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In this paper we present few observations concerning the appearance of dif-
ferent time scales during the transient growth of small three-dimensional per-
turbations superposed to a sheared flow, the bluff-body wake. The interesting
point is that these phenomena are developing in the context of the linear dy-
namics. Before to comment these results let us shortly describe the method
of study.
The early transient and long asymptotic behaviour is studied using the initial-
value problem formulation. The base flow is approximated through an ana-
lytical expansion solution [1] of the Navier-Stokes equations. The viscous per-
turbative equations are written in terms of the vorticity and the transversal
velocity [2] and then transformed through a Laplace-Fourier decomposition
[3] in the plane (x, z) which is normal to the base flow plane (x, y),
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The transversal velocity and vorticity components are indicated as v̂ and ω̂y re-
spectively, while Γ̂ is defined through the kinematic relation Γ̃ = ∂xω̃z −∂zω̃x

that in the physical plane links together the perturbation vorticity components
in the x and z directions (ω̃x and ω̃z) and the perturbed velocity field. Equa-
tions (2) and (3) are the Orr-Sommerfeld and Squire equations respectively,
from the classical linear stability analysis for three-dimensional disturbances
in the phase space. We define k as the polar wavenumber, αr = kcos(φ) as
the wavenumber in x direction, γ = ksin(φ) as the wavenumber in z direc-
tion, φ as the angle of obliquity with respect to the physical plane, and αi as
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the spatial damping rate in x direction. We introduce the amplification fac-
tor G(t) as the disturbance kinetic energy density E(t), the temporal growth
rate r(t) = log|E(t)|/2t and the frequency ω(t) as the time derivative of the
perturbation phase.
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Fig. 1. Re = 100, k = 0.6, αi = 0.02, φ = π/4. (a): Asymmetric case. Amplifica-
tion factor G(t) for intermediate (x0 = 10) and far (x0 = 50) wake sections. (b):
Intermediate section x0 = 10. Pulsation ω(t) for asymmetric and symmetric cases.

The results on the onset of multiple time scales – obtained by observing the
amplification factor G(t) and the pulsation ω(t) – are presented in Fig. 1
(a, b). In Fig. (1a) the amplification factor G(t) is shown for two typical
intermediate (x0 = 10) and far (x0 = 50) wake sections. The perturbations
are asymmetric. For x0 = 10 a local maximum, followed by a minimum, is
visible in the energy density, then the perturbation is slowly amplifying and
the transient is extinguished only after hundreds of time scales. For x0 = 50
these features are less marked. It can be noted that the far field configuration
(x0 = 50) has a faster growth than the intermediate field configuration (x0 =
10) up to t = 400. Beyond this instant the growth related to the intermediate
configuration will prevail on that of the far field configuration. For x0 = 10
the amplification factor G(t) shows a modulation which is very evident in the
first part of the transient (see [4]), and which corresponds to a modulation
in amplitude of the pulsation of the instability wave depicted in Fig. (1b).
Here, the frequency ω(t) for symmetric and asymmetric perturbations at x0 =
10 is shown. The modulation is only present for the asymmetric wave (for
the symmetric case the amplitude is constant after few time scales). This
behaviour is in general found for asymmetric longitudinal or oblique waves.
In these instances two time scales are simultaneously observed in the transient
and long term behaviour: the periodicity associated to the average value of the
pulsation in the early transient (ω ≈ 0.3) and the asymptotic pulsation (ω ≈
0.45). Moreover, the oscillation of this pulsation ω(t) in the early transient
introduces another time scale τ , which in terms of pulsation is about 0.17.



Linear generation of multiple time scales by 3D unstable perturbations 3

The frequency determination is validated through the comparison of the tem-
poral asymptotic behaviour (t → ∞) of the initial-value analysis with a recent
normal mode analysis [5] and experimental data of nearly supercritical oscil-
lations [6] for different Reynolds numbers (Re = 50, 70, 100) (see Fig. 2).
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Fig. 2. (a, c, e) pulsation ω(t) and (b, d, f) temporal growth rate r(t) for present re-
sults (asymmetric case: black triangles, symmetric case: black circles), modal analy-
sis [5] (solid curves) and experimental data [6] (red squares). αi = 0.05, φ = 0,
x0 = 10, Re = 50, 70, 100.
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The comparison is quantitatively good for all the Reynolds numbers con-
sidered, because it shows that a wavenumber close to the wavenumber that
theoretically has the maximum growth rate has a - theoretically deduced -
frequency which is very close to the frequency measured in the laboratory.
The noticeable point of this analysis is the variety of temporal scales revealed
by the transient, which are associated to a given specific value of the instability
wavelength. In particular, if the perturbation is asymmetric and oblique it is
possible to count up to five different time scales for the system: (i) the temporal
scale D/U∼ 1 related to the base flow (where D is the cylinder diameter and
U is the free stream velocity), (ii) the length of the transient (200-300 time
units), (iii and iv) the scales associated to the instability frequency in the early
transient (about 21 time units) and in the asymptotic state (about 14 time
units), and (v) the modulation of the pulsation in the early transient (about
35-40 time units). Another interesting point is that these scales are different
each other and are also different from the asymptotic value predicted either
by the initial-value problem or the modal theory.
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