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Abstract – Designing a mass-memory device (i.e., a solid-state 

recorder) is one of the typical issues of mission-critical space 
system applications. Flash-memories could be used for this goal: 
a huge number of parameters and trade-offs need to be explored. 
Flash-memories are nonvolatile, shock-resistant and power-
economic, but in turn have different drawback: e.g., their cost is 
higher than normal hard disk and the number of erasure cycles 
is bounded. Moreover space environment presents various issues 
especially because of radiations: different and quite often 
contrasting dimensions need to be explored during the design of 
a flash-memory based solid-state recorder. No systematic 
approach has so far been proposed to consider them all as a 
whole: as a consequence a novel design environment currently 
under development is aimed at supporting the design of flash-
based mass-memory device for space applications. 

 

I. INTRODUCTION 

Nowadays processing power available for embedded 
technology and boards is absolutely overcoming the one 
available just a few years ago. However, in space applications 
the very strict requirements have often driven the design 
choices toward older and/or lower-performing radiation-
tolerant electronics. Although each new space application has 
its own story and requires increasing intelligence and 
autonomy [1], a typical mission-critical space system 
application includes solid state recorder(s), redundant mission 
computers, flight guidance and navigation systems, health 
monitoring computers and robotic manipulator controllers. 

The issue of solid-state recorder(s) for space applications is 
addressed in this paper. In particular, we shall present a design 
environment currently under development, to support the 
design of flash-based hard disks (HDs) for space applications. 

Flash-memory based systems are gaining acceptance and 
usage not only in the consumer market but in space 
applications, as well, where they mainly play the role of high-
capacity storage devices: in fact flash-memory guarantees 
both the non-volatility in case of power loss and a highest 
storage density [2]. Moreover they are shock-resistant and 
power-economic: power consumption is always a critical issue 
in space applications. However designing flash-based systems 

for space application requires both exploring a huge number 
of design dimensions and evaluating a huge amount of trade-
offs among all such dimensions. The most relevant 
dimensions include, e.g., flash-memory technology, flash-
memory architecture, file management system, dependability 
enhancement strategies, power consumption, weight, physical 
size and so on. A complex and powerful design environment 
is thus needed to properly evaluate the impact of the choices 
in each dimension and the related trade-offs. 

Unfortunately no such a design environment is today 
available: in fact in the literature each paper is typically 
tackling just one specific issue in just one design dimensions. 
No systematic approach has so far been proposed to consider 
them all as a whole. Such a concurrent exploration capability 
is mandatory to provide the designers a powerful design 
environment, capable of supporting them through all the steps 
of the design cycle, including Architectural Exploration, 
Design Validation & Verification, (Automatic) Test insertion, 
Dependability evaluation and so on. 

This paper presents the general architecture of a novel 
design environment currently under development to support 
the design of flash-based mass memories, especially for space 
applications. As pointed out before, the project is mainly 
pushed by the unavailability, at our best knowledge, of a 
commercial tool capable of supporting a systematic analysis 
and exploration of the different possible alternatives. 

The rest of the paper is organized as follows: Section 2 
addresses the main flash-memory peculiarities, Section 3 
explores the dimensions of the issues of designing flash-based 
mass memory devices, focusing the attention also on the space 
applications, Section 4 deals with the modeling of flash-based 
HDs, while Section 5 proposes a possible architecture for a 
design environment to support the design of flash-based hard 
disks for space applications. 

II. FLASH-MEMORY PECULIARITIES 

Flash-memories present several interesting features that 
properly fit with the requirements of mass-memories for space 
applications, while possible alternatives need to be evaluated. 



 
 

Our solid-state recorder would need a relative high capacity: 
the first most suitable solution could be DRAMs. On the one 
hand DRAMs are very fast, reliable and provide a very high 
data rate, but on the other hand they need a battery pack-up to 
not lose data and this issue generate an intricate balance 
between battery mass and data retention time: data retention 
over years is not feasible and count of battery charge cycles 
are limited. DRAMs are not discussed anymore in this paper. 

The second and more attractive solution is the use of flash-
memories. There are two major types of flash-memory in the 
current market: NOR and NAND flash-memory. NOR flash-
memory is for EEPROM replacement and is more suitable for 
program execution, while NAND flash-memory is more 
suitable for storage systems [3], [4]: Table 1 briefly sums up 
the main characteristic of these types of flash-memory. 

This paper addresses only NAND flash-memories: in fact 
they are the most suitable choice for HD replacement. 

On the one hand, flash-memories are nonvolatile, shock-
resistant, and power-economic: a pure flash-memory based 
solution could guarantee unlimited data retention time and no 
need of battery backup. On the other hand flash-memories are 
still much more expensive than hard disk drive memory. Only 
rather large data structures could be accessed and, in addition, 
DDR2 SDRAMs provide higher write/read rate (e.g., 6 Gbit/s) 
compared to the moderate one accomplished by flash-
memories (e.g., up to 80/200 Mbit/s) [2]. Moreover one of the 
main challenging aspects of flash-memories is that the space 
already written (i.e., programmed) with data usually cannot be 
overwritten unless it is erased from the flash-memory device. 

A NAND flash-memory is usually partitioned into blocks: 
each block has a fixed number of pages and each page has a 
fixed size. A block is the smallest unit for erase operations, 
while read and write operations are done in terms of pages, i.e., 
a page can be erased only if its whole corresponding block is 
erased, whereas a page can be read/written independently.  

In addition flash-memory wears out after a certain number 
of erasure cycles (i.e., actually 106 for NAND flash-memory): 
if the erasure cycles of a block exceed this number, it becomes 
a “bad block” and is not reliable for storing data anymore. 

 
 
 NAND NOR 
Standby Power Low/Med Low 
Active Power Low Med/High 
Cost per bit Low High 
Read Speed Med/High High 
Write Speed High Low 
Erase Speed High Medium 
Capacity High Low 
Erase Cycles 106 105 

File Storage Use Easy Hard 
Code Execution Hard Easy 
Interface I/O-like SRAM-like 

TABLE 1 – NAND VS NOR FLASH-MEMORY 

 

Finally another peculiar aspect of flash-memories is that 
technology provides the possibility of storing more than one 
bit of information per cell: in fact traditional flash-memory 
devices (Single-Level Cell or SLC) store only one bit per cell, 
while newer devices (Multi-Level Cell or MLC) are able to 
store typically two bits per cell. 

 

III. ISSUES IN DESIGNING FLASH-BASED HARD-DISKS FOR 

SPACE APPLICATIONS 

When a flash-based system for space application has to be 
designed, the investigation of a vast quantity of design 
parameters needs to be defined. A possible partial taxonomy 
could involve Flash-memory Technology, Flash-memory 
Architecture, Flash-memory Wearing, Testing and 
Dependability and, finally, Using flash-memory as Hard-Disk. 

Designer should discriminate among which technology to 
choose (Flash-memory Technology) and they may also have to 
select the most appropriate flash-memory chipset (Flash-
memory Architecture). [18] 

In the problem of Wearing, a significant role is played by 
the so called wear leveling techniques, which are aiming at 
distributing data evenly across each memory block of the 
entire flash-memory to avoid single block to wear out. Several 
interesting wear leveling techniques have been proposed [13] 
– [16] and could be considered or higher capacity flash-
memory devices could be used, then especially taking care of 
the resulting drawbacks in terms of weight and volume [2]. 
An effective comparative analysis of some wear leveling 
algorithms could be found in [14]. 

Flash-memory Testing is quite different from testing other 
kinds of memory: disturbances or faults not conforming to any 
of the traditionally known fault models used in testing RAMs 
could be experienced and specific fault models are needed to 
properly represent the most frequent physical defects are 
needed. Then efficient test algorithms are needed and Built-In 
Self Test (BIST) and Built-In Self Diagnosis (BISD) circuits 
have to been taken in consideration. [18] 

However wearing, testing and dependability are strictly 
linked among each other and designers should evaluate the 
right trade-off among them. 

Several challenging aspects need to be addressed when 
using a flash-memory as a mass-memory device. A possible 
incomplete taxonomy of these aspects could involve: 

 
 looking for proper solutions in order to let OS 

successfully communicate with NAND flash-memory 
devices (i.e., Operating System Management) [3] – [8] 

 implementing an efficient logical to physical address 
translation process for fast operations (i.e., Address 
Translation) [18] 

 proper techniques to handle blocks exceeding the 
maximum number of erase cycles (i.e., Bad Block 
Management)  [19] 

 proper strategies for reclaiming invalidated space to be 
erased in order to free some space (i.e., Garbage 
Collection) [18] 



 
 

 
Finally designers should address Error Detection And 

Correction (EDAC) techniques, evaluating the most proper 
choice for their design. [18] 

[18] is a more detailed investigation about these main flash-
memory issues discussed above. 

 

A. Flash-based Hard-Disks in the Space Environment 

A solid state recorder for critical space missions needs to 
satisfy many different constraints, including, among the 
others, no loss of mass memory data and the guaranteed 
availability of storage capability at End-Of-Life (EOL). A 
well-designed flash-based memory system can meet the 
requirements of interplanetary missions, but its design must 
compensate for flash’s shortcomings in speed, radiation 
tolerance, noise, and read/write cycle life and this 
compensation leverage the costs. 

On the one hand vendors should absolutely provide flash-
memories physically qualified to survive in the space 
environment with the help of proper strategies [9] – [12], 
while on the other hand data integrity, reliability, simplicity, 
modularity, and autonomy are just some of the key features to 
fulfill (e.g., reliable storage of context data, also during 
spacecraft power outage). 

Moreover designers should evaluate the most proper choice 
for accomplishing the level of dependability requested by their 
design, with the help of ECC algorithms for error checking 
and correction of NAND flash-memory. A more detailed 
survey about the most peculiar flash-memory design 
dimensions and trade-offs to tackle during the design of flash-
based hard disks for space applications could be found in [18]. 

 

IV. MODELING OF FLASH-BASED HARD-DISKS 

Several issues and aspects need to be addressed during the 
modeling of a flash-based HD. First of all, Figure 1 shows a 
first possible high view of a flash-based mass-memory device. 

There are three main functional blocks: a Non-Volatile 
Memory is needed to provide integrity of data, a Volatile 
Memory is used for performance reasons, while a Memory 
Controller is managing and controlling the overall system, 
providing several features. The mass-memory device is 
interacting with the requests of the external world, e.g., the 
operations of the OS in use. 

 

 

Figure 1 – A Flash-based Hard Disk Architecture 

 

    (a)                  (b)  

Figure 2 – (a) High-level and (b) low-level view of flash architecture 

It is possible to refine this first architectural view: in fact, 
during the design of a flash-based HD, the OS and the 
applications want to successfully communicate with the bare 
flash-memory chip. Figure 2 (a) shows that an intermediate 
block is needed to accomplish this task. On the one hand OS 
usually would like to exploit its typical system calls (e.g., 
open, read, write) to work with the mass-memory device, 
without taking care of anything else. On the other hand, the 
flash-memory chip would like to receive the most proper 
commands to accomplish the operations previously requested 
from the OS: Figure 2 (b) shows a possible view of the 
commands a flash-memory chip usually would like to get. E.g., 
[16] briefly presents a typical layered system architecture of 
popular flash-memory-based file systems. 

So designers should develop a sort of managing part to 
tackle all the typical issues of flash-memories, presented also 
in the previous paragraphs. This is the most important and 
challenging part of designing a flash-based HD: many often 
contrasting issues, parameters and dimensions are involved in 
this part, which has to address them in the most proper way. 

This managing part could be named “flash-memory 
manager” and could be split into its composing functional 
blocks as Figure 3 shows: these blocks represent the main 
issues a flash-memory based system has to tackle and to solve 
in the more possible efficient way. Designers have to manage 
how the logical to physical Address Translation is 
accomplished: reliability and efficiency are only two of the 
parameters of quality of this aspect. They need also to focus 
on Wear Leveling and Garbage Collection techniques and 
strategies. At the same time, designers need to distinguish 
among several EDAC strategies: a trade-off between needed 
reliability and related costs leads their choice over a particular 
code rather than another one. In addition designers have to 
manage Bad Blocks. 

 

V. THE FLARE DESIGN EVALUATION ENVIRONMENT 

In this section the proposed FLash ARchitecture Evaluation 
(FLARE) design environment to support the design of flash-
based hard disks for space applications is introduced. FLARE 
is currently under development. 



 
 

Actually there is no systematic support for the development 
of a flash-based hard disk qualified for space applications. 
Designers have always to think about the most suitable choice 
for the specific space applications they are dealing with: the 
huge number of variables and parameters could easily lead to 
unverified scenarios and to delayed product release. 

In fact the level of confidence with these parameters is 
directly linked with the designers’ skill, cleverness and 
experience. As a result, a systematic tool to support the design 
of flash-based hard disks for space applications is needed. 

 

A. Evaluation parameters 

FLARE tool is intended to evaluate several aspects of the 
design of a flash-based system. Designers have to tackle many 
critical issues: FLARE could help them to distinguish and 
identify the peculiar features of these aspects and to evaluate 
the most suitable solution for them. 

The capacity of the flash-memory is the first fundamental 
parameter to set: designers should discuss about the physical 
quantity of flash-memory required by the design. This is a 
typical issue of space applications: in fact space critical 
missions require minimizing all the costs as much as possible 
and the dimension of the flash-memory is the first significant 
parameter that designers and their companies have to face. 
Designers could have to discriminate among different flash-
memories of different capacities during the design of their 
system: FLARE could provide them with an overall 
evaluation of which capacity is more suitable for their design. 

Designing a flash-based HD means dealing with NAND 
flash-memories, which are always partitioned in blocks and in 
turn each block is divided in pages: once capacity is set, 
designers have to address the dimension of each block and of 
each block or, in the same way, the number of blocks and 
pages for each block. 

Obviously, designers could decide the capacity from the 
dimension and the number of blocks and pages, but the issue 
is practically the same. FLARE could help the designers to do 
this decision, in order to understand which level of granularity 
would more properly fit with the current design and to decide 
the most suitable flash-memory chipset. 

 

 

Figure 3 – The main functional block of Flash-memory manager 

An essential parameter to evaluate is the percentage of 
wearing of each block: especially in mission-critical space 
applications, resources are always a key-point of the mission 
and it is desirable or, usually, mandatory that the percentage 
of wasted resources is as low as possible. E.g., on the one 
hand it could be enough 2GByte NAND flash-memory with 
some kind of wear-leveling techniques or on the other hand a 
bigger NAND flash-memory device could be requested in 
order to accomplish mission requirements. At the same time, 
designers could need to explore several kinds of solutions, in 
order to find that one with the most fitting percentage of 
wearing. As a consequence, this parameter is strictly linked to 
the adopted wear-leveling strategies: with the help of FLARE, 
designers could evaluate how this percentage varies as the 
wear-leveling techniques change. 

As a consequence designers need to calculate the 
percentage of flash-memory which is not “dead”, i.e., the 
percentage of blocks which did not become bad blocks at the 
End-Of-Life (EOL). Mission-critical space applications 
sometimes could explicitly require a fixed amount of flash-
memory still alive at the EOL: designers have to evaluate the 
possible alternatives and to find the most affordable solution 
at the minimum possible cost for their design. 

Designers have to provide a well-defined level of 
dependability according to their specific design. A 
fundamental role could be played by the so called Out-Of-
Bound (OOB) data [3]: they can be exploited also to store 
some kind of ECC/EDAC codes, in order to accomplish the 
required dependability. The smart reader could get the 
unavoidable trade-off between spare data and user data: in fact 
it is true that a bigger OOB area could provide higher level of 
dependability, but at the same time would provide poor 
service in term of user data storage. Designers have to tackle 
this issue and find the most suitable solution for their 
particular design. Moreover, designers have to evaluate 
among the Built-In Self Test (BIST) functionalities, evaluating 
at the same time the percentage of errors detected/corrected. 

This is only a possible incomplete taxonomy of what is 
needed to be evaluated during the design of a flash-based 
mass-memory device for space applications. Moreover all 
these parameters are strictly linked together and they affect 
each other in a complex way: so an exploration of these 
different and quite often contrasting dimensions is needed and 
no systematic approach has so far been proposed to consider 
them all as a whole. 

 

B. FLARE Architecture 

The proposed FLash ARchitecture Evaluation (FLARE) 
design environment is aimed at supporting designers through 
all the steps of the design cycle flash-based hard disk for 
space applications, including Architectural Exploration, 
Design Validation & Verification, (Automatic) Test insertion, 
Dependability evaluation and so on. FLARE is currently 
under development. 

Figure 4 shows the architecture of the system. 
 
 



 
 

 

Figure 4 – A detailed view of FLARE architecture 

1)  System Configuration Management 

The System Configuration Management allows setting and 
exploring the possible alternatives and design dimensions: 
designers are able to easily modify the memory configuration 
block (Architecture configuration), the Test infrastructure 
(Test configuration), and all the architectural solutions aimed 
at tackling Flash aging (Bad block, Garbage Collection, Wear 
Leveling Configuration). 

The Architecture Configuration block is intended to contain 
all the details about the architecture of the flash-memory to 
emulate: capacity, number of blocks and number of pages are 
only some of the main architectural parameters that the 
designers are able to set. 

With the Test Configuration block, the designer can set all 
the parameters for correctly testing the proposed flash-
memory: all the issues addressed in the previous paragraphs 
are taken into account and the proper fault-models and the 
specific testing strategies can be specified, always according 
to the particular application flash-memory is used for. 

As clearly showed previously, some wear-leveling 
strategies are needed to spread writes over the flash-memory: 
designers are capable to exploit the Wear Leveling 
Configuration block to specify all the details about the wear-
leveling strategies to adopt during the emulation campaign. 
The range of these details can be variable: designers could 
choose a “simple” less/more aggressive wear-leveling strategy 
among the ones just provided with FLARE tool or developing 
their own wear-leveling algorithm could be a valid alternative, 
in order to evaluate it. 

If wear leveling strategies aim to spread write operations 
over the flash-memory device, at a certain point invalidated 
space should be reclaimed: in the Garbage Collection module, 
designers are able to specify the strategies to identify a block, 
to collect its good pages and to erase it. It is usually strictly 
connected with wear-leveling strategies: it could even be 
considered that GC preferences are managed by wear-leveling 
strategies, but these two issues are kept separated now. 

However, blocks exceeding the maximum number of 
erasure cycles are marked as bad: in Bad Block Configuration 
module designers can set the proper parameters to mark, 
identify and exclude bad blocks from active space memory. 
Simple well-known strategies could be used (e.g., Skip Block 
Method) as well as new approaches can be experimented and 
evaluated by designers. 

Dependability of flash-memory need to be guaranteed: 
designers are able to specify in the EDAC Configuration block 
all the parameters needed to accomplish the required level of 
data integrity and reliability. E.g., a reasonable question could 
be if a CRC code is enough to accomplish the requested level 
of reliability or something more is needed. Maybe some ECC 
would be absolutely necessary to accomplish the required 
level, e.g., Orthogonal Reed-Solomon Error Correction Code 
might be the EDAC strategy designers were looking for. 

In EDAC Configuration block, designers are capable of 
defining, exploring and evaluating all possible EDAC 
strategies for their particular design. 

The designers’ configuration choices feed the so called 
Configuration Manager block: this layer is thought to take 
care of managing the “static” data coming from the various 
dimensions of the design of a flash-memory device (i.e., the 
“note” modules on the right) and to get it across the core 
functional blocks. This layer is essential for dispatching the 
updated configuration modules discussed above to the 
appropriate managing blocks. The architectural choice of 
having this kind of layer is strictly linked to flexibility: in fact 
on the one hand if some changes to parameters and algorithms 
are needed, designers can simply modify the proper module(s) 
not interesting in the rest, because the Configuration Manager 
layer will take care of dispatching the updated configuration(s) 
to the appropriate blocks. On the other hand, designers are 
capable of developing new (compatible) configuration 
modules, in case they felt like the existing modules were not 
enough for their needs: adding new configuration modules to 
the whole architecture would turn in very few efforts, thanks 
to this way of partitioning, and would result in high 
modularity and flexibility. 

 

2)  Flash Memory Simulator 

The system kernel is the newly developed Flash Memory 
Simulator, charged of providing the designer the possibility of 
simulating and evaluating all the parameters of interest. 

The Flash-memory Simulator block is one of the most 
important functional blocks of the FLARE tool: in fact it is 
thought to emulate the behavior of the configured flash-
memory. The desired architecture is specified in the 
Architecture Configuration module discussed before: a 
“customized” architectural configuration for the flash-memory 
device could be identified or a ready for use configuration 
could be chosen from a developed library. Then the 
Configuration Manager takes this information and advertises 
the Flash-memory Simulator block about the architectural 
details of the flash-memory to emulate. 

 



 
 

3)  Dependability Evaluation 

In addition to the overall architecture, some fault injection 
techniques could be considered: a Fault Injector functional 
block is added for this purpose. It is fed by a Fault Activation 
Readout Measure (FARM) Configuration block [17]: it sets all 
the needed parameters for the fault injector to make it work as 
requested. In this way a fault can be injected in the system to 
evaluate its effect in the emulated flash-memory. Fault 
injection is an additional function of the FLARE tool: in fact it 
is represented surrounded by a dotted rounded rectangle in 
order to highlight this point, i.e., it is not essential to the 
correctness of the FLARE tool, but at the same time it could 
be very useful for experimenting various fault injection 
techniques and configurations. 

A Fault injection environment provides the designer to 
assess the target system dependability via a powerful manager 
of fault injection campaigns in all the part of the system itself. 
[17] 

 

4)  Utilities 

As the name intuitively suggests, the Monitor and Control 
block is monitoring and controlling the output of the previous 
Flash-memory Emulator block. Designers can have under 
control all the events of the core blocks in order to get a more 
comprehensive knowledge about the countermeasure to take 
in some specific cases. The Monitor and Control block is 
peculiarly different from the Data Warehouse Tool block: in 
fact the last one is a mean with which the user can extract 
information about the emulated flash-memory at the EOL 
timeline, whereas the first one is a sort of automatic tool 
informing the user about the most significant events of the 
actual emulation campaign. 

The use of a Database is fundamental to gather all the 
information needed at the EOL timeline: its role is simply to 
store data. The user is able to access the data with the help of 
a Data Warehouse Tool: data and metadata can be extracted, 
transformed and loaded, to easily accomplish all the designers’ 
requests. 

 

VI. CONCLUSIONS AND FUTURE WORKS 

This paper has proposed FLARE, a design environment to 
support the designers during the design of flash-based hard 
disks for space applications. The composing blocks of the 
proposed architecture highlight the high-level of modularity 
and flexibility that this tool will be able to provide to 
designers: in fact each block is intended to be a sort of plug-in 
block, which can simply be plugged-out and replaced by 
another block when necessary, without taking care of the rest. 
As a result, designers are provided with a powerful and 
flexible environment, able to clearly identify the best choices 
for the current design. 

FLARE tool is currently under development and refinement: 
the first implementation data of the tool are intended to be 
provided soon. 

 

VII. REFERENCES 

 
[1] Anthony Lai: “Space-ready, radiation-tolerant processor modules: A 

COTS technology strategy”, Military Embedded Systems Resource 
Guide, May 2005 

[2] Cassel M., Walter D., Schmidt H., Gliem F., Michalik H., Stähle M., 
Vögele K., Roos P. Casel.: "NAND-Flash-memory Technology in 
Mass Memory Systems for Space Applications", Proceedings Data 
Systems In Aerospace (DASIA) 2008, Palma de Mallorca, Spain, 2008 

[3] Chang L. P., Kuo T. W.: "An efficient management scheme for large-
scale flash-memory storage systems", Proceedings of the 2004 ACM 
Symposium on Applied Computing , Nicosia, Cyprus, 862-868, 2004 

[4] Hsieh Jen-Wei, Tsai Yi-Lin, Kuo Tei-Wei, Lee Tzao-Lin: 
"Configurable Flash-Memory Management: Performance versus 
Overheads" IEEE Transactions on Computers, Vol. 57, no. 11, 2008 

[5] Intel Corporation, Technical Report: "Understanding the Flash 
Translation Layer (FTL) Specification", December 1998 

[6] Woodhouse D., Red Hat, Inc.: “JFFS : The Journalling Flash File 
System”, http://sources.redhat.com/jffs2/jffs2.pdf , 2001 

[7] JFFS2, http://sourceware.org/jffs2/ 
[8] Aleph One Company, Cambridge, UK: “Yet Another Flash File 

System”, http://www.aleph1.co.uk/yaffs/index.html, 2002 
[9] Brüggemann M., Schmidt H., Walter D., Gliem F., Michalik H.: 

“Further Heavy Ion and Proton SEE Evaluation of High Capacity 
NAND-Flash-memory Devices for Safeguard Data Recorder”, 8th 
ESA/ESTEC D/TEC-QCA Final Presentation Day, February 2007 

[10] Schmidt H., Walter D., Brüggemann M., Gliem F., Harboe-Sørensen R., 
Virtanen A.: "Heavy Ion SEE Studies on 4-Gbit NAND-Flash-
memories", Radiation Effects on Components and Systems (RADECS) 
2007, DWL-14, September 2007 

[11] Schmidt H., Walter D., Gliem F., Nickson B., Harboe-Sorensen R., 
Virtanen A.: “TID and SEE Tests of an Advanced 8 Gbit NAND-
Flash-memory”, Proc. IEEE Radiation Effects Data Workshop, 2008, 
38-41 

[12] Brüggemann M., Schmidt H., Walter D., Gliem F., Harboe-Sørensen R., 
Roos P., Stähle M.: “SEE Tests of NAND Flash-memory Devices for 
Use in a Safeguard Data Recorder”, Radiation Effects on Components 
and Systems (RADECS) 2006, A-3, Volume A-3, 2006 

[13] SanDisk Corporation, White Paper: “SanDisk Flash-memory Cards 
Wear Leveling”, Doc. No. 80-36-00278, October 2003 

[14] Chang Li-Pin: "On Efficient Wear Leveling for Large-Scale Flash-
MemoryStorage Systems", Proceedings of the 22nd ACM Symposium 
on Applied Computing, 2007 

[15] M. L. Chiang, Paul C. H. Lee, R. C. Chang: "Using Data Clustering To 
Improve Cleaning Performance For Flash Memory", Software - 
Practice and Experience, 1999 

[16] Chang Y.-H., Hsieh J.-W., Kuo T.-W.: “Endurance Enhancement of 
Flash-Memory Storage, Systems: An Efficient Static Wear Leveling 
Design” Proc. 44th ACM/IEEE Design Automation Conference (DAC) 
'07, 212-217, 2007 

[17] Benso A., Prinetto P.: “Fault Injection Techniques and Tools for 
Embedded Systems Reliability Evaluation” – Kluver Academic 
Publishers, ISBN: 1-4020-7589-8, 2003 

[18] Caramia M., Di Carlo S., Fabiano M., Prinetto P.: “Flash-memories in 
Space Applications: Trends and Challenges”, East-West Design & Test 
Symposium (EWDTS) 2009, Moscow, Russia, September 18-21, to 
appear 

[19] Samsung, Application Note: “XSR1.5 Bad Block Management”, May 
2007 


