
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Partitioning Interpolant-Based Verificationfor effective Unbounded Model Checking / Cabodi, Gianpiero; Garcia, L;
Murciano, Marco; Nocco, S; Quer, Stefano. - In: IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF
INTEGRATED CIRCUITS AND SYSTEMS. - ISSN 0278-0070. - STAMPA. - 29:(2010), pp. 382-395.
[10.1109/TCAD.2010.2041847]

Original

Partitioning Interpolant-Based Verificationfor effective Unbounded Model Checking

Publisher:

Published
DOI:10.1109/TCAD.2010.2041847

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2292149 since:

IEEE

382 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 3, MARCH 2010

Partitioning Interpolant-Based Verification
for Effective Unbounded Model Checking
Gianpiero Cabodi, Luz Amanda Garcia, Marco Murciano, Sergio Nocco, and Stefano Quer

Abstract—Interpolant-based model checking has been shown
to be effective on large verification instances, as it efficiently com-
bines automated abstraction and reachability fixed-point checks.
On the other hand, methods based on variable quantification
have proved their ability to remove free inputs, thus projecting
the search space over state variables. In this paper, we propose
an integrated approach which combines the abstraction power
of interpolation with techniques that rely on and-inverter graph
(AIG) and/or binary decision diagram (BDD) representations of
states, directly supporting variable quantification and fixed-point
checks. The underlying idea of this combination is to adopt AIG
or BDD-based quantifications to limit and restrict the search
space and the complexity of the interpolant-based approach. The
exploited strategies, most of which are individually well known,
are integrated with a new flavor, specifically designed to improve
their effectiveness on difficult verification instances. Experimental
results, specifically oriented to hard-to-solve verification prob-
lems, show the robustness of our approach.

Index Terms—Binary decision diagrams, formal methods, for-
mal verification, model checking, satisfiability, symbolic tech-
niques.

I. Introduction

ABSTRACTION techniques have been shown to be very
effective in hardware formal verification, due to their

ability to remove those parts of a system that are not rel-
evant for the verification task. Craig interpolants [1], [2],
recently introduced by McMillan [3] in the field of formal
verification for unbounded model checking (UMC), represent a
fully automated abstraction/refinement method. This approach
relies on the ability of modern Boolean satisfiability (SAT)
solvers to generate proofs of unsatisfiability. Abstractions
are computed as over-approximations of the reachable states,
generated from refutation proofs of unsatisfied bounded model
checking (BMC) instances. Refinements are achieved through
increments of the bounds of the BMC runs, thus iteratively
tightening the over-approximations. The process iterates until
it converges on a proof, or the property is falsified by a BMC
check on the concrete model.

Manuscript received April 8, 2009; revised August 12, 2009. Current version
published February 24, 2010. This paper was recommended by Associate
Editor V. Bertacco.

G. Cabodi, M. Murciano, S. Nocco, and S. Quer are with the
Dipartimento di Automatica e Informatica, Politecnico di Torino, Turin
I-10129, Italy (e-mail: gianpiero.cabodi@polito.it; marco.murciano@polito.it;
sergio.nocco@polito.it; stefano.quer@polito.it).

L. A. Garcia is with AleniaSIA, Turin I-10146, Italy (e-mail:
luz.garcia@polito.it).

Digital Object Identifier 10.1109/TCAD.2010.2041847

Unfortunately, the main strength of interpolants, i.e., the
automated exploitation of SAT refutation proofs, is also their
weakness, as interpolants can become very large with complex
SAT checks.

A careful analysis of the unsolved problems leads to the
following observations.

1) Craig interpolants tend to produce highly redundant
circuit representations of state sets. Combinational logic
optimizers are often not powerful and scalable enough
to compact those representations.

2) Abstraction usually reduces the sequential depth of state
transition graphs. Nonetheless, over-approximation can
trigger state space explorations within unreachable state
areas, with direct consequences in terms of visited states
and their representations.

3) Alternative circuit and SAT-based state set representa-
tions often imply complex quantifier elimination. As a
consequence, those techniques often perform well on
sub-sets of problems/variables, whereas memory blow-
up occurs when working on the complete model.

4) Other verification techniques, e.g., based on binary de-
cision diagrams (BDDs), can outperform interpolants
and complete some of the unsolved problems. Never-
theless, the exploitation of possible interactions among
alternative methods, and the use of interpolants in co-
operation with other verification approaches, are mostly
unexplored fields.

A. Proposed Method

Starting from the above listed problems, we propose to
complement interpolant-based verification with a set of co-
operating techniques, properly selected among state-of-the-art
approaches to UMC.

More specifically, we adopt a divide-and-conquer approach,
in which different verification methods are used to solve a
part of the problem and cooperate to reach the final goal. We
incrementally run three main techniques: Craig interpolation,
circuit-based quantification, and SAT enumeration. Although a
possible methodology is to put those strategies in competition
by running them in parallel, we chose a sequential approach
with increasing time bounds and preemption. In this way, each
strategy potentially contributes to part of the solution. We
exploit interpolants for abstraction purposes, as interpolation
approaches basically use forward over-approximate (i.e., ab-
stract) reachability, controlled by backward (BMC-like) circuit
unrollings. We complete this analysis with partial reacha-

0278-0070/$26.00 c© 2010 IEEE

CABODI et al.: PARTITIONING INTERPOLANT-BASED VERIFICATION FOR EFFECTIVE UNBOUNDED MODEL CHECKING 383

bility and state set manipulation in the backward direction.
Backward reachable states either directly support verification
checks, or provide search space restrictions for interpolant-
based verification. We adopt BDDs whenever the size of the
problem is within their typical range of applicability. We resort
to circuit-based representations and SAT solvers, for quantifier
elimination, in the other cases. Notice that other techniques are
active within our framework, such as combinational circuit
rewritings, inductive invariants, inductive checks, and so on.
Anyhow, we consider those techniques as incremental opti-
mizations, rather than other competing/cooperating tools.

We extensively adopt data partitioning schemes, at the level
of both circuit-based and state set representations, to reduce
the complexity of expensive operations. In particular, we
resort to partitioned interpolations to enhance scalability and
robustness.

Overall, our integrated method strongly relies on the general
idea of tentatively transforming circuit-based representations
into state sets, whenever this is feasible and convenient. When
the transformation is not completely possible, because either
time or memory resources are exceeded, we use the partial
state sets to simplify further verification steps, performed by
the same or a different engine. Notice that our methodology
is more than just a mix of several competing techniques, such
that, for any given problem, one of them wins over the others.
Our combined approach often produces better results than any
component strategy running separately, as each component
method is able to exploit (and contribute to) part of the
generated state sets.

To sum up, the main contributions of this paper are:

1) an integrated approach combining interpolant-based ver-
ification with quantifier elimination methods, using SAT
solvers;

2) a set of partitioning strategies, aimed at decomposing
circuit-based representations into disjunctive formula-
tions. Among them, we present novel SAT-based tech-
niques for partial quantification and/or under-estimation
of the state space, by means of lazy quantification;

3) a partitioned formulation of interpolant-based image
computations, working with disjunctively partitioned
representations of backward circuit unrollings.

This paper is a revised version of [4], which has been im-
proved from both the theoretical and algorithmic perspectives,
then from the experimental results point of view.

The new set of experiments takes into consideration the
suite collected for the 2008 Model Checking Competition [16],
which includes more than 600 benchmarks. We compare
results with and without the proposed methodology, and we are
able to show improvements in terms of robustness, scalability,
and speed-up.

B. Related Works

Our work follows the UMC approaches based on SAT rather
than BDDs.

Inductive proofs are the starting point of the majority of
those approaches [5]–[8], all following the seminal work of
Sheeran et al. [9]. Fixed-point checks are proved inductively,

whereas completeness is based on uniqueness constraints,
expressing loop-free paths between states. Unfortunately, the
largest simple path between any two reachable states can
be exponentially larger than the reachability diameter. As a
consequence, most of the research in this field has concen-
trated on finding tight sets of inductive invariants, i.e., over-
approximations of reachable states, quite often sufficient for
inductive proofs.

In order to attain completeness, it is possible to adopt
alternative representations of state sets. Unfortunately, these
representations are generally difficult to manipulate within
non BDD-based frameworks, as both conjunctive normal form
(CNF) and circuit-based representations can lead to mem-
ory explosion. Williams et al. [10] first adopted Boolean
expression diagrams (BEDs), for the removal of quantifiers.
Abdulla et al. [11] exploited reduced Boolean circuits, i.e.,
a variant of BEDs, to represent formulas on which they per-
formed existential quantifier elimination through substitution,
scope reduction, and so on. McMillan [12], later followed by
Kang and Park [13], proposed quantifier elimination through
the enumeration of SAT solutions (all-solutions SAT). Ganai
et al. [14] extended the previous approaches by using “circuit
co-factoring” to capture a large set of states in every SAT
enumeration step. All those methods potentially converge
faster than [9], but a widespread applicability is still out of
reach, due to the complexity of quantifier elimination which
often ends up into exponential state set representations.

Abstraction techniques represent an orthogonal direction to
tackle complexity, as they seek and remove those parts of
a circuit/system that are not relevant for the proof. Craig’s
interpolants and their usage within UMC can be framed
within this general path of research. According to several
researchers, this method is the most promising one, and exten-
sive experimental sessions, see for example [15], [16], showed
its robustness and effectiveness. Nevertheless, Jhala and
McMillan [17] reported that interpolants are “often unnec-
essary weak,” and introduced an interpolant strengthening
method. Marques-Silva [18], [19] showed that interpolants
can be reused under reasonable assumptions, allowing a
better search pruning along subsequent SAT solver calls.
Unfortunately, he was not able to make any conclusion re-
garding the relationship of subsequent approximations. To
cope with this problem, D’Silva et al. [20] considered an
abstract and approximation-oriented view of interpolant-based
model checking, which provided better counterexample-free
approximations within an integrated algorithm for forward and
backward analyses.

C. Roadmap

This paper is organized as follows. Section II introduces
background notions on bounded, unbounded, and interpolant
model checking. Section III describes how to obtain mixed
representations with partial (i.e., incomplete) state sets starting
from circuit-based unrollings. It presents our contributions
to partial quantification strategies, discussing how different
methods can be activated under limited resource bounds and
how those methods exploit/produce partial circuit and/or state
set representations. Section IV explains how to use data

384 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 3, MARCH 2010

partitioning to split circuits and state set representations for
improved scalability. Section V shows our integrated approach
to UMC. Finally, Section VI discusses the experiments we
performed, and Section VII concludes this paper with some
summarizing remarks.

II. Background

A. Model and Notation

We address systems modeled as labeled state transition
structures, and represented implicitly by Boolean formulas.
The state space and the primary inputs are defined by in-
dexed sets of Boolean variables V = {v1, . . . , vn} and W =
{w1, . . . , wm}, respectively. States correspond to the valuations
of variables in V , whereas transition labels correspond to
evaluations of variables in W . We indicate next states with
the primed variable set V ′ = {v′

1, . . . , v
′
n}. Whenever we

explicitly need time frame variables, we use V i = {vi
1, . . . , v

i
n}

and Wi = {wi
1, . . . , w

i
m} for variable instances at the ith

time frame. We also adopt the short notation V i..j (Wi..j) for
V i ∪ V i+1 ∪ . . . ∪ Vj (Wi ∪ Wi+1 ∪ . . . ∪ Wj).1 We denote with
� and ⊥ the logical true and false constants, respectively.

A set of states is expressed by a state predicate S(V)
(or S(V ′) for the next state space). I(V) is the initial state
predicate. We use P(V) to denote an invariant property, and its
complement, F (V) = ¬P(V), as target for bug search. Notice
that, for the sake of simplicity, all the algorithms presented in
the sequel assume that I ∧ F = ⊥. However, extending them
to verify this condition is straightforward.

T (V, W, V ′) is the transition relation of the system. We
assume T given by a circuit graph, with state variables mapped
to latches. Present and next state variables correspond to
latch outputs and inputs, respectively. The input of the ith
latch is fed by a combinational circuit, described by the
Boolean function δi(V, W). Hence, the transition relation can
be expressed as

T (V, W, V ′) =
∧

i ti(V, W, v′
i)

=
∧

i(v
′
i ⇔ δi(V, W)).

A state path of length k (with k > 0) is a sequence of states
σ0, . . . , σk such that T (σi, νi, σi+1) is true, given some input
pattern νi, for all 0 ≤ i < k.
A state set Ŝ is reachable from the state set S in k steps if

there exists a path of length k, in the labeled state transition
structure, connecting a state in S to another state in Ŝ. In other
words, the following formula has to be satisfiable:

S(V 0) ∧
(

k−1∧
i=0

T (V i, Wi, V i+1)

)
∧ Ŝ(Vk).

The image operator Img(T , S) computes the set of states
Image reachable in one step from the states in S

Image(V ′) = Img(T (V, W, V ′), S(V))

= ∃V,W .S(V) ∧ T (V, W, V ′).
1V i..j and Wi..j are appropriately defined if i ≤ j, otherwise we conven-

tionally specify them as empty variable sets.

Fig. 1. BMC propositional formula based on the relation T .

Pre-image is dual, with the only difference that the existen-
tial quantification of functionally computed state variables can
be obtained by composition

PreImage(V) = PreImg(T (V, W, V ′), S(V ′))

= ∃W,V ′ .S(V ′) ∧ T (V, W, V ′)

= ∃W.S(δ(V, W)).

(1)

An over-approximate image is any state set including the
exact image

Image+(V ′) = Img+(T , S) ⊇ Img(T , S).

Finally, given a Boolean function f , we will use the notation
supp(f) to denote its variable set of support.

B. BMC

SAT-based BMC [21] considers only k-bounded reachabil-
ity, as expressed by the propositional formula

f = I(V 0) ∧
(

k−1∧
i=0

T (V i, Wi, V i+1)

)
∧ F (Vk)

that is satisfiable iff a counter-example (a path from I to F) of
length k exists. The formula f can be graphically represented
as shown in Fig. 1, where each box represents an entire
transition relation T .

Existential quantification can be applied to intermediate sets
of state variables

g = ∃V 1..k .f

= I(V 0) ∧ ∃V 1..k .
∧k−1

i=0 T (V i, Wi, V i+1) ∧ F (Vk)

= I(V 0) ∧ Conek(V 0, W0..k−1)

where Conek represents a combinational single output circuit
unrolling, formally defined by exploiting quantification by
functional composition2

Conek = Conek(V 0, W0..k−1)

= ∃V 1..k .
∧k−1

i=0 (V i+1 ⇔ δ(V i, Wi)) ∧ F (Vk)

= F (δ(. . . δ(δ(V 0, W0), W1) . . . , Wk−1)).

(2)

The formula g may be depicted as in Fig. 2, where the right-
end side cone-like shape represents the intrinsic reduction
obtained by composition. In other words, when we are close

2Conek is appropriately defined for all k > 0. Cone0 is conventionally
specified as equal to F .

CABODI et al.: PARTITIONING INTERPOLANT-BASED VERIFICATION FOR EFFECTIVE UNBOUNDED MODEL CHECKING 385

Fig. 2. BMC propositional formula based on Cone.

Fig. 3. AIG-based backward verification.

to the target F , it is likely that only a few δs are relevant
for the target itself, whereas the remainder can be discarded.
This reduction comes out in a natural way when using Cone,
whereas it can be obtained only exploiting ad hoc algorithms
with the formalism T .

However, the main advantage of using Conek instead of∧
i T i is that Conek is a single circuit. As a consequence,

several combinational optimizations (covering even different
time frames) can be applied before converting it into CNF.
On the contrary, this is not possible with

∧
i T i, since in this

case only the set of functions δ within each single time step
can be optimized.

In the sequel, we will use the short notation Cone0..k to
indicate the disjunction of all the cones up to the kth time
frame: Cone0..k =

∨k
i=0 Conei.

C. Backward SAT-Based Unbounded Model Checking

Fig. 3 shows an SAT-based version of an UMC procedure,
derived from [22], where and-inverter graphs (AIGs) (or
cognate, non canonical, circuit-based representations [23]) are
used to represent and manipulate logic functions.

Starting from the failure state set, each iteration of the
loop computes the set of states BckRk backward reachable
in exactly k steps from the target state set F (line six). If the
intersection of BckRk with the initial set of states I is non-
empty (line seven), then the reachable result is returned,
meaning that the property has been disproved. The loop ends
when the fixed-point has been found, i.e., when all states
in BckRk have been previously discovered. This check is
performed at line nine, where the notation BckR0..k is used
to indicate the set of states reachable up to depth k, i.e.,
BckR0..k =

∨k
i=0 BckRi. In this case, the property has been

proved, and the unreachable result is returned (line ten).
The main weakness of the algorithm is due to the com-

plexity of performing the quantifications hidden in the PreImg
operator [see (1)].

Notice that the set of states BckRk can be also obtained by
primary input quantification over the circuit unrolling Conek

defined by (2)

BckRk(V) = ∃W0..k−1 .Conek(V, W0..k−1). (3)

A similar consideration holds for BckR0..k

BckR0..k(V) =
k∨

i=0

BckRi(V)

=
k∨

i=0

∃W0..i−1 .Conei(V, W0..i−1)

= ∃W0..k−1 .

k∨
i=0

Conei(V, W0..i−1)

= ∃W0..k−1 .Cone0..k(V, W0..k−1)

(4)

where distributivity of existential quantification over union has
been applied.

We finally remark the fact that the fixed-point check in
function BACKWARDMC (line nine) consists of a single SAT
run because BckRk and BckR0..k are state sets, i.e., no primary
input variable appears in their support. Replacing them with
the corresponding expressions Cone given in (3) and (4) turns
this test into a quantified Boolean formula (QBF) problem.

D. Craig Interpolants in Model Checking

Definition 1: Given two inconsistent formulas A and B (i.e.,
A ∧ B = ⊥), an interpolant C is a formula such that:

1) it is implied by A, i.e, A ⇒ C;
2) it is inconsistent with B, i.e., C ∧ B = ⊥;
3) it is expressed over the common variables of A and B,

i.e, supp(C) ⊆ supp(A) ∩ supp(B).

A Craig interpolant C = Itp (A, B) is an AND/OR circuit
that can be directly derived from refutation proof of A ∧ B.
Albeit the computation of Itp from the proof has a linear
cost [24], the refutation proof can be exponentially larger than
A and B.

An over-approximate image of a state set S is k-adequate,
with respect to F , if it does not intersect any state on paths
of length k to F . It can be computed as follows:

Img+
Adq(T , S, Cone0..k) =

Itp
(
S(V−1) ∧ T (V−1, W−1, V 0), Cone0..k(V 0, W0..k−1)

)
where the circuit unrolling Cone0..k encodes all k-step
paths to F . A k-adequate over-approximate image Img+

Adq is
undefined iff the exact image is not k-adequate, i.e, iff

S(V−1) ∧ T (V−1, W−1, V 0) ∧ Cone0..k(V 0, W0..k−1)

is satisfiable. An image is called adequate if it is k-adequate
for any k, i.e., no state within the image is backward reachable
from F . Since the model is finite, a k-adequate image is
adequate if k ≥ d, where d is the diameter of the state
transition graph.

Fig. 4 shows a fully SAT-based UMC procedure exploiting
Craig interpolants, derived from the original one proposed by
McMillan [3] by exploiting the Cone representation instead
of T .

386 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 3, MARCH 2010

Fig. 4. Interpolant-based verification.

INTERPOLANTMC is the entry point of the algorithm. Each
iteration of the loop executes a call to routine FINITERUN (line
five), which performs the interpolant-based over-approximate
traversal, ending up with one out of three possible results:

1) reachable, if it proves F reachable from I in k steps,
hence the property has been disproved;

2) unreachable, if the approximate traversal using the
Img+

Adq image computation reaches a fixed-point. In this
case the property has been proved;

3) undecided, if F is intersected by the over-
approximate state sets.

In case a definite conclusion is not achieved by routine
FINITERUN, k is increased and a deeper cone is generated (lines
six and seven), thus preparing the next loop iteration.

It is possible to prove that the algorithm is sound and
complete [3]. If I and F are mutually reachable, sooner or
later the BMC check at line 11 will report a reachable result.
Otherwise, if I and F are mutually unreachable, sooner or later
k will become larger than d, Img+

Adq will become adequate, and
the algorithm will terminate with an approximate reachability
fixed-point.

III. Partial Circuits and State Sets

As we introduced in Section II, a circuit unrolling
Cone(V, W)3 represents paths, i.e., backward reachable states
coupled with the related input assignments, whereas BckR(V)
is a set of reachable states with no information on paths to
the target F . Obviously Cone(V, W) ⇒ BckR(V), due to
existential quantification [see (3) and (4)]. Since state sets
support SAT fixed-point checks, we prefer them to backward
circuit unrollings, at least as long as they can be computed
with an acceptable cost. Nonetheless, this rarely happens. We

3For the sake of simplicity, hereinafter we do not explicitly indicate the
bound k whenever not strictly necessary. As a consequence, Cone stands for
either Conek or Cone0..k , BckR stands for either BckRk or BckR0..k , and W

stands for W0..k−1.

thus accept partial representations, where both state sets and
circuits are used to express parts of the reachable states.

A partial state set (circuit) is a sub-set (i.e., an incomplete
representation) of a full state set (circuit). We denote such
sub-sets with the “−” super-script

BckR−(V) ⇒ BckR(V)

Cone−(V, W) ⇒ Cone(V, W).

A (backward) behavior can be completely represented as a
disjunction of partial representations. Let us define � as

�(V, W) = BckR−(V) ∨ Cone−(V, W). (5)

We say that the representation � is complete if

BckR(V) = ∃W.�(V, W)

= BckR−(V) ∨ ∃W.Cone−(V, W).
(6)

In other words, a complete representation � is based on
partitioned/partial backward cones and reachable state sets,
such that their union still covers the whole set of states. A
complete � may fully replace BckR and/or Cone, in backward
reachability and/or in the FINITERUN function, still preserving
the completeness of the approach. As input paths explicitly
appear just for a sub-set of the states in �, we have that

Cone(V, W) ⇒ �(V, W) ⇒ BckR(V).

Thus, the representation � lies in between two extremes:
1) an exact state set representation with full quantification,

within a standard backward traversal scheme;
2) state sets and related input values, i.e., paths, through

backward circuit unrollings with no quantification at all.
In the rest of this section, we describe how we can obtain

(partial) state sets from circuit unrollings.

A. Circuit-Based Quantification

State sets can be computed from circuit unrollings by apply-
ing circuit-based quantification [22], according to (3) and (4).
Our quantification algorithms, presented in this section, are
controlled by size and time bounds in order to prevent blow-
ups. When these bounds are not exceeded, the algorithms
compute full state sets, otherwise they obtain partial state
sets. We first present a straightforward solution for time and
size control, by enabling full quantification as far as its cost
is acceptable, then disabling it. Then, we show how we
can operate at a finer level, by accepting/rejecting individual
variable quantifications, and performing state sub-setting.

1) Bounded Traversal: We just enable full quantification
up to a depth h, such that the computation of BckRh+1 exceeds
a given time/space threshold. We then disable the complete
quantification at any depth k > h. Therefore, whenever h is
smaller than the backward diameter, BckR0..h is a proper sub-
set of the exact BckR0..k. This simple heuristic handles all
cases where the complexity of exact traversals is accepted up
to a given depth.

In this phase, we also enable BDD-based computation
of state sets, whenever the number of domain variables is
acceptable (up to 100 in our present implementation). The

CABODI et al.: PARTITIONING INTERPOLANT-BASED VERIFICATION FOR EFFECTIVE UNBOUNDED MODEL CHECKING 387

Fig. 5. Lazy quantification.

system transition relation T and the state sets BckR are
converted from AIGs to BDDs, then exact BDD-based pre-
images are computed under time and space control. BDDs
are generated by enabling cut-points and auxiliary variables
as pseudo-inputs. Cut-points are heuristically selected to keep
the size of the BDDs below a given threshold (selected by the
user) and to prevent memory blow-up [25], [26].

2) Lazy Quantification: We introduce lazy quantification as
an additional and more accurate control strategy for the size
of state set representations. The lazy quantification operator
accepts or rejects each variable quantification, based on space
and time limits. The pseudo-code of this procedure is given
in Fig. 5.

For each variable wi ∈ W that has to be quantified, we
optionally accept or reject the quantification, based on a target
maximum size increase α. A given quantification is maintained
(line seven) only if the circuit size (evaluated in terms of AIG
nodes) after quantification is acceptable (line five).

The global effect of the procedure is to filter out critical
variable quantifications, i.e., those responsible of size explo-
sion. Lazy quantification can thus produce every intermediate
result in the range going from no quantification at all to full
quantification.

3) Lazy Quantification With Sub-Setting: The final result of
the LAZYEXIST procedure is either a state set or a cone, where
some of the input variables have been ruled out (quantified),
but some other (or all) are still in the support. In order to
obtain a partial state set in any case, we introduce a variant
of the lazy quantification, that always removes quantification
variables, but produces sub-sets of the exact state sets. The
method is inspired by [14] and [27], whose common idea is
assigning constant values to a set of variables, thus restricting
the represented state set within a given sub-space.

Following this idea, a sub-set BckR−(V) can be computed
by assigning constant values to the W variables appearing in
Cone(V, W). Let σ be a variable assignment to W satisfying
Cone (generated by an SAT solver run). Then

BckR−
σ (V) = Cone(V, σ) ⇒ BckR(V).

The overall level of under-estimation of BckR(V) by
BckR−

σ (V) strongly depends on the choice of σ. Most of the
heuristics described in [14] are oriented to drive a circuit-based
SAT solver toward more representative input solutions. To
reduce the dependence on σ, we propose an alternative hybrid
approach to sub-setting, where some primary inputs are exis-
tentially quantified and the others are set to a constant value.

A simplified implementation of such a procedure is shown
in Fig. 6.

Fig. 6. Lazy quantification with sub-setting.

The function LAZYSUBSET first computes a variable assign-
ment σ satisfying Cone (line three). Then, for each variable
wi ∈ W , it evaluates ∃wi

.G = G|wi=0 ∨ G|wi=1 (line five)
and compares the size of the result (evaluated in terms of
AIG nodes) with the size of G scaled by the factor β (line
six). If the result is too large, the quantification is rejected,
and only one of the cofactors is retained (line 11). The
selection of the cofactor is based on the value of σ, that
is computed as previously described. The produced sub-set
includes σ by construction (some variables are existentially
quantified, the other ones are assigned according to σ). Since
the variable assignment σ satisfies Cone, sub-setting will never
end finding an empty sub-set. An alternative choice would be
computing both cofactors and dynamically selecting one of
them, based on support or size heuristics. Anyhow, in this
case the procedure may incur in dead-ends, i.e., it may find
an empty sub-set, unless a backtracking schema is introduced.

Our procedure can obtain potentially denser sub-sets than
other sub-setting operators, since it assigns constant values
only to variables that are critical for existential quantification.

Notice that the previous pseudo-codes hide some implemen-
tation details, such as:

1) variable scoring based on history of accepted/rejected
quantifications: we directly reject quantification of vari-
ables with high rejection rate;

2) two-step quantification: a first cycle just quantifies ac-
cepted variables, with no sub-setting, a second loop
through the previously rejected variables enables both
quantification and sub-setting;

3) time thresholds: the cost in terms of central processing
unit (CPU) time is limited for single variable quantifi-
cations and for the entire quantification procedure, with
inner SAT sweepings to simplify the result.

B. Bounded SAT Enumeration

As outlined in Section II-C, a fixed-point check consists of
a single SAT run when state sets are available. However, this
is no longer true when working with a mixed representation
of partial state sets and circuit unrollings, as the test turns into
a QBF instance. We present in this section an SAT approach
to solve this problem, which produces partial state sets as a
by-product. The method is inspired by Mneimneh et al. [28],
who evaluated the diameter of a state transition graph by
performing state enumerations with an SAT solver. For every
state reachable from the initial state set in k + 1 steps (found

388 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 3, MARCH 2010

Fig. 7. Checking fixed-point based on SAT enumeration.

through an SAT run), an SAT call verifies whether such a state
is reachable at depth less or equal to k.

1) If the state is reachable, then a blocking clause (forbid-
ding that state) is added at depth k + 1, and the process
is iterated.

2) If the state is not reachable, k is not the diameter, then
the entire reasoning is repeated with a larger value of k.

The process terminates when no new state is obtained at depth
k + 1 (reachability fixed-point), meaning that k is the system
diameter. The authors showed that a complete SAT approach
is more efficient than the one based on a QBF solver.

We adopt a similar SAT enumeration strategy, where we
perform an incomplete (bounded) search in order to limit the
iterative quest for new states and the related generation of
(blocking) state sets. Moreover, instead of working at the level
of blocking CNF clauses (as in [28]), we exploit circuit-based
cofactoring [14], so that whenever an already reached state is
found, we enlarge it to all states backward reachable through
the same input values. Finally, backward paths up to depth
k are represented in our case by a complete representation
BckR−/Cone− of partial state sets/circuit unrollings.

A simplified implementation of such a procedure is shown
in Fig. 7. The function receives as parameters the backward
circuit unrolling at depth k + 1 and the (partial) unrollings
and state sets up to depth k. If the previous quantifications
completed successfully, then Cone−

0..k is empty and BckR−
0..k =

BckR0..k. In this case, a single iteration of the loop (line two) is
sufficient to produce the result. In all other cases (mixed state
sets and circuit unrollings), the function performs a heuristi-
cally limited number (maxIter) of SAT runs, trying to find a
state reachable at depth k+1 (through Conek+1) but not present
in the previously reached state set (BckR−

0..k or Cone−
0..k).

Whenever a state included in both Conek+1 and Cone−
0..k is

found, the set of states backward reachable through the same
input assignment (γW) is copied from Cone−

0..k to BckR−
0..k

(lines 16 and 17). If the bound on the SAT calls is exceeded,
CHECKFP ends up with an undecided result (line 19).

IV. Interpolation Using State Sets and
Partitioning

When the SAT-based backward reachability approach shows
its limits, we resort to interpolation with the enhancements
described as follows. We exploit partial state sets (originated
as a sub-product of circuit-based quantification and SAT enu-
meration), and disjoined cone decompositions. We extensively
adopt partitioning within complex interpolant-based image
computations and traversals. Furthermore, partial state sets
are exploited as don’t care sets to simplify/restrict interpolant-
based traversals.

A. Partitioned Interpolation

We apply a divide-and-conquer approach to adequate image
computation. We generate a conjunctively partitioned image
starting from a disjunctively partitioned circuit unrolling.

For the sake of simplicity, let us concentrate in this section
on a backward unrolling disjunctively decomposed into a set
of partial sub-cones (the presence of a partial state set will
be analyzed in the next subsection). Notice that this is the
usual situation when using the algorithm reported in Fig. 4,
since the parameter Cone of the function FINITERUN actually
corresponds to Cone0..k =

∨k
i=0 Conei. Furthermore, another

possible source for disjunctive decompositions is represented
by the property under check. Whenever P(V) =

∧
i pi(V),

we have that F (V) is a disjunction, as F (V) = ¬P(V) =∨
i ¬pi.
Definition 2: Given two inconsistent formulas A and B,

we say that any two Boolean functions �1 and �2 are
equivalent modulo interpolation if both of them represent a
valid interpolant for (A, B). In this case we use the short
notation �1 ≈A,B �2.

Theorem 1: Given two inconsistent formulas A and B, such
that B =

∨
i bi, then

Itp(A, B) ≈A,B

∧
i Itp(A, bi).

Proof. The left-end side of the relation ≈ is obviously an
interpolant for (A, B). As a consequence, we only need to
demonstrate that the right-end side also satisfies the three
interpolant properties of Definition 1.

1) A ⇒ Itp(A, bi), for any i, by definition. Hence, it is also
true that A ⇒ ∧

i Itp(A, bi).
2) We have that

∧
i Itp(A, bi) ∧ B =

∧
i Itp(A, bi) ∧∨j bj

=
∨

j(
∧

i Itp(A, bi) ∧ bj)

=
∨

j(
∧

i�=j Itp(A, bi) ∧ Itp(A, bj) ∧ bj)

= ⊥

because Itp(A, bj) ∧ bj = ⊥ by definition.
3) By hypothesis, supp(bi) ⊆ supp(B). Furthermore, we

know that supp(Itp(A, bi)) ⊆ supp(A) ∩ supp(bi). Thus

CABODI et al.: PARTITIONING INTERPOLANT-BASED VERIFICATION FOR EFFECTIVE UNBOUNDED MODEL CHECKING 389

Fig. 8. Partitioned interpolant computation. Computing Itp(A, B): (a) stan-
dard (monolithic) case and (b) partitioned approach.

supp(
∧

i Itp(A, bi)) =
⋃

i supp(Itp(A, bi))

⊆⋃i supp(A) ∩ supp(bi)

= supp(A) ∩⋃i supp(bi)

= supp(A) ∩ supp(B)

as
⋃

i supp(bi) = supp(B) by hypothesis. �

The meaning of the previous theorem is graphically depicted
in Fig. 8, which represents the projections of A and B in
the space defined by their common variables (such a space
is schematically pictured as a rectangle). For the sake of
simplicity, we assume that B = b1 ∨ b2. Fig. 8(a) shows the
interpolant as computed with respect to (A, B), i.e., the left-
end side of Theorem 1. On the other hand, Fig. 8(b) illustrates
the two interpolants computed with respect to (A, b1) and
(A, b2). Their conjunction (right-end side of Theorem 1 and
shadowed area) is still an interpolant for (A, B).

Corollary 1: Given Cone(V, W) =
∨

i Conei(V, W), then

Img+
Adq(T , S, Cone) ≈S∧T,Cone

∧
i Img+

Adq(T , S, Conei).

Proof. To prove the corollary, it is sufficient to observe that
Img+

Adq(T , S, Cone) is computed as Itp(S ∧T , Cone), and then
to apply Theorem 1. �

We heuristically exploit the above formulation for complex
images when the monolithic interpolation is too expensive in
terms of time or space. We proceed as follows. First of all,
we compute the monolithic interpolant under limited mem-
ory/time resource bounds. If the process does not complete, or
the result is larger than a threshold, we compute the partitioned
interpolant as well. Finally, we take the best result between
the monolithic and the partitioned interpolants. The intuition
behind the above heuristic strategy is that we spend an extra
overhead (to compute the partitioned interpolant) only when
the monolithic procedure already had a high time/memory
cost.

In order to compute a partitioned interpolant, we sort
disjunctive components by size, evaluating easier sub-images
first and harder ones later, or vice-versa. The latter scheme
showed to be the most promising one, as larger components
often subsume several smaller ones, which do not have to be
considered anymore.

Our decomposed image differs from usual partitioned im-
ages in model checking, which typically follow either the

disjunctive model (disjunctive partitioned image working with
disjunctive state sets and/or transition relation) or the con-
junctive one (conjunctively partitioned transition relation with
monolithic state sets). Our scheme is specifically oriented
to interpolant-based model checking: we use disjunctive de-
composed backward unrollings, and we produce conjunctively
decomposed images.

B. Interpolation and Partial State Sets

Partial state sets could simply replace the corresponding
cones in partitioned interpolation. In other words, interpolants
computed with respect to BckR or Cone are equivalent, since

Sat(S ∧ T ∧ BckR) ⇔ Sat(S ∧ T ∧ Cone).

However, since input variables have already been ruled out
(quantified) from BckR, a possible option for interpolation is
to directly take the complement of BckR as interpolant4

Img+
Adq(T , S, BckR) ⇒ ¬BckR.

Obviously, computing ¬BckR is faster than resorting to SAT
refutation proofs, although the result is over-estimated at its
maximum allowed level. Anyhow, this solution can still be a
good option when working at the backward diameter.

As an additional consideration, we experimentally observed
that SAT runs are generally more efficient (and refutation
proofs more compact) when using backward cones rather than
the corresponding state sets. This may be related to the fact
that state sets are usually larger than their original circuit
counterparts, and that input variables (existentially quantified
while computing state sets) may effectively help the SAT
solver by guiding the decision process and leading to search
space reductions.

Taking into account the above observations, we decided to
use state sets as substitutes of backward cones for interpolant
computation just in a few cases, i.e., when their size is smaller
than the corresponding expressions Cone. In all other cases,
we consider them as redundant information, to be exploited
as don’t cares, for circuit-based optimization, or as space
constraints to be added to SAT runs for better performance.

1) Circuit Simplifications: Circuit optimizations can be
very effective when don’t care conditions (either input, output
or external don’t cares) are given. In our context, various op-
timization methodologies are possible, based on BDD and/or
SAT operators, such as BDD [25], [29] and SAT [30] sweep-
ing, redundancy removal [31], or other circuit-based optimiza-
tions [23], [32]. Let us refer to a generic Simplify procedure,
which compacts a cone under external care conditions

Cone− = Simplify(Cone, care).

Then, any partial state set BckR− can be used as don’t care set
(i.e., care = ¬BckR−) for other cones, or for state sets (and
transition relations) to be used within the function FINITERUN.
This is allowed by the fact that cones and state sets will

4We just consider the case of unsatisfiable runs. The interpolant is still
undefined when the SAT run returns satisfiable.

390 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 3, MARCH 2010

be finally OR-ed together, in order to obtain a complete
representation �.

2) Sub-Space Constraining: Another optimization, directly
related to partitioned image computation, is the possibility
to use image over-approximations and/or state sets as search
space constraints for interpolant computation.

Definition 3: Given two inconsistent formulas A and B

and a constraint function C, we say that any two Boolean
functions �1 and �2 are equivalent modulo interpolation
under constraint C if C ⇒ (�1 ≈A,B �2). In this case we
use the short notation �1 ≈C

A,B �2.
In other words, in order to be equivalent modulo interpola-

tion under constraint C, two functions �1 and �2 have both
to represent a valid interpolant for (A, B), but only in the sub-
space identified by C. More specifically, this means that for
i ∈ {1, 2}:

1) C ⇒ (A ⇒ �i);
2) C ⇒ (�i ∧ B = ⊥);
3) supp(�i) ⊆ supp(A) ∩ supp(B).

Given the previous definition, we can present the following
theorem.

Theorem 2: Given three formulas A, B, and C such that
A ∧ B = ⊥ and supp(C) ⊆ supp(B), then

Itp(A, B) ≈C
A,B Itp(A, B ∧ C).

Proof. Since the left-hand side of the relation ≈ is obviously
an interpolant for (A, B), regardless of the value of C, we only
need to prove the three (constrained) interpolant conditions for
the right-end side.

1) A ⇒ Itp(A, B ∧ C) by definition, so it is also true that
C ⇒ (A ⇒ Itp(A, B ∧ C)).

2) We need to demonstrate that C ⇒ ¬(Itp(A, B ∧C) ∧B)
is a tautology

C⇒¬(Itp(A, B ∧ C) ∧ B) =¬C ∨ ¬Itp(A, B ∧ C) ∨ ¬B

=¬(Itp(A, B ∧ C) ∧ B ∧ C)
=�

as Itp(A, B ∧ C) ∧ B ∧ C = ⊥ by definition.

3) We have that

supp(Itp(A, B ∧ C)) ⊆ supp(A) ∩ (supp(B) ∪ supp(C))
= supp(A) ∩ supp(B)

since supp(C) ⊆ supp(B) by hypothesis. �

Using the same graphic conventions of Fig. 8, Fig. 9
illustrates the meaning of the Theorem 2. In Fig. 9(a), we
have the standard case: the interpolant Itp(A, B) includes A

but does not overlap with B. The sub-space of this interpolant
included in C is then shadowed. On the other side, Fig. 9(b)
represents the case in which the interpolant is computed with
respect to (A, B∧C). Thus, it includes A, but it may intersect
B. However, this fact cannot occur in the C sub-space.

Corollary 2: Whenever the result of an adequate image,
computed by interpolation, is intersected with a given con-
straint care, the adequacy constraint can be conjoined with
care before doing interpolation

Fig. 9. Constrained interpolant computation. Computing Itp(A, B) with con-
straint C: (a) standard case and (b) under the application of Theorem 2.

Img+
Adq(T , S, Cone) ∧ care ≈care

S∧T,Cone

Img+
Adq(T , S, Cone ∧ care) ∧ care.

Proof. The previous formula is a direct consequence of
Theorem 2. �

We exploit the previous result for complexity reduction, as
constraining a cone can turn out to reduce the overall cost of
the SAT run, and the size of the related proof and interpolant
as a consequence. We heuristically choose the above technique
whenever a care constraint is available as the complement of
backward reachable states

care = ¬BckR−.

Moreover, when Cone0..k is large, an adequate image com-
puted with respect to backward cones at a smaller depth h < k

can be used as care

care = Img+
Adq(T , S, Cone0..h).

Therefore, the adequate image is finally computed as
Img+

Adq(T , S, Cone ∧ care) ∧ care.

V. An Integrated Approach

In this section, we describe our model checking procedure
combining the previously described techniques. We compute
partial state sets in the backward direction. Whenever they
are not able to support complete reachability fixed-point
checks, we exploit them (with partitioned cones) for improved
interpolant-based forward traversals. Backward reachable par-
tial state sets (Section III) are obtained by circuit-based quan-
tification (Section III-A) and SAT enumeration (Section III-B),
controlled by time and size bounds. The main goal of these
steps is to capture easy backward fixed-points and/or to
provide search space restrictions (care sets) for interpolation-
based runs, which are activated exploiting the optimizations
described in Section IV. More in detail, state sets are used as
don’t cares, as described in Section IV-B (Theorem 2), whereas
circuit unrollings can be used in disjunctive partitioned form
and benefit from Theorem 1 (Section IV-A). Partitioned cones
are derived both from conjunctive properties and from iterative
cone computations.

Fig. 10 shows the pseudo-code for the top-level verification
function INTEGRATEDMC. The loop (line five) follows the
standard backward traversal scheme of Fig. 3. At each itera-
tion, it computes a deeper backward cone (line six), as circuit
unrolling starting from the target F (line three). Then, it tests

CABODI et al.: PARTITIONING INTERPOLANT-BASED VERIFICATION FOR EFFECTIVE UNBOUNDED MODEL CHECKING 391

Fig. 10. Verification procedure: an integrated approach dovetailing SAT-
based backward model checking and interpolation.

the condition for failure by checking the intersection of Conek

with the initial state I (line seven). If such an intersection is
not empty, the result reachable is returned (line eight).

Then, circuit-based quantification is executed, calling the
function PartialStateSets (line line). A detailed description of
this procedure is reported at lines 19–28. BDDs are tentatively
used as long as they are able to achieve full quantification.
To this respect, it should be observed that, according to
the given pseudo-code, BckR is obtained by quantifying
the input variables of Cone. In the real implementation,
however, the function PartialStateSets also receives T and
the previously computed state sets, and a pure BDD-based
pre-image computation is attempted. If BDDs are able to
perform quantification, the resulting state set is returned (line
23), otherwise they are disabled and the function LAZYEXIST

is called (line 25). If some circuit-based quantifications are
not accepted, sub-setting (LAZYSUBSET, line 27) is then
performed. The resulting state set BckR is finally returned.
The procedure thus implements a bounded backward
traversal using BDDs and/or circuit-based quantification (see
Sections III-A1 and III-A2), where sub-setting (Section III-A3)
is applied only when full quantification is not achieved.

After that, CHECKFP (i.e., SAT enumeration, line ten) veri-
fies, under controlled time and memory conditions, whether
the fixed-point is hit. If this happens, the unreachable
result is returned (line 12). Otherwise, if the fixed-point could
not be decided, BckR−

0..k is used as a don’t care set to optimize
Cone0..k, computing its sub-set Cone−

0..k (line 14). As men-
tioned in Section IV-B1, any redundancy-removal procedure
that is able to exploit an external care set can be used instead
of the function Simplify.

Finally, the interpolant-based forward procedure PART

FINITERUN (line 15) is activated. This is a variant of
FINITERUN, which uses the optimized (divide-and-conquer)
image computation based on partial sub-sets and exploits
BckR−

0..k for search space restriction, as discussed in
Section IV.

Theorem 3: The function INTEGRATEDMC is sound and
complete.
Sketch of proof. Soundness. A reachable result may be
delivered only by the BMC check of line seven. This check
is sound because each Conei is only transformed by (partial)
existential quantifications, which do not alter the result of SAT
calls. An unreachable result may be given by CheckFP or
PARTFINITERUN. CHECKFP finds a fix-point whenever no new
states are backward reachable at depth k with respect to k−1.
The result is sound as our state representation does not alter
backward state reachability (we just operate partial existential
quantification of input variables). A similar argument holds for
PARTFINITERUN, where the original backward cone is replaced
by a complete representation BckR/Cone.
Completeness. The function CHECKFP does not ensure com-
pleteness, as we activate it with limited resources, so it might
return undecided. Completeness of our method is guar-
anteed by the complete interpolant-based approach (i.e., the
function PARTFINITERUN), that will converge at the backward
diameter, in the worst case. �

VI. Experimental Results

We implemented our approach on top of the PdTrav tool, a
state-of-the-art verification framework which won two of the
sub-categories at the Hardware Model Checking Competition
2007 (HWMCC’07) [15], and ranked among the first three
HWMCC’08 verification engines.

Our experiments ran on a Quad Core 2.4 GHz Workstation
with 8 GB of main memory, hosting a Debian Linux distribu-
tion. Memory limit was always set to 1 GB.

The software configuration of our framework features
CUDD [33], which provides functions to manipulate BDDs,
MiniSAT [34], that is an satisfiability solver with unsat-
isfiability proof-logging capabilities, and ABC [35], that
in our environment provides synthesis and optimization
procedures.

We present results on circuits derived from the HWMCC’08
suite, and some industrial benchmarks coming from STMicro-
electronics. We focus on true (i.e., proved) properties, since
they are the most interesting ones for UMC (false instances
are usually captured by BMC runs). As we mainly target
difficult property proofs, and the original HWMCC’08 suite
features several hundreds of circuits (including many very
easy/small ones), we selected a sub-set of them, according
to the following criteria.

1) We ran a preliminary in/out experimental session, using
our own implementation of the standard interpolant
model checking procedure [3]. We consider this algo-
rithm as a reference for all subsequent experiments.
We used the same time limit adopted at the HWMCC
competitions, i.e., 900 s, on all benchmark instances not

392 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 3, MARCH 2010

Fig. 11. Result statistics: HWMCC’08 PdTrav-itp versus our new inte-
grated approach, with a time limit of 900 s.

tagged as sat.5 All properties solved in less than 200 s
were removed before moving to the next step.
During this preliminary experimental analysis, we also
compared our new integrated method6 with the one
submitted to the HWMCC’08 competition (referenced
as pdtrav-itp). Albeit our target is mainly repre-
sented by hard-to-solve instances, Fig. 11 presents the
comparison on the entire set of verification properties,
including both easy and hard-to-solve ones. The graph
shows that our new method does present some overhead
on the easier instances, but it is also much faster on
the majority of the problems requiring more than 100
seconds of CPU time. Moreover, a conspicuous number
of previously timed out instances are now verified.

2) For all properties filtered from the previous step, we
ran a more extensive experimental session, featuring the
reference setting and all the optimizations proposed in
this paper. In this case, we adopted a higher timeout
threshold, i.e., 3600 s. We further discarded all bench-
marks that ran out-of-time in all approaches.

3) Some of the remaining benchmarks are very hard-to-
solve instances when resorting to SAT-based methods,
although they are known to be easy with BDD-based
approaches. As a consequence, we removed most of
these trivial properties, while we kept a few represen-
tative cases (the ones whose name is marked with a
star, ∗, in Table I), for the purpose of showing our
adaptive method’s ability to outperform pure SAT-based
algorithms by exploiting inner BDD-based steps.

As a final result of this selection process, we ended up
considering ten Intel benchmarks, four industrial designs from
STMicroelectronics, and 14 other circuits coming from the
HWMCC’08 public suite.

Our experimental analysis is divided into two parts. In the
first part (see Section VI-A), we present our results on prop-
erty verification, detailing the contributions of the individual
optimizations presented in this paper. In the second one (see

5In the HWMCC notation, uns, i.e., unsatisfiable, designs are those whose
property is proved, whereas sat, i.e., satisfiable, indicates that the property is
falsified.

6This method will be indicated with (Th1 + Th2)+ in Table I.

Section VI-B), we provide detailed statistics on improved
interpolation, based on partitioned image (Theorem 1) and
sub-space constraining (Theorem 2).

A. Verification Results

We compare the reference strategy (our own implementation
of the standard interpolant model checking procedure) with
and without our proposed optimizations.

Table I reports detailed data on the verification instances, se-
lected as previously described. Columns 1–4 give information
about the benchmarks. Model is the instance name, #PI, #FF,
and #Nodes represent the number of primary inputs, memory
elements, and AIG nodes of the circuit, respectively. We then
show CPU running times obtained with standard interpolant
computation (column Std ITP), and with the integrated method
described in Section V. In order to provide a detailed analysis
(and a better understanding) of individual contributions, we
incrementally enabled our optimizations. Columns Th1, Th2,
and Th1 + Th2 show the impact of Theorem 1 (partitioned
interpolation) and Theorem 2 (space constraining), individ-
ually and combined, on purely interpolant-based UMC (with
quantification strategies disabled). Circuit-based quantification
and SAT enumeration (Section III-A) are enabled in the last
two columns, where they are indicated by the + super-script.
Columns Th+

2 and (Th1 + Th2)+ show the results obtained by our
integrated approach, without and with Theorem 1 (partitioned
interpolation) enabled. The acronyms ITP, CBQ, and SE, in
the last column of the table, indicate the method providing
termination (fixed-point) for the integrated verification pro-
cedure: ITP stands for interpolation, CBQ for circuit-based
quantification (possibly resorting to BDDs, whenever this is
allowed by the size of the representation), and SE for SAT
enumeration.

Data show that we obtain average speed-ups of about
15, and up to a factor larger than 100 in a few cases. In
particular, the full integrated approach (column (Th1 + Th2)+)
clearly delivers the best results, as it is the winner in 20 out of
28 cases. The original interpolation technique and the methods
enabling only a few of the proposed optimizations are able to
obtain better results on a few benchmarks. However, they are
individually less robust and scalable than the fully integrated
approach.

Overall, the presented data show that our combined strat-
egy produces better results than any component optimization
running separately.

Furthermore, a detailed analysis of our verification runs
showed that the interpolant approach is extremely sensitive
to the SAT solver decisions and proofs. A few benchmarks
within the intel suite, for instance, moved from solved to
unsolved, due to the level of over-approximation attained by
SAT-based interpolants. This is shown by proofs achieved by
individual methods, with execution times not far from the
timeout threshold. It is well known that convergence of over-
approximate traversals and abstraction approaches strongly
rely on the level of accuracy of abstractions/approximations.
To this respect, we can state that our optimizations usually
make the verification algorithm more stable.

CABODI et al.: PARTITIONING INTERPOLANT-BASED VERIFICATION FOR EFFECTIVE UNBOUNDED MODEL CHECKING 393

TABLE I

Verification Results: Detailed Analysis of Some Hard-to-Solve Designs

Model #PI #FF #Nodes Std ITP (s) New Methods (s)
Th1 Th1 + Th2 Th2 Th+

2 (Th1 + Th2)+

bjrb07amba4andenv 11 33 17 448 3325.28 − − − 266.69 242.79 CBQ
cmuperiodic∗ 32 34 1555 889.05 891.68 1187.08 − 1360.00 55.75 CBQ
eijk3271 26 305 2546 − − 681.65 686.83 671.60 631.10 SE
eijk3384 43 689 3069 − − − − 647.19 415.60 SE
eijk6669 83 506 4879 − 3256.50 3085.79 3449.45 1796.25 SE
intel006 345 350 3265 218.36 228.48 182.76 279.76 322.84 − −
intel018 548 491 6647 − − − − − 2436.06 ITP
intel020 349 354 5735 3154.96 − − − 2697.49 − −
intel021 360 365 5882 − − − 2263.23 − − −
intel024 352 357 5710 2782.31 2561.57 2808.00 2746.94 1806.75 1619.93 ITP
intel026 486 492 6263 1062.74 1237.41 − 1633.22 1677.22 1180.76 ITP
intel044 642 647 6859 − − − − − 680.23 ITP
intel047 642 647 6859 − − − − − 581.52 ITP
intel049 136 141 1305 257.53 − − − 137.16 139.63 ITP
intel059 280 285 2705 − − − − − 1210.50 ITP
nusmvbrp∗ 11 52 527 − − − − − 27.66 CBQ
nusmvguidancep7 84 86 2001 233.89 1873.83 695.76 586.61 566.45 173.35 ITP
nusmvguidancep8∗ 84 86 1919 1392.38 1325.14 1210.19 − 2185.14 85.45 CBQ
nusmvreactorp2 74 76 1394 − − − − 459.45 447.72 CBQ
pdtvisbakery0∗ 3 35 6252 2943.20 − − − 2768.35 68.85 CBQ
pdtvisbakery1∗ 3 35 6209 − − − − 3105.26 73.34 CBQ
pdtvisbakery2∗ 3 35 6214 − − − − 3138.04 90.59 CBQ
pdtvisns3p04 21 112 3718 1586.87 3407.38 − − 1864.16 − −
pdtvissoap2 11 160 3495 3044.20 − − − − − −
Industrial− A1 119 76 1075 − − 3305.27 − − − −
Industrial−A2 180 771 9357 1123.41 1132.43 1205.70 1233.88 1080.41 383.71 ITP
Industrial−A3 21 116 3879 − − − − − 100.74 ITP
Industrial−B1 19 425 3907 − − − − − 824.06 ITP

The symbol “−” means time overflow with a time limit of 3600 s.

B. Improved Interpolation

In this section, we present detailed results on the improved
interpolation approach, based on the partitioning scheme, as
described in Section IV-A (Theorem 1), and the sub-space con-
straining strategy presented in Section IV-B2 (Theorem 2). We
concentrate on the verification instances analyzed in Table I.

The scattered plots in Figs. 12–14 summarize the statistics
collected for Theorem 1. The partitioned image computation
was disabled with small monolithic interpolants. Hence, it is
worth noticing that our plots report only those instances7 in
which partitioning was enabled.

Fig. 12 represents the size (in terms of AIG nodes) of the
partitioned cones. The x-axis refers to the instances. The y-
axis indicates the size. Data are sorted by increasing y values.
The figure shows how we usually have to deal with backward
cones whose size ranges from 10 000 to 50 000 nodes. Larger
unrollings are usually found in circuits that we were unable to
solve within the adopted CPU time limit. Instances with the
same y value often indicate cones that are re-used for several
partitioned images within the same call PARTFINITERUN).

Fig. 13 plots the number of partitions per instance. The y-
axis refers to the actual number of partitions. Analogously
to Fig. 12, the x-axis indicates different instances sorted
by increasing value on the y-axis. Usually the number of
partitions is close to the depth of the backward unrolling
we are considering. When the number is larger, the extra-

7In this context, an instance is the occurrence of a partitioned interpolant
computation, for a given circuit. Therefore, some of the points in the plot
may refer to the same benchmark.

Fig. 12. Result statistics: partitioned cone sizes (AIG nodes) per instance.

Fig. 13. Result statistics: number of partitions per instance.

394 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 3, MARCH 2010

Fig. 14. Result statistics: size of the partitioned versus monolithic inter-
polants (AIG nodes).

Fig. 15. Result statistics: size for all adequate images (AIG nodes) computed
in Table I.

partitions are due to properties that can be conjunctively
decomposed.

Fig. 14 plots the size of partitioned interpolants versus
monolithic ones, for all the available instances. The x-axis
(y-axis) represents the size of the interpolant when this is
computed with the partitioned (monolithic) strategy. This plot
is very expressive. It shows that for monolithic interpolants
(ITPmon) with size ranging from 10 000 to 50 000 nodes,
their partitioned counterparts (ITPpart) are about two to five
times smaller. The average size ratio (|ITPmon|/|ITPpart|) for
all considered instances is 1.97. Notice that the plot does not
represent two instances in which either the monolithic or the
partitioned interpolant size is far outside the area considered
in the figure (<50 000 nodes). For the sake of completeness,
for these cases the ratio |ITPmon|/|ITPpart| is equal to 0.36 and
40.61, respectively.

Finally, the cactus plot of Fig. 15 presents statistics on the
number and size of all adequate images computed with the
analyzed methods, in all the cases in which those methods
resort to interpolant computation. We compare all methods
shown in Table I. The plots Th1, Th2, and Th1 + Th2 stand on
the left of the one generated by the original method. The
values on the y-axis show that interpolant sizes are generally
smaller, except for the case labeled as Th2, where partitioned
interpolants are disabled. Smaller values on the x-axis are
partly due to aborted verifications, as well as to different

over-approximation levels attained by the optimized methods.
In other words, we often reach state sub-spaces in fewer
forward traversal steps. Moreover, the diagrams labeled with
Th+

2 and (Th1 + Th2)+ confirm that the use of (state-based) care
sets improves interpolant computations. Images are usually
smaller and the number of computations larger, as the methods
can proceed deeper into the verification analysis (eventually
proving more properties, as detailed in Table I).

VII. Conclusion

This paper shows how to improve interpolant-based model
checking by means of an integrated approach combining
partial quantification, sub-setting, disjunctive partitioning, and
interpolation. The core idea of this combination is to adopt
quantifications and circuit-based representations of sub-spaces
whenever convenient (and not too expensive). The obtained
advantages derive from a limitation and a restriction of the
search space of interpolant-based methods.

Experimental results, specifically oriented to hard verifi-
cation problems, show the robustness of our approach, with
improvements in terms of CPU time up to two orders of
magnitude.

Among the possible future works, we report the possibility
to extend the approach presented in this paper to word-level,
or at least to combine it with other word-level strategies.

References

[1] W. Craig, “Three uses of the Herbrand-Gentzen theorem in relating
model theory and proof theory,” J. Symbolic Logic, vol. 22, no. 3, pp.
269–285, 1957.

[2] R. C. Lyndon, “An interpolation theorem in the predicate calculus,”
Pacific J. Math., vol. 9, no. 1, pp. 129–142, 1959.

[3] K. L. McMillan, “Interpolation and SAT-based model checking,” in Proc.
Comput.-Aided Verification, LNCS 2725. Boulder, CO, 2003, pp. 1–13.

[4] G. Cabodi, P. Camurati, L. Garcia, M. Murciano, S. Nocco, and S. Quer,
“Trading-off SAT search and variable quantifications for effective un-
bounded model checking,” in Proc. Formal Methods Comput.-Aided
Design, Portland, OR, Nov. 2008, pp. 205–212.

[5] P. Bjesse and K. Claessen, “SAT-based verification without state space
traversal,” in Proc. Formal Methods Comput.-Aided Design, LNCS 1954.
Austin, TX, 2000, pp. 409–426.

[6] M. L. Case, A. Mishchenko, and R. K. Brayton, “Inductively finding a
reachable state space over-approximation,” in Proc. Int. Workshop Logic
Synthesis, Lake Tahoe, CA, May 2006.

[7] F. Lu and K. T. Cheng, “IChecker: An efficient checker for inductive
invariants,” in Proc. High-Level Design Validation Test Workshop, 2006,
pp. 176–180.

[8] G. Cabodi, S. Nocco, and S. Quer, “Boosting the role of inductive
invariants in model checking,” in Proc. Design Autom. Test Eur. Conf.,
Nice, France, Apr. 2007, pp. 1319–1324.

[9] M. Sheeran, S. Singh, and G. Stålmarck, “Checking safety properties
using induction and an SAT solver,” in Proc. Formal Methods Comput.-
Aided Design, LNCS 1954. Austin, TX, Nov. 2000, pp. 108–125.

[10] P. F. Williams, A. Biere, E. M. Clarke, and A. Gupta, “Combining
decision diagrams and SAT procedures for efficient symbolic model
checking,” in Proc. Comput.-Aided Verification, LNCS 2102. Chicago,
IL, Jul. 2000, pp. 124–138.

[11] P. A. Abdulla, P. Bjesse, and N. Een, “Symbolic reachability analysis
based on SAT-solvers,” in Tools and Algorithms for the Construction
and Analysis of Systems, vol. 1785, S. Graf and M. I. Schwartzbach,
Eds. Berlin, Germany: Springer-Verlag, Apr. 2000, pp. 411–425.

[12] K. L. McMillan, “Applying SAT methods in unbounded symbolic
model checking,” in Proc. Comput.-Aided Verification, LNCS 2404.
Copenhagen, Denmark, 2002, pp. 250–264.

[13] H. J. Kang and L. C. Park, “SAT-based unbounded symbolic model
checking,” in Proc. 40th Design Autom. Conf., Anaheim, CA, 2003,
pp. 840–843.

CABODI et al.: PARTITIONING INTERPOLANT-BASED VERIFICATION FOR EFFECTIVE UNBOUNDED MODEL CHECKING 395

[14] M. K. Ganai, A. Gupta, and P. Ashar, “Efficient SAT-based unbounded
symbolic model checking using circuit cofactoring,” in Proc. Int. Conf.
Comput.-Aided Design, San Jose, CA, Nov. 2004, pp. 510–517.

[15] A. Biere and T. Jussila. (2007, Jul. 7). The model checking competition
web page [Online]. Available: http://fmv.jku.at/hwmcc07

[16] A. Biere and T. Jussila. (2008, Jul. 13). The model checking competition
web page [Online]. Available: http://fmv.jku.at/hwmcc08

[17] K. L. McMillan and R. Jhala, “Interpolation and SAT-based model
checking,” in Proc. Comput.-Aided Verification, LNCS 3725. Edinburgh,
U.K., 2005, pp. 39–51.

[18] J. Marques-Silva, “Improvements to the implementation of interpolant-
based model checking,” in Proc. Correct Hardware Design Verification
Methods, LNCS 3725. Edinburgh, U.K., 2005, pp. 367–370.

[19] J. Marques-Silva, “Interpolant learning and reuse in SAT-based model
checking,” Electron. Notes Theor. Comput. Sci., vol. 174, no. 3, pp.
31–43, May 2007.

[20] V. D’Silva, M. Purandare, and D. Kroening, “Approximation refinement
for interpolation-based model checking,” in Proc. 9th Int. Conf. Ver-
ification Model Checking Abstract Interpretation, LNCS 4905. 2008,
pp. 68–82.

[21] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu, “Symbolic
model checking using SAT procedures instead of BDDs,” in Proc. 36th
Design Autom. Conf., New Orleans, LA, Jun. 1999, pp. 317–320.

[22] G. Cabodi, M. Crivellari, S. Nocco, and S. Quer, “Circuit based
quantification: Back to state set manipulation within unbounded model
checking,” in Proc. Design Autom. Test Europe Conf., Munich, Germany,
Mar. 2005, pp. 688–689.

[23] P. Bjesse and A. Boralv, “DAG-aware circuit compression for formal
verification,” in Proc. Int. Conf. Comput.-Aided Design, San Jose, CA,
Nov. 2004, pp. 42–49.

[24] P. Pudlák, “Lower bounds for resolution and cutting plane proofs and
monotone computations,” J. Symbolic Logic, vol. 62, no. 3, pp. 981–998,
1997.

[25] A. Kuehlmann and F. Krohm, “Equivalence checking using cuts and
heaps,” in Proc. 34th Design Autom. Conf., Anaheim, CA, Jun. 1997,
pp. 263–268.

[26] G. Cabodi, P. Camurati, and S. Quer, “Auxiliary variables for BDD-based
representation and manipulation of Boolean functions,” ACM Trans.
Design Autom. Electron. Syst., vol. 3, no. 3, pp. 309–340, Jul. 1998.

[27] K. Ravi and F. Somenzi, “High-density reachability analysis,” in Proc.
Int. Conf. Comput.-Aided Design, San Jose, CA, Nov. 1995, pp. 154–
158.

[28] M. Mneimneh and K. Sakallah, “SAT-based sequential depth computa-
tion,” in Proc. Int. Conf. Asia South Pacific Design Autom., New York,
2003, pp. 87–92.

[29] A. Kuehlmann, M. K. Ganai, and V. Paruthi, “Circuit-based Boolean
reasoning,” in Proc. Design Automation Conf., Las Vegas, NV, Jun. 2001,
pp. 232–237.

[30] Q. Zhu, N. Kitchen, A. Kuehlmann, and A. Sangiovanni-Vincentelli,
“SAT sweeping with local observability don’t-cares,” in Proc. Design
Autom. Conf., 2006, pp. 229–234.

[31] G. Cabodi, M. Murciano, S. Nocco, and S. Quer, “Boosting interpolation
with dynamic localized abstraction and redundancy removal,” ACM
Trans. Design Autom. Electron. Syst., vol. 13, no. 1, pp. 309–340, Jan.
2008.

[32] R. K. Brayton, S. Chatterjee, and A. Mishchenko, “DAG-aware AIG
rewriting: A fresh look at combinational logic synthesis,” in Proc.
Design Autom. Conf., 2006, pp. 532–536.

[33] F. Somenzi. (2009, Aug. 1). CUDD: CU decision diagram package—
release 2.4.1 [Online]. Available: http://vlsi.colorado.edu/∼fabio/CUDD

[34] N. Eén and N. Sörensson. (2009, Aug. 1). The minisat SAT solver
[Online]. Available: http://minisat.se

[35] A. Mishchenko. (2009, Aug. 1). ABC: A system for sequential synthe-
sis and verification [Online]. Available: http://www.eecs.berkeley.edu/-
∼alanmi/abc

Gianpiero Cabodi received the M.S. degree in
electrical engineering and computer science and the
Ph.D. degree in information and system engineering
from the Dipartimento di Automatica e Informatica,
Politecnico di Torino, Turin, Italy, in 1984 and 1989,
respectively.

He previously was a System Manager, from 1989
to 1992, and a Research Assistant, from 1992 to
1998, with the Politecnico di Torino. Since 1998,
he has been an Associate Professor with the Di-
partimento di Automatica e Informatica, Politecnico

di Torino. His research interests include hardware description languages,
binary decision diagrams, satisfiability, formal verification, logic and high
level synthesis, and embedded systems.

Luz Amanda Garcia received the M.S. degree in
electrical engineering and computer science and the
Ph.D. degree in information and system engineering
from the Dipartimento di Automatica e Informatica,
Politecnico di Torino, Turin, Italy, in 2005 and 2009,
respectively.

As a Ph.D. student, she was Assistant to computer
engineering courses and Master courses. Currently,
she is a Consultant with AleniaSIA, Torino, Italy,
where she is working on the implementation of the
computer control within the Galileo precise timing

facility project. Her research interests include hardware symbolic model
checking, scheduling, and verification and testing.

Marco Murciano received the M.S. degree in elec-
trical engineering and computer science and the
Ph.D. degree in information and system engineering
from the Dipartimento di Automatica e Informatica,
Politecnico di Torino, Turin, Italy, in 2005 and 2009,
respectively.

During his Ph.D. studentship, he joined the For-
mal Methods Group, Dipartimento di Automatica e
Informatica, Politecnico di Torino, Turin, Italy. As a
Ph.D. student, he was involved both in national and
international projects and also acted as an Assistant

and Tutor for several daily university classes. From August to October 2006,
he was an Intern with Cadence Design Systems, Inc., San Jose, CA. Since
January 2009, he has been working as non-tenure track Post-Doctoral Fellow
with the Formal Methods Group, Dipartimento di Automatica e Informatica,
Politecnico di Torino. His research interests include hardware symbolic model
checking, high level scheduling, specification, design, verification, and testing
of embedded systems.

Sergio Nocco received the M.S. degree in electrical
engineering and computer science and the Ph.D.
degree in information and system engineering from
the Dipartimento di Automatica e Informatica, Po-
litecnico di Torino, Turin, Italy, in 2001 and 2005,
respectively.

During his studies, he performed several summer
internships with companies, working with Nippon
Electric Company, Minato, Tokyo, Japan, in 2001,
Cadence Berkeley Labs, Berkeley, CA, in 2002, and
Intel Corporation, Santa Clara, CA, in 2003, 2004,

and 2005. Currently, he is a Post-Doctoral Fellow with the Formal Methods
Group, Dipartimento di Automatica e Informatica, Politecnico di Torino. His
research interests include the application of symbolic techniques, based on
both Boolean satisfiability and binary decision diagrams, to hardware formal
verification, high level synthesis, and game theory.

Stefano Quer received the M.S. degree in electrical
engineering and computer science and the Ph.D.
degree in information and system engineering from
the Dipartimento di Automatica e Informatica, Po-
litecnico di Torino, Turin, Italy, in 1991 and 1996,
respectively.

In 1994, he was with the Department of Electronic
Engineering and Computer Science, University of
California, Berkeley. In 1998, he collaborated with
the Advanced Technology Group, Synopsys, Inc.,
Mountain View, CA, and in 1999 with the Alpha

Development Group, Compaq Computer Corporation, Shrewsbury, MA. He
has been a Consultant for Compaq Computer Corporation, and an Assistant
Professor with the Dipartimento di Automatica e Informatica, Politecnico
di Torino. He is currently an Associate Professor with the Dipartimento di
Automatica e Informatica, Politecnico di Torino. His research interests include
hardware description languages, logic synthesis, formal verification, and the
simulation and testing of digital circuits and systems.

