− 2
3 +x− 1

3 +1+x. Using the design algorithm of section 4.2 we obtain
that the double precision can be obtained for (nmin, r) = (19, 22.376195152034512) however
in this case the simplified algorithm of the Appendix is more efficient because the quadrature
require only n = 3 sample, see (83). As expected, [7] fails because the quadrature is designed
only for terms with m = −2. The results are reported in Table VII.
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5.5. Example 5

The last example is an application of the proposed algorithm to extended Müntz-logarithmic
polynomials. Let us consider the integrand

fξ(x) =

(
1√
x

+ x4

)
[log(x)]3 + xξ (84)

where we distinguish two case: ξ = 24/5 and ξ = 8. The exact value of the integrals are
respectively:

I(f24/5) =

1∫

0

f24/5(x)dx = −1737049

18125
≃ −95.83718620689655 (85)

I(f8) =

1∫

0

f8(x)dx = −539429

5625
≃ −95.89848888888889 (86)

The integrands are constituted by extended Müntz-logarithmic monomials:

Λ3,2 = {(−1/2, 3), (4, 3), (ξ, 0)} (87)

Therefore we start to design the quadrature from the monomials with µ = 3 because the
constraint is usually more “strict” for monomials with µ = µmax. Note that λmin = −1/2 and
λmax = 4 for µ = 3. Using (62) and Table II we obtain that the required number of sampling
point for double precision quadrature is:

nmin = ⌈nr⌉ = ⌈31.543942878679584⌉ = 32 (88)

Using (63) we obtain

r = 19.25944979499394 (89)

Therefore we select n = 32 Gauss-Legendre quadrature points to satisfy the requirement (88).
However, we need to check if the designed quadrature is able to double precision integrate the
Müntz term with µ 6= µmax, i.e. x24/5 and x8. The constraint is defined in (52):

r ∗ λmax + r − 1 < β(32)
max (90)

where β
(32)
max is the one defined for Müntz polynomials (Table II). The test is satisfied for x24/5

(double precision) while it fails for x8.
The design algorithm (section 4.2) for ξ = 8 must be modified in step 2 and 4 using a mixed

scheme: we need to consider the extended Müntz-logarithmic polynomial scheme with µ = 3

for the definition of λmin and β
(n)
min, and the Müntz polynomial scheme for the definition of

λmax and β
(n)
max. We obtain that the required number of sampling point for double precision

quadrature is:

nmin = ⌈nr⌉ = ⌈38.552744936292875⌉ = 39 (91)

Using (63) we obtain

r = 17.697142289677416 (92)
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Table VIII reports the relative error for approximate result using the proposed quadrature
with n = 32, 40 and r, r as given in (90)-(92).

A sub-optimal, but all in one go, scheme can be obtained by selecting λmin and λmax

independently from µ and design r with β
(n)
min, β

(n)
max related to µmax. In this case the

double precision quadrature of (84) is guaranteed with (nmin, r) = (35, 18.6213453377283)
for ξ = 24/5 and with (nmin, r) = (43, 17.025407835957978) for ξ = 8.

6. Conclusion

In this paper we propose a new algorithm to design monomial transformation for Gauss-
Legendre quadrature of Müntz and Müntz-logarithmic polynomials. The algorithm does
permit to anticipate the precision (machine precision) of the numerical integration of Müntz-
logarithmic polynomials in terms of Gauss-Legendre quadrature samples and monomial
transformation order. The method is numerically stable, efficient, easy to be implemented
and it has low run-time computational cost. The algorithm requires the study in depth of the
properties of classical Gauss-Legendre using new asymptotic estimates for the remainder. The
proposed rules have been fully tested and several numerical examples are included.

Appendix: Special Müntz polynomials

In this Appendix we report some remarkable results for special classes of Müntz polynomials
that are useful in physical-engineering applications. For these classes of polynomials the
quadrature design algorithms can be simplified.

Finite energy Müntz polynomials

We define finite energy Müntz, Müntz-logarithmic and extended Müntz-logarithmic
polynomials the ones that are L2 integrable, i.e.

‖f‖2 < ∞ (93)

thus λmin > −1/2. From (53) the optimal design of the quadrature for this class of
polynomials is obtained when we enforce the following value of transformation order (−1/2 is
the “worst” minimum limit value of λ):

Table VIII. Table of results for Example 5.

f Rr
32(f) Rr

40(f)

f24/5(x)

f8(x)

d.p.

3.0556 ∗ 10−13

d.p.

d.p.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
Prepared using nmeauth.cls



28 G. LOMBARDI

r(n) =
1 + β

(n)
min

1 + λmin
= 2(1 + β

(n)
min) (94)

Note that the previous quantities are defined in terms of the number of quadrature points
n (see (60) for double precision).

From (53) the quadrature under design is able to integrate monomial up to the following
order:

λ(n)
max =

β
(n)
max + 1 − r(n)

r(n)
=

β
(n)
max + 1

2(1 + β
(n)
min)

− 1 (95)

The design is reduced to the choice of the number of quadrature points (n) and the target
precision for the quadrature in order to integrate accurately a finite energy extended Müntz-

logarithmic polynomial with highest order λ
(n)
max.

Note that by substituting (60), (95) becomes an explicit function of n and the target precision

is set to be double. Figure 9 reports the behavior of λ
(n)
max for the three polynomials under

investigation in section 4.1 (xλ, xλlog(x), and xλ[log(x)]3). Note that the intersection of the

λ
(n)
max curves with the bisectrix f(n) = n or the line f(n) = 2n − 1 provides a performance

rate of the quadratures: in particular ng = 84, 99, 157 are the intersection abscissas (rounded
towards plus infinity) with the bisectrix respectively for xλ, xλlog(x), and xλ[log(x)]3; and
nG = 143, 171, 270 are the intersection abscissas (rounded towards plus infinity) with the line
f(n) = 2n − 1 respectively for xλ, xλlog(x), and xλ[log(x)]3. Therefore when n > nG the
proposed quadrature evaluates, with double precision, integrals of Müntz polynomials from
the order −1/2 up to an order greater than 2n−1 which is the classical Gauss-Legendre limit.
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λ m
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(n
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n

2*n−1

xλ

xλ log(x)
xλ [log(x)] 3

Figure 9. The behavior of λ
(n)
max for finite energy Müntz polynomials when the target precision is set to

be double. The solid lines are the functions f(n) = 2n−1 and f(n) = n useful to show the performance
of the quadrature.
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Müntz polynomials with rational exponents

These polynomials are constituted by monomials xλ whose exponents λ are rational numbers.
This kind of polynomials are well known in literature and Gauss-Legendre quadrature
combined with monomial transformation of integer order r has been applied. For the sake
of completeness we include a brief description on how to deal with this class of polynomials.

Without loss of generality, all the exponents of the monomials associated to Müntz
polynomials with rational exponents are with the same denominator q:

λk,m =
m

q
+ k, q ∈ N0, ∀m ∈ ZZ

⋂
{q > |m|} , ∀k ∈ N

⋂ {
m

q
+ k > −1

}
(96)

By using the monomial transformation x = sq (r = q) we obtain:

1∫

0

x
m
q

+kdx =

1∫

0

sm+q kqsq−1ds =

1∫

0

sγds (97)

where the exponents γ = m + qk + q − 1 are integer numbers.
Let us define

[mmin, kmin] = {[m, k] : γ = γmin} (98)

[mmax, kmax] = {[m, k] : γ = γmax} (99)

where typically in practical applications with singular integrands kmin = 0 and mmin < 0.
The constrain, that defines the optimal quadrature using Gauss-Legendre rules and the

monomial transformation x = sq, is:

γmax = mmax + qkmax + q − 1 ≤ 2n − 1 (100)

From (100) we need at least nmin = (mmax + q + qkmax)/2 points of Gauss-Legendre
quadrature to exactly integrate a given Müntz polynomial with rational exponents λk,m with
mmin/q ≤ λk,m ≤ mmax/q + kmax.
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