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Abstract 
With the rapid increase in the complexity of digital circuits, the design abstraction level has to 

grow to face the new needs of system designers in the early phases of the design process. Along with 
this evolution, testing and test facilities should be improved in the early stages of the design to 
provide the architecture with functional test facilities to be later synthesized to hardware and/or 
software testing infrastructures according to designer’s requirements. In the case of hardware, these 
test infrastructures could be translated, for instance, into online testing facilities at lower levels of 
abstraction, from which automatic synthesis tools are available. TLM 2.0 is a new OSCI standard 
widely used to describe systems at high abstraction level. Starting from the increasing use of TLM in 
hardware design industry, the paper aims at providing a mechanism to fill the gap between the 
design abstraction level and the level in which testing methodologies are applied. To do the job, the 
TLM 2.0 “debug transport interface” is used and methods are introduced to synthesize it into known 
test access methods at RTL. 
 
1. Introduction 

With the new advances in technology and the emergence of new human needs, the complexity of digital 
circuits is increasing every day [16]. Today’s system-on-chips (SoC) are built out of a very large number of 
diverse IP structures and cores. On the other hand, safety and reliability of such systems should be guaranteed 
by proper testing mechanisms [3]. System level modeling is an answer to the increasing need of dealing with 
complexity in hardware design industry. It represents a viable solution to facilitate design and debug of 
complex systems starting at their early design phases. By the new emergence of Transaction Level Modeling 
(TLM) standards, this methodology is being vastly used by the Electronic System Level (ESL) design industry 
[4].  

The TLM standard, introduced by the Open SystemC Initiative (OSCI) [2], is a transaction-based approach 
to describe systems at the early stages of the design. It is able to speed up the simulation, and to facilitate 
debug for huge electronic systems [1, 8, 9]. Two releases of the TLM standard are currently available. TLM 
1.0 uses basic channel structures, such as FIFOs, to describe high-level communications among functional 
units. TLM 2.0 provides additional interoperability by using generic packages for transactions. It also 
increases the simulation speed and abstraction level by taking advantage of proper interfaces for 
communications.  

While TLM is proving to be a very valuable medium to increase the design flow efficiency by moving the 
overall design problem to higher abstraction levels, testing solutions and methodologies still remain confined 
to lower abstraction levels. This may result in completely high-level designed and simulated systems unable to 
fit specific test end reliability requirements when translated/synthesized into lower abstraction levels (e.g., 
RTL). The communication-centric view of TLM provides an abstraction that is well-suited to model test 
infrastructures involving the exchange of significant amounts of data. In addition, performance modeling in 
TLMs tries to accurately capture the concurrency in a system, which is easily adapted to model the 
concurrency in testing. [5] 

A few publications considered the test problem at TLM level. [4] proposes a plug and test design 
methodology based on the insertion of testing capabilities at the transaction level by means of testable TLM 
primitives. While it represents a first tentative of moving test concepts at TLM level, the paper deals with basic 
FIFO communication channels defined in TLM-1.0 standard, only. [5] shows how TLM can be used to 
efficiently evaluate Design for Testability decisions in the early design steps, and how to evaluate test 
scheduling and resource partitioning during test planning. Even if these publications have the benefit of 



starting to address the problem of testing at TLM level, the results are still limited and a strong investment to 
address this problem in a more general way is required. 

This paper proposes a design methodology able to consider the test of communication interfaces at high 
level of abstraction. The introduced method is applicable to both hardware and software communication 
portions of the design to be later on synthesized into test infrastructures at register transfer level in case of 
hardware. We focus on TLM 2.0 as a high level modeling environment, and take advantage of the Debug 
Transaction Interface (DTI), originally introduced to debug the system at TLM 2.0 level.  

The case study that demonstrates the presented design methodology is an encryption/decryption system 
using Advanced Encryption Standard (AES) [10] for encoding data. The method is first applied at the high 
level of abstraction in which hardware/software partitioning is not done yet. Then it is shown that even after 
partitioning, the method is still applicable to both hardware and software communication interfaces. At last, we 
have translated the designed system into an RTL description to show the synthesizability of the proposed 
method from TLM to RTL.  

The organization of the paper is as follows: section 2 gives a brief overview of system level design flow, 
which usually starts from high level description of the system in TLM and ends to the netlist and the software 
related to the designed hardware. Section 3 includes a short introduction on TLM 2.0 and in particular its 
Debug Transaction Interface (DTI). The methodology of testing at transaction level is introduced in detail in 
section 4. A case study is discussed in section 5 to apply the introduced test infrastructures at TLM level to a 
practical model. Section 6 demonstrates the experimental results obtained from synthesizing the introduced 
model in case study to RTL whereas section 7 contains the conclusion. 
 
2. System Level Design Flow 

A short overview of a typical system level design flow is essential in order to understand the motivation 
behind the need of considering test concepts in the early steps of the design. Figure 1 shows a typical design 
flow starting from the definition of system requirements. 

The requirements are then used to develop the system architecture model which can be later used to extract 
the TLM model of the design. The TLM model is then partitioned into the hardware and the software portion. 
From this point, the hardware and software design teams can start working in parallel to develop a system that 
meets the original requirements. 

Each step of the design flow proposed in Figure 1 requires taking decisions in order to make the design 
more complete. Moving from each level to the next one, a Validation/Verification (V&V) campaign is 
required to understand whether the current design is compatible with the system requirements, and represents 
the best and optimized solution. Failing in a V&V step means that at least one of the decisions made in 
previous levels was not correct. This may lead to the need of several iterations in the design flow (see Figure 
2). 

Figure 2 clearly highlights that considering test issues late in the design flow (e.g., at the RTL level), may 
require long backtracks leading to a drastically increasing design cost and complexity. It is therefore 
mandatory to consider test related decisions starting from the system specifications instead of postponing them 
to later stages of the design flow. 

 
3. TLM 2.0 Standard 

Transaction level modeling [1, 8, 9] is a transaction-based modeling approach originally based on high-
level programming languages such as C++ and SystemC [13]. It enables system level design and simulation of 
large hardware/software systems, for which RTL simulation would require an unacceptable amount of time 
[5]. TLM emphasizes on separating communications from computations within a system. In the TLM notion, 
computation units are modeled as modules with a set of concurrent processes that calculate and represent their 
behavior. These modules communicate in the form of transactions through abstract channels [1]. 

OSCI introduced two standards of TLM based on C++ class libraries written in SystemC. The first standard 
of TLM (TLM-1.0) uses the concept of channels and interfaces with focus on blocking, non-blocking, 
unidirectional, and bidirectional transfers [7]. As the abstraction level increases, this standard becomes less 
applicable and not fast enough for describing models at higher levels [9]. In addition, with the lack of model 
interoperability in the TLM-1.0 standard, another problem would be how producing IP cores to be used by a 
common customer. 

TLM-2.0 is the new OSCI standard and it consists of core interfaces from TLM-1.0 together with the 
blocking and non-blocking transport interfaces, the direct memory interface (DMI), the Debug Transport 
Interface (DTI), the write interface, and the analysis interface [6]. It enables SystemC model interoperability 
and reuse, and provides an essential framework for architecture analysis, software development, performance 
analysis, and hardware verification [8]. It also defines a set of interfaces that should be thought of as low-level 
software programming mechanisms for implementing transaction level models. Each interface is suitable to 
work with TLM-2.0 designs characterized by different timing details. 



           
                     Figure 1.TLM-Based design flow [12]                                                 Figure 2.System level design flowchart 
 
 The transport interfaces are the primary interfaces used to transport transactions between initiators, targets 

and interconnect components [6]. The Direct Memory Interface is able to bypass the normal path of multiple 
transport interface calls from initiator through interconnect components to target to offer a large potential 
increase in simulation speed for memory access between initiator and target. The Debug Transport Interface 
provides a means to read and write to storage in a target, over the same forward path from initiator to target as 
is used by the transport interface, but without any of the delays, waits, event notifications or side effects 
associated with a regular transaction. Because this interface follows the same path as the transport interface, 
the implementation of the debug transport interface can perform the same address translation as for regular 
transactions. [6] 

The Debug Transport Interface was originally designed to provide the designer with a debugging tool at the 
high level of abstraction. The idea proposed in this paper is to take advantage of this interface not as a 
debugging facility, but as a test structure that can be efficiently translated/synthesized into known RTL level 
test facilities. In other words, we use this interface as a facility providing the designer with the ability of 
modeling the required test infrastructure structure at high level of abstraction. 
 
4. Testing at transaction level using the Debug Transport Interface 

This section aims at discussing how TLM-2.0 specific features can be exploited to model test 
infrastructures, and to consider test related problems at the very early stages of the design flow, when the 
system is not yet partitioned into hardware and software parts. This early decision making may prevent the 
costs related to design backtracks that may arise when test related decisions are directly performed in the late 
steps of the design flow (see Section 2). The challenge here is to allow the designer to easily model testing 
capabilities in the design at the very early stages of the design process, regardless of the fact that specific parts 
of the systems will be then mapped into hardware or software components. Design for Testability (DfT) at 
high level may provide a big picture of the design, and facilitate high-level design, partitioning, and synthesis.  

It is clear that at this very high level of abstraction, typical structural-based DfT approaches targeting 
structural fault models cannot be applied. Actually, the concept of hardware components still has to be defined 
at this level. Hence, the only possible and reasonable alternative to introduce test concepts at Transaction level 
is resorting to pure functional testing [4]. Moreover, besides providing a specific implementation of a test 
architecture, the idea here is to provide the designer with a very flexible high level facility that can be 
exploited to describe different types of test approaches. 

Test and testability requirements include those for computational modules as well as those for the 
communication mechanisms. While computational modules implemented in hardware are mapped into IP 
cores or even more complex circuits that usually already include testability features, test methods for the 
communication mechanisms still remain a critical point. 

This paper therefore focuses on modeling at TLM level test infrastructures for communication mechanisms. 
In particular, we will exploit the Debug Transport Interface (DTI) introduced by TLM-2.0 to model test 
methods for communication interfaces connecting initiators and targets together via sockets.  As DTI uses the 
same path as the transport interface while skipping all the delays related to the normal path of communication, 



it can be used as an additional communication channel for testing. The transport_dbg function related to the 
DTI can be used to model the test method to be applied at lower level for the test. 

 

 
Figure 3. Using DMI at TLM level for testing 

 
Figure 3 shows the main architecture of the proposed high level test schema. The normal path, which can be 

a blocking or a non-blocking transport interface, transmits data from the initiator to the target through sockets 
while the DTI is exploited to send test related information. The transport_dbg function uses both the received 
data and the test data to check whether the channel is working properly, and therefore to implement the desired 
test algorithm for the channel. 

Several testing approaches for communication channels [17, 18, 19] can be efficiently modeled by resorting 
to the schema proposed in Figure 3. Besides the test patterns exchanged to actually perform the test, which are 
strictly related to the low level implementation, the main point to highlight here is that by carefully choosing 
the way the DTI is used, we can model high level test facilities that can be then easily translated into RTL and 
real implementations in the late steps of the design. Depending on the way the transport_dbg function is 
invoked we can distinguish among two main test approaches: 

Concurrent test: in a concurrent test approach, each time a transaction is issued, the transport_dbg function 
should be used to check whether the transaction was correctly performed or not. In this case, the DTI can be 
efficiently exploited to transport redundancy information ranging from error-detection/correction codes (e.g., 
parity bits or SEC/DED codes) to a complete duplication of the transmitted data flow; 

Off-line test: in an off-line test approach, a set of transactions is issued on the channel to transmit a set of 
data (test patterns) designed to detect specific faults on the target implementation. In this situation the system 
needs to enter a so-called test mode in which its normal behavior is interrupted and test activities are then 
performed. In this context, the DTI may assume several roles. As storing test data for comparison into the 
target may represent a high cost, the DTI may be exploited to send copies of the data sent on the normal path. 
In this case, as the operation does not require to be performed concurrently with the normal behavior of the 
system, a channel with reduced bandwidth can be exploited to perform this job. 

Given these two main templates for using the DTI, this interface can be then exploited in a very flexible 
way to describe specific test algorithms at high-level and more importantly to evaluate their impact on the 
system.  

In the following section we will exploit the application of this test modeling approach to a case study. The 
main idea is to provide examples of how test schema can be actually modeled, and how the high level model 
can be translated during the design flow down to the final RTL implementation. 
 
5. Case Study 

To show a real application of the idea introduced in Section 4, an encryption/decryption sub-system based 
on the Advance Encryption Standard (AES) [14] is considered here and implemented at three levels of 
abstraction.  

High level of abstraction before HW/SW partitioning: 
The highest abstraction level (Figure 4) includes the behavioral description of the system prior to HW/SW 

partitioning. In this case, the system contains two processing elements (cores), described in TLM-2.0 loosely 
timed style, for encryption and decryption respectively, and an I/O core. The I/O core sends data to the AES 
core to encrypt information, or sends a cipher text to the decryption core to decrypt the received data. In this 
architecture, the DTI is used to build a test infrastructure for the communication between both the AES core 
and the I/O core, and the Decryption core and the I/O core. 

 



 
Figure 4. System architecture at high level of abstraction 

At this level, we can decide whether to apply online or offline test infrastructure to our high level system 
architecture.  

We consider the two different scenarios proposed in Section 4:  
 

A. Offline testing: In this scenario, the system has two operation modes. In “test” mode, the initiator 
sends a stream of bytes in parallel to the target. In the meanwhile, it starts transferring the same data in serial, 
byte by byte, to the target through the DTI. At the end of the transfer, the transport_dbg function compares the 
original and received data to see if the channel is working properly. After the proper functioning of the 
communication channel has been checked by the DTI, the system can enter its “normal” mode. Figure 5 shows 
the implementation of the debug function in this case. As it can be seen, the debug function receives the serial 
data and store it in a temporary variable until all the data is got. At this stage, the comparison is performed to 
guarantee the correctness of the communication path. 

 
1  unsigned int AES::transport_dbg (tlm::tlm_generic_payload& trans){ 
2   char temp = (char) trans.get_data_ptr(); 
3   if (temp != '\0') { 
4    orig_data[counter] = temp; 
5    counter ++; 
6   } 
7   else { 
8    orig_data[counter] = temp; 
9    bool flag = true; 
10    for (int i=0; i<=counter; i++) 
11    if (_INPUT[i] != orig_data[i]) 
12    flag = false; 
13    if (flag) 
14     cout <<"Test Succeed"<< endl; 
15    else 
16     cout <<"Test Failed"<< endl; 
17    counter = 0; 
18    return flag; 
19   } 
20  } 

Figure 5. Implementation of the transport_dbg function in AES core 
 
The data is carried to the transport_dbg function via generic payload objects. The shared variable _INPUT is a global 

variable containing the received data through the normal communication channel i.e., blocking transport interface. 
 
1  … 
2  if (!mode){ // we are in test mode 
3   trans.set_data_ptr(data); 
4   enc_port->b_transport(trans, delay);  
 
5   //serial transfer 
6   for (int i = 0; i < 14; i ++) { 
7    dbg_trans.set_data_ptr(data[i])); 
8    trans.set_write(); 
9    dbg_trans.set_write(); 
10    enc_port->transport_dbg(dbg_trans); 
11   } 
 
12   if (trans.is_response_ok()){ 
13    …    
14   } 
15  } 
16  else//we are in normal operation mode 
17  { 



18   //System Normal Operaion 
19   … 
20  } 

Figure 6. Calling DTI in test mode to test communication 
In addition to the implementation of the transport_dbg function, the method of calling this function is 

important to mimic the behavior of a certain RTL test infrastructure at high level. Figure 6 shows the calling of 
transport_dbg function in the implementation of the first scenario. 

The variable “mode” specified in line 2 is a Boolean variable showing the operation mode of the system. If 
“mode” is set to false, the system works in test mode, and starts using test data, whereas if set to true, the 
system resumes its normal operation mode. 

 
B. Online testing: In this scenario, testing the communication will not affect the normal operation of the 
system. A possible schema for on-line testing may exploit the use of detection codes such as for instance parity 
bits to be transferred together with the data through a different communication channel rather than the one 
used to transfer the data itself. This can be implemented at high level by using the DTI for parity bit 
transaction. The implementation of the transport_dbg function in this case is shown in figure 7. 

 
1  unsignedint AES::transport_dbg (tlm::tlm_generic_payload& trans){ 
2   bool parity[] = new bool[data_length]; 
3   bool flag = true; 
4   for (int i = 0; i < data_length; i++) 
5    parity[i] = calculate_parity ((char)_INPUT[i]); 
 
6   unsignedchar* cparity; 
7   cparity = (unsignedchar*)parity; 
8   unsignedchar* rparity;  
9   rparity = trans.get_data_ptr(); 
10   for (int i=0; i< data_length; i++) 
11    if (rpatiry[i] != cparity[i]) 
12     flag = false; 
13   if (flag) 
14    cout <<"Test Succeed"<< endl; 
15   else 
16    cout <<"Test Failed"<< endl; 
17   return flag; 
18  } 

Figure 7. Implementation of the transport_dbg function in AES core 
 
It should be mentioned that “calculate_parity” specified in line 5 is a function which calculates the even 

parity of a given character. 
Besides from the transport_dbg function, the function call in this scenario is different from what we have in 

the offline testing scenario and can be used as an indicator of the selected testing infrastructure. This is shown 
in figure 8. 

As shown in line 8, the functionality of the communication channel is tested during the normal operation of 
the system and after each data transaction to guarantee reliability of the communication channel after each 
transaction. The operation is considered as completed only if the correct functionality of the communication 
channel is certified by the DTI. 

These two scenarios shows that the implementation of the transport_dbg function and also its call sequence 
can specify the testing infrastructure chosen for testing at RTL. With respect to this fact, we can have different 
variations of the transport_dbg function implementation and call to refer to different test infrastructures at 
RTL. 

 
1  trans.set_write(); 
2  trans.set_data_ptr(data); 
3  enc_port->b_transport(trans, delay);  
4  for (int i = 0; i < data_length; i ++) 
5   parity[i] = calculateParity((char)data[i]); 
6  dbg_trans.set_data_ptr(reinterpret_cast<unsignedchar*> (parity)); 
7  dbg_trans.set_write(); 
8  if (enc_port->transport_dbg(dbg_trans)) 
9   if (trans.is_response_ok()) 
10   { 
11    //Normal System Functionality 
12    …  
13   } 

14  Figure 8. Calling DTI in online testing scenario 

 



High level of abstraction after HW/SW partitioning: 
 
The next level of abstraction contains the system behavior after hardware/software partitioning. To show 

that the proposed method can be used in both hardware and software, we partition the system into a hardware 
AES core and a software algorithm for decrypting the cipher text to be executed on a microprocessor. Figure 9 
shows the architecture of the system at this level. 

 

 
Figure 9. System architecture after partitioning 

 
As shown in figure 9, in this case, the path between the I/O core and the AES core is equal to the situation 

proposed Figure 4, but the path between the I/O core, and the decryption core is split into two distinct paths: a 
hardware connection from I/O to the microprocessor and a software connection from inside the microprocessor 
to the specific software process.  

The transport_dbg functions implemented in figure 5 and figure 7 can still be used to test the path between 
the I/O core and the AES core for equipping the design with offline and online test infrastructure, respectively. 
They can also be used to test the connection between the I/O core and the microprocessor just like the I/O core 
and the Decryption core. The only difference is that another path is added from microprocessor and the 
decryption algorithm which can be tested using software testing methods. In other words, in case of software, 
the connection between the initiator and the microprocessor can be tested in the same way as the initiator and 
the IP core. 
 
6. Experimental Results 

To proof the concepts introduced in this paper, we have to show that the high-level test infrastructure 
proposed in Figure 4 can be easily mapped to one of the widely used test infrastructures for communication 
channels at RTL level in the presence of an automatic synthesis tool. Since at the moment a complete and 
automatic synthesis flow from TLM 2.0 down to RTL is still not available, and the translation is mainly 
performed manually, we focus our attention on the offline test model proposed in Section 5, only. The same 
results can be then easily extended to the remaining solutions or even to new test solutions not included in this 
paper. 

The different cores proposed in Figure 9 have been mapped to already available IP cores. The 
microprocessor core has been mapped to the LEON3 microprocessor [20], used as target computation unit for 
running the AES decryption algorithm, while the encryption core has been mapped to the AES encryption IP 
core introduced in [15] also including a Built In Self Test (BIST) facility. The communication channels have 
been mapped to the AMBA bus [21], which is a bus structure compatible with the LEON3 microprocessor, 
and a custom I/O core has been described to validate the system, and to play the role of the master in the 
implemented system. 

Figure 10 summarizes the architecture of the resulting system. It is important to highlight that at this level 
the communication channels introduced in Figure 9, i.e., the channel between the I/O core and the Encryption 
core, and the channel between the I/O core and the microprocessor, are here mapped to a single physical 
interconnection element, the AMBA bus. The test infrastructure modelled at high level should therefore be 
mapped to RTL structures able to test the functionality of the AMBA bus. 

Describing the test infrastructure at RTL level means translating the DTI, and the transport_dbg function to 
a specific test architecture. In the offline scenario (see Section 5), according to the high level implementation 
of the transport_dbg function, the test method should transfer patterns from the I/O core to Encryption core, or 
to the microprocessor core both on the normal interface, and on the DTI (using a serial transmission). The 
received patterns should be then compared to detect defects. This leads to the modified architecture of our 
RTL implementation proposed in Figure 11.  

An additional interconnection component has been included to model the DTI. In this case widely used Test 
Access Mechanisms as the one proposed in [22], as well as custom interconnection schema can be exploited. 



In our case we designed a simple serial link allowing the I/O core to send information between the I/O core 
and both the Encryption Core, and the LEON3 Microprocessor. 

 

   
                   Figure 10. System architecture at RTL                                    Figure 11. Modified System architecture at RTL 

 
Finally the transport_dbg function has been implemented as a small wrapper providing additional 

functionalities to the Encryption and microprocessor cores. While in the case of the Encryption core this 
wrapper is in charge of receiving the serial copy of the patterns on the DTI and comparing them with the 
patterns transmitted on the AMBA bus, in case of the LEON the checking phase can be demanded to the 
microprocessor itself, thus reducing the complexity of the wrapper. 

The architecture shown in Figure 11 presents a quite evident one-to-one correspondence between the high 
level model and the RTL implementation of the design. At RTL, the main design activity has been devoted to 
identify available infrastructures that better integrate into the target system, and to design small test modules to 
directly translate the transport_dbg function activities into a hardware description. Nevertheless, a key element 
is still missing, a set of test patterns to use during the test phase of the communication channels. Test patterns 
are strictly connected to physical faults of the target technology, and can be defined only after the definition of 
the target hardware. In our implementation, we exploited the methodology for generating test patterns 
proposed in [19]. The paper proposes a test pattern generation algorithm for communication buses able to 
provide, given the number N of lines composing the bus, 2ªLog2(N)º patterns detecting shorts, opens and 
delay fault models. The patterns are generated using a very simple algorithm: 

 
1. Each line of the bus is labelled with an increasing number expressed as a ªLog2(N)º bit binary 

number; 
2. The binary numbers used to label each interconnection can be used to form a matrix of bits, where 

each row is associated with an interconnection line and contains the label of the line. The test 
patterns are obtained by reading the matrix by column (see figure 12.a). 

3. In order to include delay faults in the test, each test pattern obtained during step 2 should be 
followed by a complemented test pattern (see figure 12.b). 

 
Figure 12. Test Pattern Generation 

 
[19] demonstrates that the number of generated patterns is optimum. In our case, we also take advantage of 

the possibility of offline generation of patterns, without adding any extra hardware or software algorithm. 



In our specific implementation, data are transmitted on the AMBA bus as 32bit words. According to [19] 
we generated a set of 10 test patterns. The same set of patterns has been used during the test phase of both the 
communication between the encryption core and the I/O core, and between the microprocessor core and the 
I/O core.  

A similar straightforward translation could be easily applied also for the on-line test scenario proposed in 
section 5. 
 
7. Summary and Conclusions 

In this paper, we propose a method to define different test infrastructures at high level of abstraction, i.e., 
TLM, which could be synthesized to proper test facilities at RTL level. The test infrastructure has been defined 
at high level using the debug transport interface which is originally defined by OSCI TLM 2.0 standard for 
debugging at transaction level and is not synthesizable. We introduced another usage for DTI in order to 
introduce the test infrastructure at TLM. This new usage is synthesizable and could be translated to RTL 
testing facilities in the existence of a proper synthesis tool. We tested our introduced method for two known 
different test infrastructures: online and offline testing and showed that it works even after partitioning of the 
system into hardware and software. In other words, the proposed method can be applied to the system at very 
high level of abstraction before the partitioning of the system and synthesized to the lower levels of abstraction 
with other parts of the system in each synthesis step. We test our method on TLM 2.0 platform with an 
encryption/decryption system using AES algorithm and show that the introduced method works for both the 
system in pure hardware and also in the case that the decryption algorithm is a piece of software executed on a 
LEON3 microprocessor. The RTL implementations justify the validity of the proposed method and guarantee 
its synthesizability to lower level of abstraction i.e., RTL. 
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