
21 August 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

FLARE: A design environment for FLASH-based space applications / Caramia, M.; DI CARLO, Stefano; Fabiano,
Michele; Prinetto, Paolo Ernesto. - STAMPA. - (2009), pp. 14-19. (Intervento presentato al convegno IEEE International
High Level Design Validation and Test Workshop (HLDVT) tenutosi a San Francisco (CA), USA nel 4-6 Nov. 2009)
[10.1109/HLDVT.2009.5340180].

Original

FLARE: A design environment for FLASH-based space applications

Publisher:

Published
DOI:10.1109/HLDVT.2009.5340180

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2296433 since:

IEEE

FLARE: A design environment for
FLASH-based space applica-
tions
Authors: Caramia M., Di Carlo S., Fabiano M., Prinetto P.,

Published in the Proceedings of the IEEE International High Level Design Validation and Test

Workshop (HLDVT), 4-6 Nov. 2009, San Francisco (CA), USA.

N.B. This is a copy of the ACCEPTED version of the manuscript. The final
PUBLISHED manuscript is available on IEEE Xplore®:

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5340180

DOI: 10.1109/HLDVT.2009.5340180

© 2000 IEEE. Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale

or redistribution to servers or lists, or reuse of any copyrighted component of this work in

other works.

!Politecnico di Torino

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5340180
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5340180
http://dx.doi.org/10.1109/HLDVT.2009.5340180
http://dx.doi.org/10.1109/HLDVT.2009.5340180

FLARE: a Design Environment for FLASH-based

Space Applications
Maurizio CARAMIA(*), Stefano DI CARLO (+), Michele FABIANO(+), Paolo PRINETTO(+)

(*)

Thales Alenia Space Italia

Torino, Italy

{Maurizio.Caramia}@thalesaleniaspace.com

 (+)
Politecnico di Torino

Dipartimento di Automatica e Informatica
Torino, Italy

{Stefano.Dicarlo, Michele.Fabiano,
Paolo.Prinetto}@polito.it

Abstract – Designing a mass-memory device (i.e., a solid-state

recorder) is one of the typical issues of mission-critical space
system applications. Flash-memories could be used for this goal:
a huge number of parameters and trade-offs need to be explored.
Flash-memories are nonvolatile, shock-resistant and power-
economic, but in turn have different drawback: e.g., their cost is
higher than normal hard disk and the number of erasure cycles
is bounded. Moreover space environment presents various issues
especially because of radiations: different and quite often
contrasting dimensions need to be explored during the design of
a flash-memory based solid-state recorder. No systematic
approach has so far been proposed to consider them all as a
whole: as a consequence a novel design environment currently
under development is aimed at supporting the design of flash-
based mass-memory device for space applications.

I. INTRODUCTION

Nowadays processing power available for embedded
technology and boards is absolutely overcoming the one
available just a few years ago. However, in space applications
the very strict requirements have often driven the design
choices toward older and/or lower-performing radiation-
tolerant electronics. Although each new space application has
its own story and requires increasing intelligence and
autonomy [1], a typical mission-critical space system
application includes solid state recorder(s), redundant mission
computers, flight guidance and navigation systems, health
monitoring computers and robotic manipulator controllers.

The issue of solid-state recorder(s) for space applications is
addressed in this paper. In particular, we shall present a design
environment currently under development, to support the
design of flash-based hard disks (HDs) for space applications.

Flash-memory based systems are gaining acceptance and
usage not only in the consumer market but in space
applications, as well, where they mainly play the role of high-
capacity storage devices: in fact flash-memory guarantees
both the non-volatility in case of power loss and a highest
storage density [2]. Moreover they are shock-resistant and
power-economic: power consumption is always a critical issue
in space applications. However designing flash-based systems

for space application requires both exploring a huge number
of design dimensions and evaluating a huge amount of trade-
offs among all such dimensions. The most relevant
dimensions include, e.g., flash-memory technology, flash-
memory architecture, file management system, dependability
enhancement strategies, power consumption, weight, physical
size and so on. A complex and powerful design environment
is thus needed to properly evaluate the impact of the choices
in each dimension and the related trade-offs.

Unfortunately no such a design environment is today
available: in fact in the literature each paper is typically
tackling just one specific issue in just one design dimensions.
No systematic approach has so far been proposed to consider
them all as a whole. Such a concurrent exploration capability
is mandatory to provide the designers a powerful design
environment, capable of supporting them through all the steps
of the design cycle, including Architectural Exploration,
Design Validation & Verification, (Automatic) Test insertion,
Dependability evaluation and so on.

This paper presents the general architecture of a novel
design environment currently under development to support
the design of flash-based mass memories, especially for space
applications. As pointed out before, the project is mainly
pushed by the unavailability, at our best knowledge, of a
commercial tool capable of supporting a systematic analysis
and exploration of the different possible alternatives.

The rest of the paper is organized as follows: Section 2
addresses the main flash-memory peculiarities, Section 3
explores the dimensions of the issues of designing flash-based
mass memory devices, focusing the attention also on the space
applications, Section 4 deals with the modeling of flash-based
HDs, while Section 5 proposes a possible architecture for a
design environment to support the design of flash-based hard
disks for space applications.

II. FLASH-MEMORY PECULIARITIES

Flash-memories present several interesting features that
properly fit with the requirements of mass-memories for space
applications, while possible alternatives need to be evaluated.

Our solid-state recorder would need a relative high capacity:
the first most suitable solution could be DRAMs. On the one
hand DRAMs are very fast, reliable and provide a very high
data rate, but on the other hand they need a battery pack-up to
not lose data and this issue generate an intricate balance
between battery mass and data retention time: data retention
over years is not feasible and count of battery charge cycles
are limited. DRAMs are not discussed anymore in this paper.

The second and more attractive solution is the use of flash-
memories. There are two major types of flash-memory in the
current market: NOR and NAND flash-memory. NOR flash-
memory is for EEPROM replacement and is more suitable for
program execution, while NAND flash-memory is more
suitable for storage systems [3], [4]: Table 1 briefly sums up
the main characteristic of these types of flash-memory.

This paper addresses only NAND flash-memories: in fact
they are the most suitable choice for HD replacement.

On the one hand, flash-memories are nonvolatile, shock-
resistant, and power-economic: a pure flash-memory based
solution could guarantee unlimited data retention time and no
need of battery backup. On the other hand flash-memories are
still much more expensive than hard disk drive memory. Only
rather large data structures could be accessed and, in addition,
DDR2 SDRAMs provide higher write/read rate (e.g., 6 Gbit/s)
compared to the moderate one accomplished by flash-
memories (e.g., up to 80/200 Mbit/s) [2]. Moreover one of the
main challenging aspects of flash-memories is that the space
already written (i.e., programmed) with data usually cannot be
overwritten unless it is erased from the flash-memory device.

A NAND flash-memory is usually partitioned into blocks:
each block has a fixed number of pages and each page has a
fixed size. A block is the smallest unit for erase operations,
while read and write operations are done in terms of pages, i.e.,
a page can be erased only if its whole corresponding block is
erased, whereas a page can be read/written independently.

In addition flash-memory wears out after a certain number
of erasure cycles (i.e., actually 106 for NAND flash-memory):
if the erasure cycles of a block exceed this number, it becomes
a “bad block” and is not reliable for storing data anymore.

 NAND NOR
Standby Power Low/Med Low
Active Power Low Med/High
Cost per bit Low High
Read Speed Med/High High
Write Speed High Low
Erase Speed High Medium
Capacity High Low
Erase Cycles 106 105

File Storage Use Easy Hard
Code Execution Hard Easy
Interface I/O-like SRAM-like

TABLE 1 – NAND VS NOR FLASH-MEMORY

Finally another peculiar aspect of flash-memories is that
technology provides the possibility of storing more than one
bit of information per cell: in fact traditional flash-memory
devices (Single-Level Cell or SLC) store only one bit per cell,
while newer devices (Multi-Level Cell or MLC) are able to
store typically two bits per cell.

III. ISSUES IN DESIGNING FLASH-BASED HARD-DISKS FOR

SPACE APPLICATIONS

When a flash-based system for space application has to be
designed, the investigation of a vast quantity of design
parameters needs to be defined. A possible partial taxonomy
could involve Flash-memory Technology, Flash-memory
Architecture, Flash-memory Wearing, Testing and
Dependability and, finally, Using flash-memory as Hard-Disk.

Designer should discriminate among which technology to
choose (Flash-memory Technology) and they may also have to
select the most appropriate flash-memory chipset (Flash-
memory Architecture). [18]

In the problem of Wearing, a significant role is played by
the so called wear leveling techniques, which are aiming at
distributing data evenly across each memory block of the
entire flash-memory to avoid single block to wear out. Several
interesting wear leveling techniques have been proposed [13]
– [16] and could be considered or higher capacity flash-
memory devices could be used, then especially taking care of
the resulting drawbacks in terms of weight and volume [2].
An effective comparative analysis of some wear leveling
algorithms could be found in [14].

Flash-memory Testing is quite different from testing other
kinds of memory: disturbances or faults not conforming to any
of the traditionally known fault models used in testing RAMs
could be experienced and specific fault models are needed to
properly represent the most frequent physical defects are
needed. Then efficient test algorithms are needed and Built-In
Self Test (BIST) and Built-In Self Diagnosis (BISD) circuits
have to been taken in consideration. [18]

However wearing, testing and dependability are strictly
linked among each other and designers should evaluate the
right trade-off among them.

Several challenging aspects need to be addressed when
using a flash-memory as a mass-memory device. A possible
incomplete taxonomy of these aspects could involve:

 looking for proper solutions in order to let OS

successfully communicate with NAND flash-memory
devices (i.e., Operating System Management) [3] – [8]

 implementing an efficient logical to physical address
translation process for fast operations (i.e., Address
Translation) [18]

 proper techniques to handle blocks exceeding the
maximum number of erase cycles (i.e., Bad Block
Management) [19]

 proper strategies for reclaiming invalidated space to be
erased in order to free some space (i.e., Garbage
Collection) [18]

Finally designers should address Error Detection And

Correction (EDAC) techniques, evaluating the most proper
choice for their design. [18]

[18] is a more detailed investigation about these main flash-
memory issues discussed above.

A. Flash-based Hard-Disks in the Space Environment

A solid state recorder for critical space missions needs to
satisfy many different constraints, including, among the
others, no loss of mass memory data and the guaranteed
availability of storage capability at End-Of-Life (EOL). A
well-designed flash-based memory system can meet the
requirements of interplanetary missions, but its design must
compensate for flash’s shortcomings in speed, radiation
tolerance, noise, and read/write cycle life and this
compensation leverage the costs.

On the one hand vendors should absolutely provide flash-
memories physically qualified to survive in the space
environment with the help of proper strategies [9] – [12],
while on the other hand data integrity, reliability, simplicity,
modularity, and autonomy are just some of the key features to
fulfill (e.g., reliable storage of context data, also during
spacecraft power outage).

Moreover designers should evaluate the most proper choice
for accomplishing the level of dependability requested by their
design, with the help of ECC algorithms for error checking
and correction of NAND flash-memory. A more detailed
survey about the most peculiar flash-memory design
dimensions and trade-offs to tackle during the design of flash-
based hard disks for space applications could be found in [18].

IV. MODELING OF FLASH-BASED HARD-DISKS

Several issues and aspects need to be addressed during the
modeling of a flash-based HD. First of all, Figure 1 shows a
first possible high view of a flash-based mass-memory device.

There are three main functional blocks: a Non-Volatile
Memory is needed to provide integrity of data, a Volatile
Memory is used for performance reasons, while a Memory
Controller is managing and controlling the overall system,
providing several features. The mass-memory device is
interacting with the requests of the external world, e.g., the
operations of the OS in use.

Figure 1 – A Flash-based Hard Disk Architecture

 (a) (b)

Figure 2 – (a) High-level and (b) low-level view of flash architecture

It is possible to refine this first architectural view: in fact,
during the design of a flash-based HD, the OS and the
applications want to successfully communicate with the bare
flash-memory chip. Figure 2 (a) shows that an intermediate
block is needed to accomplish this task. On the one hand OS
usually would like to exploit its typical system calls (e.g.,
open, read, write) to work with the mass-memory device,
without taking care of anything else. On the other hand, the
flash-memory chip would like to receive the most proper
commands to accomplish the operations previously requested
from the OS: Figure 2 (b) shows a possible view of the
commands a flash-memory chip usually would like to get. E.g.,
[16] briefly presents a typical layered system architecture of
popular flash-memory-based file systems.

So designers should develop a sort of managing part to
tackle all the typical issues of flash-memories, presented also
in the previous paragraphs. This is the most important and
challenging part of designing a flash-based HD: many often
contrasting issues, parameters and dimensions are involved in
this part, which has to address them in the most proper way.

This managing part could be named “flash-memory
manager” and could be split into its composing functional
blocks as Figure 3 shows: these blocks represent the main
issues a flash-memory based system has to tackle and to solve
in the more possible efficient way. Designers have to manage
how the logical to physical Address Translation is
accomplished: reliability and efficiency are only two of the
parameters of quality of this aspect. They need also to focus
on Wear Leveling and Garbage Collection techniques and
strategies. At the same time, designers need to distinguish
among several EDAC strategies: a trade-off between needed
reliability and related costs leads their choice over a particular
code rather than another one. In addition designers have to
manage Bad Blocks.

V. THE FLARE DESIGN EVALUATION ENVIRONMENT

In this section the proposed FLash ARchitecture Evaluation
(FLARE) design environment to support the design of flash-
based hard disks for space applications is introduced. FLARE
is currently under development.

Actually there is no systematic support for the development
of a flash-based hard disk qualified for space applications.
Designers have always to think about the most suitable choice
for the specific space applications they are dealing with: the
huge number of variables and parameters could easily lead to
unverified scenarios and to delayed product release.

In fact the level of confidence with these parameters is
directly linked with the designers’ skill, cleverness and
experience. As a result, a systematic tool to support the design
of flash-based hard disks for space applications is needed.

A. Evaluation parameters

FLARE tool is intended to evaluate several aspects of the
design of a flash-based system. Designers have to tackle many
critical issues: FLARE could help them to distinguish and
identify the peculiar features of these aspects and to evaluate
the most suitable solution for them.

The capacity of the flash-memory is the first fundamental
parameter to set: designers should discuss about the physical
quantity of flash-memory required by the design. This is a
typical issue of space applications: in fact space critical
missions require minimizing all the costs as much as possible
and the dimension of the flash-memory is the first significant
parameter that designers and their companies have to face.
Designers could have to discriminate among different flash-
memories of different capacities during the design of their
system: FLARE could provide them with an overall
evaluation of which capacity is more suitable for their design.

Designing a flash-based HD means dealing with NAND
flash-memories, which are always partitioned in blocks and in
turn each block is divided in pages: once capacity is set,
designers have to address the dimension of each block and of
each block or, in the same way, the number of blocks and
pages for each block.

Obviously, designers could decide the capacity from the
dimension and the number of blocks and pages, but the issue
is practically the same. FLARE could help the designers to do
this decision, in order to understand which level of granularity
would more properly fit with the current design and to decide
the most suitable flash-memory chipset.

Figure 3 – The main functional block of Flash-memory manager

An essential parameter to evaluate is the percentage of
wearing of each block: especially in mission-critical space
applications, resources are always a key-point of the mission
and it is desirable or, usually, mandatory that the percentage
of wasted resources is as low as possible. E.g., on the one
hand it could be enough 2GByte NAND flash-memory with
some kind of wear-leveling techniques or on the other hand a
bigger NAND flash-memory device could be requested in
order to accomplish mission requirements. At the same time,
designers could need to explore several kinds of solutions, in
order to find that one with the most fitting percentage of
wearing. As a consequence, this parameter is strictly linked to
the adopted wear-leveling strategies: with the help of FLARE,
designers could evaluate how this percentage varies as the
wear-leveling techniques change.

As a consequence designers need to calculate the
percentage of flash-memory which is not “dead”, i.e., the
percentage of blocks which did not become bad blocks at the
End-Of-Life (EOL). Mission-critical space applications
sometimes could explicitly require a fixed amount of flash-
memory still alive at the EOL: designers have to evaluate the
possible alternatives and to find the most affordable solution
at the minimum possible cost for their design.

Designers have to provide a well-defined level of
dependability according to their specific design. A
fundamental role could be played by the so called Out-Of-
Bound (OOB) data [3]: they can be exploited also to store
some kind of ECC/EDAC codes, in order to accomplish the
required dependability. The smart reader could get the
unavoidable trade-off between spare data and user data: in fact
it is true that a bigger OOB area could provide higher level of
dependability, but at the same time would provide poor
service in term of user data storage. Designers have to tackle
this issue and find the most suitable solution for their
particular design. Moreover, designers have to evaluate
among the Built-In Self Test (BIST) functionalities, evaluating
at the same time the percentage of errors detected/corrected.

This is only a possible incomplete taxonomy of what is
needed to be evaluated during the design of a flash-based
mass-memory device for space applications. Moreover all
these parameters are strictly linked together and they affect
each other in a complex way: so an exploration of these
different and quite often contrasting dimensions is needed and
no systematic approach has so far been proposed to consider
them all as a whole.

B. FLARE Architecture

The proposed FLash ARchitecture Evaluation (FLARE)
design environment is aimed at supporting designers through
all the steps of the design cycle flash-based hard disk for
space applications, including Architectural Exploration,
Design Validation & Verification, (Automatic) Test insertion,
Dependability evaluation and so on. FLARE is currently
under development.

Figure 4 shows the architecture of the system.

Figure 4 – A detailed view of FLARE architecture

1) System Configuration Management

The System Configuration Management allows setting and
exploring the possible alternatives and design dimensions:
designers are able to easily modify the memory configuration
block (Architecture configuration), the Test infrastructure
(Test configuration), and all the architectural solutions aimed
at tackling Flash aging (Bad block, Garbage Collection, Wear
Leveling Configuration).

The Architecture Configuration block is intended to contain
all the details about the architecture of the flash-memory to
emulate: capacity, number of blocks and number of pages are
only some of the main architectural parameters that the
designers are able to set.

With the Test Configuration block, the designer can set all
the parameters for correctly testing the proposed flash-
memory: all the issues addressed in the previous paragraphs
are taken into account and the proper fault-models and the
specific testing strategies can be specified, always according
to the particular application flash-memory is used for.

As clearly showed previously, some wear-leveling
strategies are needed to spread writes over the flash-memory:
designers are capable to exploit the Wear Leveling
Configuration block to specify all the details about the wear-
leveling strategies to adopt during the emulation campaign.
The range of these details can be variable: designers could
choose a “simple” less/more aggressive wear-leveling strategy
among the ones just provided with FLARE tool or developing
their own wear-leveling algorithm could be a valid alternative,
in order to evaluate it.

If wear leveling strategies aim to spread write operations
over the flash-memory device, at a certain point invalidated
space should be reclaimed: in the Garbage Collection module,
designers are able to specify the strategies to identify a block,
to collect its good pages and to erase it. It is usually strictly
connected with wear-leveling strategies: it could even be
considered that GC preferences are managed by wear-leveling
strategies, but these two issues are kept separated now.

However, blocks exceeding the maximum number of
erasure cycles are marked as bad: in Bad Block Configuration
module designers can set the proper parameters to mark,
identify and exclude bad blocks from active space memory.
Simple well-known strategies could be used (e.g., Skip Block
Method) as well as new approaches can be experimented and
evaluated by designers.

Dependability of flash-memory need to be guaranteed:
designers are able to specify in the EDAC Configuration block
all the parameters needed to accomplish the required level of
data integrity and reliability. E.g., a reasonable question could
be if a CRC code is enough to accomplish the requested level
of reliability or something more is needed. Maybe some ECC
would be absolutely necessary to accomplish the required
level, e.g., Orthogonal Reed-Solomon Error Correction Code
might be the EDAC strategy designers were looking for.

In EDAC Configuration block, designers are capable of
defining, exploring and evaluating all possible EDAC
strategies for their particular design.

The designers’ configuration choices feed the so called
Configuration Manager block: this layer is thought to take
care of managing the “static” data coming from the various
dimensions of the design of a flash-memory device (i.e., the
“note” modules on the right) and to get it across the core
functional blocks. This layer is essential for dispatching the
updated configuration modules discussed above to the
appropriate managing blocks. The architectural choice of
having this kind of layer is strictly linked to flexibility: in fact
on the one hand if some changes to parameters and algorithms
are needed, designers can simply modify the proper module(s)
not interesting in the rest, because the Configuration Manager
layer will take care of dispatching the updated configuration(s)
to the appropriate blocks. On the other hand, designers are
capable of developing new (compatible) configuration
modules, in case they felt like the existing modules were not
enough for their needs: adding new configuration modules to
the whole architecture would turn in very few efforts, thanks
to this way of partitioning, and would result in high
modularity and flexibility.

2) Flash Memory Simulator

The system kernel is the newly developed Flash Memory
Simulator, charged of providing the designer the possibility of
simulating and evaluating all the parameters of interest.

The Flash-memory Simulator block is one of the most
important functional blocks of the FLARE tool: in fact it is
thought to emulate the behavior of the configured flash-
memory. The desired architecture is specified in the
Architecture Configuration module discussed before: a
“customized” architectural configuration for the flash-memory
device could be identified or a ready for use configuration
could be chosen from a developed library. Then the
Configuration Manager takes this information and advertises
the Flash-memory Simulator block about the architectural
details of the flash-memory to emulate.

3) Dependability Evaluation

In addition to the overall architecture, some fault injection
techniques could be considered: a Fault Injector functional
block is added for this purpose. It is fed by a Fault Activation
Readout Measure (FARM) Configuration block [17]: it sets all
the needed parameters for the fault injector to make it work as
requested. In this way a fault can be injected in the system to
evaluate its effect in the emulated flash-memory. Fault
injection is an additional function of the FLARE tool: in fact it
is represented surrounded by a dotted rounded rectangle in
order to highlight this point, i.e., it is not essential to the
correctness of the FLARE tool, but at the same time it could
be very useful for experimenting various fault injection
techniques and configurations.

A Fault injection environment provides the designer to
assess the target system dependability via a powerful manager
of fault injection campaigns in all the part of the system itself.
[17]

4) Utilities

As the name intuitively suggests, the Monitor and Control
block is monitoring and controlling the output of the previous
Flash-memory Emulator block. Designers can have under
control all the events of the core blocks in order to get a more
comprehensive knowledge about the countermeasure to take
in some specific cases. The Monitor and Control block is
peculiarly different from the Data Warehouse Tool block: in
fact the last one is a mean with which the user can extract
information about the emulated flash-memory at the EOL
timeline, whereas the first one is a sort of automatic tool
informing the user about the most significant events of the
actual emulation campaign.

The use of a Database is fundamental to gather all the
information needed at the EOL timeline: its role is simply to
store data. The user is able to access the data with the help of
a Data Warehouse Tool: data and metadata can be extracted,
transformed and loaded, to easily accomplish all the designers’
requests.

VI. CONCLUSIONS AND FUTURE WORKS

This paper has proposed FLARE, a design environment to
support the designers during the design of flash-based hard
disks for space applications. The composing blocks of the
proposed architecture highlight the high-level of modularity
and flexibility that this tool will be able to provide to
designers: in fact each block is intended to be a sort of plug-in
block, which can simply be plugged-out and replaced by
another block when necessary, without taking care of the rest.
As a result, designers are provided with a powerful and
flexible environment, able to clearly identify the best choices
for the current design.

FLARE tool is currently under development and refinement:
the first implementation data of the tool are intended to be
provided soon.

VII. REFERENCES

[1] Anthony Lai: “Space-ready, radiation-tolerant processor modules: A

COTS technology strategy”, Military Embedded Systems Resource
Guide, May 2005

[2] Cassel M., Walter D., Schmidt H., Gliem F., Michalik H., Stähle M.,
Vögele K., Roos P. Casel.: "NAND-Flash-memory Technology in
Mass Memory Systems for Space Applications", Proceedings Data
Systems In Aerospace (DASIA) 2008, Palma de Mallorca, Spain, 2008

[3] Chang L. P., Kuo T. W.: "An efficient management scheme for large-
scale flash-memory storage systems", Proceedings of the 2004 ACM
Symposium on Applied Computing , Nicosia, Cyprus, 862-868, 2004

[4] Hsieh Jen-Wei, Tsai Yi-Lin, Kuo Tei-Wei, Lee Tzao-Lin:
"Configurable Flash-Memory Management: Performance versus
Overheads" IEEE Transactions on Computers, Vol. 57, no. 11, 2008

[5] Intel Corporation, Technical Report: "Understanding the Flash
Translation Layer (FTL) Specification", December 1998

[6] Woodhouse D., Red Hat, Inc.: “JFFS : The Journalling Flash File
System”, http://sources.redhat.com/jffs2/jffs2.pdf , 2001

[7] JFFS2, http://sourceware.org/jffs2/
[8] Aleph One Company, Cambridge, UK: “Yet Another Flash File

System”, http://www.aleph1.co.uk/yaffs/index.html, 2002
[9] Brüggemann M., Schmidt H., Walter D., Gliem F., Michalik H.:

“Further Heavy Ion and Proton SEE Evaluation of High Capacity
NAND-Flash-memory Devices for Safeguard Data Recorder”, 8th
ESA/ESTEC D/TEC-QCA Final Presentation Day, February 2007

[10] Schmidt H., Walter D., Brüggemann M., Gliem F., Harboe-Sørensen R.,
Virtanen A.: "Heavy Ion SEE Studies on 4-Gbit NAND-Flash-
memories", Radiation Effects on Components and Systems (RADECS)
2007, DWL-14, September 2007

[11] Schmidt H., Walter D., Gliem F., Nickson B., Harboe-Sorensen R.,
Virtanen A.: “TID and SEE Tests of an Advanced 8 Gbit NAND-
Flash-memory”, Proc. IEEE Radiation Effects Data Workshop, 2008,
38-41

[12] Brüggemann M., Schmidt H., Walter D., Gliem F., Harboe-Sørensen R.,
Roos P., Stähle M.: “SEE Tests of NAND Flash-memory Devices for
Use in a Safeguard Data Recorder”, Radiation Effects on Components
and Systems (RADECS) 2006, A-3, Volume A-3, 2006

[13] SanDisk Corporation, White Paper: “SanDisk Flash-memory Cards
Wear Leveling”, Doc. No. 80-36-00278, October 2003

[14] Chang Li-Pin: "On Efficient Wear Leveling for Large-Scale Flash-
MemoryStorage Systems", Proceedings of the 22nd ACM Symposium
on Applied Computing, 2007

[15] M. L. Chiang, Paul C. H. Lee, R. C. Chang: "Using Data Clustering To
Improve Cleaning Performance For Flash Memory", Software -
Practice and Experience, 1999

[16] Chang Y.-H., Hsieh J.-W., Kuo T.-W.: “Endurance Enhancement of
Flash-Memory Storage, Systems: An Efficient Static Wear Leveling
Design” Proc. 44th ACM/IEEE Design Automation Conference (DAC)
'07, 212-217, 2007

[17] Benso A., Prinetto P.: “Fault Injection Techniques and Tools for
Embedded Systems Reliability Evaluation” – Kluver Academic
Publishers, ISBN: 1-4020-7589-8, 2003

[18] Caramia M., Di Carlo S., Fabiano M., Prinetto P.: “Flash-memories in
Space Applications: Trends and Challenges”, East-West Design & Test
Symposium (EWDTS) 2009, Moscow, Russia, September 18-21, to
appear

[19] Samsung, Application Note: “XSR1.5 Bad Block Management”, May
2007

