
17 June 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Towards microagent based DBIST/DBISR / Miclea, L.; Enyedi, S.; Toderean, G.; Benso, Alfredo; Prinetto, Paolo
Ernesto. - STAMPA. - (2004), pp. 867-874. (Intervento presentato al convegno IEEE International Test Conference
(ITC) tenutosi a Charlotte (NC), USA nel 26-28 Oct. 2004) [10.1109/TEST.2004.1387350].

Original

Towards microagent based DBIST/DBISR

Publisher:

Published
DOI:10.1109/TEST.2004.1387350

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2286552 since:

IEEE

Towards Microagent based DBlSTlDBlSR

Liviu Miclea*, Szilzird Enyedi‘, Gavril Toderean”
Technical Universitv of Clui-Naooca Romania

Alfred0 Benso. Paolo Prinetto
. . ,

*Department of Automation .. Department of Telecommunications

Politecnico di Torino, Italy
Dipartimento di Automatica e Informatics

Abstract
In this paper, we present some idm and experiments on
using microagents far testing and repairing a distributed
system; whose elements mny or moy not have embedded
BIST (Built In Self Tesz) and BISR (Built In Se2f Repair)
facilities.

The microagents are sohare modules that p e ~ o r m
monitoring, diagnosis and repair of the foults. They form
together a saciey whose members communicate, set goals
andsolve tmks.

The plaforms taken info consideration for mobile tester
microagents include Java Micro Edition, BREW. Sym-
bian, PalmOS, as well as more general small scale plat-
forms. Experimenfal tester agents in Java 2 Micro Edition
and PalmOS are also prerenfd. a solution that ensures
portability. flexibiliry, but also a relatively small memory
footprint.

1. Introduction
One of the current trends in BIST technology is Distrib-
uted BET, or DBIST [1-5]. The distributed nature of
DBIST means that each of the modules of the tested sys-
tem has its own BIST routine, which runs the test more or
less independently from the other modules. This way, the
actual BIST of the whole device is decomposed into
smaller, dedicated BISTs, which should be simpler and
easier to develop and maintain. If the communication is
expensive, a decentralized test management can be more
efficient. This testing solution is especially suitable for
large systems, with many subsystems, possibly of differ-
ent types. One such system is shown in figure 1.

Distributed BIST, or DBIST, usually implies that each
module of the system has its own BIST, and the testing is
not done centrally, but locally, in a distributed manner.
The system may or may not have a central DBIST man-
agement module. Most DBIST approaches 11-51 use a
central control authority to stadstop the remote BIST
tests, to generally organize the DBIST process and gather
together the results.

2.

2.1 Generalities
This work is a M ~ U I - ~ continuation of the multi-agent ap-
proach presented in [6-81. We extended the work to other
low scale platforms as well, like BREW (see 2.4.2. below)
or Symbian (see 2.4.3. below), for example.

The term “microagent” is preferred to “agent”, in this
context, due to the low processing power and memory
requirements of the agents used.

The IEEE 1232 family of standards, analyzed in [9], de-
.scribes common exchange formats and software services
for reasoning systems used in system test and diagnosis.
The goal is to make the data exchange between two dif-
ferent diagnostic reasouers easy. The standard also de-
fines software interfaces, for the use of external tools that
can access the diagnostic data in a consistent manner. It
allows exchanging diagnostic information and embeddiag
diagnostic reasoners in any test environment.

Intelligent agents are software modules able to make deci-
sions on their own, communicate with each other, learn
new things and even “travel” kom system to system (see

Most of the large systems we talk about are heterogene-
ow, comprising a large number of devices of different
types. Tbe devices we talk about usually have different
hardware and/or software, task, dependability require-
ments, but all are capable of running software (in order to
be able to run the agent code). If not, an agent from a
nearby device can test this device.

A multi agent approach and diagnosis ontology for diag-
nosis of spatially distributed technical systems is pre-
sented in [I I]; however, in that approach, each subsystem
has its own agent monitoring and diagnosing it, which can
be costly in some cases. The memory holding the agent
could be used for system purposes.

In this paper, we propose an innovative solution based on
microagent approach for diagnosing distributed systems.
It offers many advantages l i e flexibility, easy mainte-

Agent based DBIST and DBISR

also [lo]).

ITC i r ” n o w L TEST CONFERENCE

0-78038580-2/04 $20.00 CopynQht 2004 IEEE

Paper 31.2

867

r

Rgure 1 - HetemgeMous distributed system. The devices are in connection wlth each other. In this ex-ample, the components
of the system am several computing enabled modules of different makes end mrsions. Of course, the more classical example

is an industrial system with divenra components, but we chose consumer devices, for demonstrational purposes.

nance, diagnosis tool for parts of the overall system, and
fault tolerance due to the Built in Self Repair. Monitoring
and diagnosing faults is one of the application areas for
agent-based systems. Some modern complex devices have
also BIST ed components, so we can decompose the di-
agnosis of the whole system to the diagnosis of compo-
nents. Our approach differs ftom other multi-agent ap-
proaches, because the agents are portable, highly platform
independent, require relatively low resources, they can
deal with many types of devices and the system adminis-
trator can use various, inexpensive and friendly tools to
supervise the devices, tests, agents and the agent society
in general.

An agent based approach has the advantage of distributing
the processing among many distinct components and, due
to the autonomy of the agents, reduces the communication
in the system Moreover, the mobility of the agents in-
creases the ability to efficiently solve a problem that a p

pears in a region of the system, by increasing the local
knowledge.

2.2 Agent Society
The agent society, as exemplified in figure 2, is able to
share resources and repair the faults whenever possible.
One or more agents diagnose each subsystem.

The agents travel from device to device, try to detect and
repair errors, either by themselves or with the help of
other agents or a central database. They can also gather
“experience” through their work.

When an agent cannot detect a cause of an observed fault
or cannot repair it, it appeals to other agents to start coop-
eration. We use a decentralized diagnosis model, which
reduces the complexity and communication overhead of
centralized solutions. Due to the diversity of devices in
modem complex systems, heterogeneous agents can be
implemented that take care of device(s) in their responsi-
bility area.

Paper 31 2
868

I

about Dmice 3

Fgwe 2 -Agents dthn soddy, In adon.

The BISTBISR can be m off l i e or on line in the back-
ground, depending on the capabilities of the device under
test. In OUT experiments, we used both methods - for ex-
ample, in figure 5 , you may observe that the exemplified
test is not only off line - taking over the device during the
test -but it also needs user intervention. The PC version

in the background.

Different agents have different repair capabilities and they
have to ask their colleagues if they cannot repair the fault
by themselves.

When an agent has to analyze a specific subsystem (de-
vice), it executes three major steps:

- makeaplan
- get the necessary information to execute the plan
- execute the plan
- analyze the results (not compulsory)
- decide (not coqulwry)

The first step is to see if there is a fault or not. This may

ity in fiding a way to check that specific device.

The simplest case is when the device has BIST, and the
agent knows how to access it. If the agent cannot access
the BIST module, it can ask other agents or a database
about it.

Another case is when the device does not have BIST, but
has some pre generated test sequences in its memory. In
this situation, if the agent knows how to access them, it
can extract and apply these test paaems. If not, the agent

(not shown) ofthe BISTDISR process is on h e and m s or may not be possible, depending on the

- detection
- diagnosis
- repair

For each step, the agent has to:

Paper 31.2

869

can ask other agents or a database about bow to access
these test pattems in the device.

Of course, there may be cases when the device does not
contain the test patterns in its memory, thus the agent has
to request them from other agents or databases.

After detecting the fault, the agent starts a diagnosis (al-
though most fault detection methods include diagnosis as
well). In order to do this, the agent uses the same sources
of information as for detection.

When the fault has been correctly diagnosed, the agent
hies to repair it. It uses the same sources of information as
for the detection and diagnosis. Of course, being software
by nature, the agent is limited mainly to software repairs.

There may also be cases when the diagnosis is ambigu-
ous, i.e. there may be more causes of the failure. In that
case, the agents conduct further tests, eventually “discuss”
the problem.

There are four basic types of agents in the society:

- Tester agents
- Nameserver agents
- Facilitator agents
- Visualizer agents

Tester agents are the ones “working”, i.e. effectively test-
ing the devices.

Nameservers are like phone books, they make easier for
the agents to find each other.

Facilitators are lie the Yellow Pages, they know who has
what and who knows how to detect or fur what problem.

Visualizers are the interfaces between the agent society
and other systems, for example accepting commands from
the system administrator and supplying information about
tested devices and society statns.

More about agent management can be found in [121.

2.3 Agent Communication
At software level, the agents communicate with each
other through the FIPA (Foundation for Intelligent Physi-
cal Agents) ACL (Agent Communication Language) [12].
FIPA ACL specifications describe aspects of the structure
of messages and the ontology service. For now, our
agents have a reduced language set, mainly allowing shar-
ing test sets, device testhepair data and system coverage

The FIPA MTP (Agent Message Transport Protocol)
specifications [12] present different ways of communica-
tion for the agents to exchange data. IIOP (Internet Inter
ORB Protocol), WAP (Wireless Application Protocol)
and H T P (HyperText Transfer Protocol), TCF’AP over

plans.

wireline are described, as well as generic wireless solu-
tions. They also deal with bit oriented, string ,oriented and
XML oriented message representations. Our agents, in
their current development statns, use TCPLl’ over wire-
l i e and wireless connections, with the messages in AS-
CII string format. They ask information from the central
database through HTTP. A newer version, with XML, is
being developed, to simplify inter agent, agent to database
communication and use of protocols like H‘MT and
WAP.

At hardware level, the agents use whatever communica-
tion layer is available for the device (serial, 12C, Ethernet
or other). We have also considered embedded TCPm
solutions.

For a system with mobile subsystems to be tested, short
range, standardized radio based Bluetooth chips can be
used. For large scattered systems, radio based Wi Fi solu-
tions or GPRS boards are available. Wi Fi works even
with public Access Points, while GPRS boards are ade-
quate for low cost, always on sporadic communication
over large distances.

2.4 Agent Platforms

2.4.1 Java Micro Edition
Sun’s Java 2 Micro Edition 113, 141 is standardized, port-
able, has a small footprint (Sun’s KVM reference imple-
mentation has about 128 kiloytes), optimized for network-
ing and very flexible.

To ensure portability among different manufacturers’
devices, the M D P 1.0 (Mobile Information Device Prc-
file) and specification establishes some basic functionality
for the fmt generation Java enabled mobile devices. This
guarantees that the programs - “midlets” -- will run on
any MIDP 1.0 certified hardware.

MIDP 1 .O offers only HTTP type connections by default,
but there are a few workarounds to have always on, flexi-
ble, raw socket connections - proprietary network con-
nections - between the server and the mobile device.
MIDP 2.0 is more flexible in this respect, but few mobile
devices comply with it.

On need, the j2me agents can be easily extended with
additional functions, enabling a device’s additional test-
ing abilities.

The drawback of the j2me solution is that from its con-
ception, Java (Entqnse, Standard or Micro) has been
designed for portability. This means that it does not allow
native access to the hardware, only through the functions
of the virtual machine. On the other hand, special, device-
specific classes can be developed, which bypass the vir-
tnal machine. and access the hardware directly.

Paper 31.2

870

Another drawback is that the “midlets” - j2me programs
-can be installed and run only on the user’s request. This
is a security measure, aiming at protecting the user’s
handheld - the original target of j2me - from unwanted
programs. However, if there is already a midlet running
on the device, with an active network connection, it can
send and receive data, including microagents.

2.4.2 BREW
Qualcomm’s BREW platform [15] is similar to Java Mi-
cro Edition, but the programs can be developed in C t t ,
as well. There is a Micro Java virtual machine for BREW,
so that even the j2me programs are able to run. The main
advantage of BREW over Java Micro Edition is that it
can run native applications that access the bardware. Its
main disadvantage is that its use is not widespread, but
the number of BREW enabled devices is increasing.

BREW is mainly embedded into CDMA communication
devices.

2.43 Symbian
Symbian [16] is actually a low scale operating system,
supported by Ericsson, Panasonic, Nokia, Psion, Sam-
sung, Siemens and Sony Ericsson. It is d y for, but not
limited to, enhanced mobile phones. It can even run a
Java Micro Edition vittual machine, allowing the j2me
solution, presented above, to run. Still, the main advan-
tage of Symbian is that it accepts programs that access the
underlying hardware directly, circumventing the problem
of the aforementioned Java Micro Edition.

Unfortunately, Symbian also requires more resources than
the j2me virtual machine, making it more expensive as
embedded agent platform.

2.4.4 PalmOS
PalmOS [17] was originally an operating system for Per-
sonal Digital Assistants. Later, some PalmOS PDAs be-
came smartphones, and PalmOS got wireless.

The main advantage of PalmOS, like Symbian’s, is that
its programs can access the hardware directly. The disad-
vantage is that it was not designed for background appli-
cations, but for programs that interact a lot with the user.
However, the latest versions (PalmOS 5 and 6) are prom-
ising.

2.4.5 Embedded Linux
Linux, the most acclaimed open operating system, also
has many downscaled embedded versions. pCLinux [181,
for example, runs on microconaollers.

Linux, in its embedded versions, is the most powerful and
resource efficient platform for embedded computational
tasks. The downside is that since the native programs
contain native machine instructions, they are not portable
to other processom.

For more about devices with embedded Linux, see [19]

2.4.6 Single Board Computers
An SBC is, in fact, a hardware platform. It is a powerful
computer, usually with network access, audio and video
capabilities, lots of processing power, but all crammed on
one small printed circuit board There are even 45x45mm
SBC boards.

Most of them use x86 compatible processors, thus are
able to run MS Windows. Nevertheless, the majority uses
Linux, for its flexibility. See [19] on Linux enabled
SBCs.

3. Experimental Results

3.1 JADELEAP
The fmt implementation of the specifications above
originates in the extension of the work presented in [I] so
that the testing society holds tester microagents. The
‘“ass’’ of the society was implemented in JADE (Java
Agent Development Platform), a powerful agent frame-
work, fully compliant with FPA standards. The designed

Fig” 5 - JADELEAP miemagent backend.

Paper 31.2
871

tester microagent runs on the JADE-LEAP extension of
JADE. JADE-LEAF' (Lightweight Extensible Agent Plat-
form) is capable of running under Java2ME, thus ena-
bling an agent to exist on an embedded system. The im-
plemented agent community contains agents running both
on JavaZSE and Java2ME systems, communicating trans-
parently with each other via the middleware provided by
JADE-LEAP. Thus, tester agents capable of performing,
storing and searching different test procedures for various
devices can reside either on Pes, mobile phones or other

identified by name. The operator issues a test by entering
the name of the test (figure 4, right). The microagent
searches the required testing procedure in the local record
stores. If the test procedure is not found localhy, the agent
asks the agent society for it, and if no other agent knows
it, the database is queried. Finally, the agent vvill store the
procedure persistently in a record store.

The procedure exemplified in figure 5 tests a mobile
phones' implementation of the JavdME :specification
related to the user interface. A testing procedure consists

Figure 4 - JADE-LEAP tester microagent screenshots.

embedded devices. '
The demonstrative scenario tests the display of the mobile
phone the tester agent resides on. The following simple
set of tests was devised

basic graphical el&ents tests (labels, tickers etc.) re-

base color tests (red, green, blue) for color displays.
black and white patterns (such as a dotibladddot grid)

The resources of the microdevice being limited, storage of
all the data related to the agent on the mobile phone is not
feasible. JADE-LEAP allows the split of the agent's data
between a container running in a PC environment and the
device under test. A backend of the agent will be stored in
the PC environment, as seen in the screenshot presented
in figure 3. This backend is an interface between the agent
society container and the microdevice.

Each microagent has a name unique in the society, chosen
by the operator prior to agent deployment. Figure 4, lei?
shows a screenshot of the connection screen, rnnning in a
simulated mobile environment.

Microagents store data about testing procedures in special
Structures called record stores. A record store consists of a
collectinn of data which will remain persistent across mul-
tiple invocatioos of the agent Each testing procedure is

quired by the Java2ME specification.

for monochrome displays.

of a list of display items (labels, gauges, tickers etc.) and
questions to be asked for each one. The microagent reads
the testing procedure, displays one by one the items con-
tained therein and asks the questions. A test is considered
passed if the user answers affiatively to all questions.
The instance showed in the figure tests a ticker (or mar-
quee) which is a piece of text that runs continuously along
the display.

Figure 5 - JALIE-LEAP tester microagent running a test

3.2 PalmOS
The PalmOS port of the microagents can be of two types:
the first one does not actually need porting. since it is the
same lava Micro Edition implementation described

Paper 31.2

072

above. The other version runs native PalmOS code. We
could not fmd a PalmOS agent platform, so we started to
write OUT own. Since agent communication is based on
FIPA ACL, the agent can communicate with other agents
outside the PalmOS device.

Figure 6 - A micmagant testing a TI” 18Og device.
As you can see in figure 6, the microagent is able to run
some unattended, as well as interactive tests. It displays
test progress details for debug purposes, but for the unat-
tended tests, it can also run with no output at all. There is
one problem though only the latest PalmOS operating
systems supporf multitasking, so in earlier devices the
tests take control of the device and they have to be re-
garded as off line BIST, at least from the point of view of
the user.

4. Conclusions and Future Work
We presented bere a few ideas and experiments regarding
DBIST and DBISR with microagents, on various small
scale platforms.

The agents are able to work together in order to fmd and
possibly solve device problems.

The agents travel from device to device, try to detect and
repair errors, and leam new solutions. They can “live” on
their own, or work together with other agents andor a
central database.

When an agent m o t detect a cause of an observed fault
or cannot repair it, it appeals to other agents to start coop-
eration. We use a decentralized diagnosis model, which
d u c e s the complexity and communication overhead of

centralized solutions. Due to the diversity of devices in
modem complex systems, heterogeneous agents can be
implemented that take care of device@) in their responsi-
bility area.

Different agents have different repair capabilities and
they have to ask their colleagues if they cannot repair the
fault by themselves.

Tester agents do the testing and repair what is repairable.
Visualizers supply tbe interface between the agent society
and the outer world. Nameservers and Facilitators provide
lookup services for the agents, so they find each other and
also offer their services and knowledge.

Of course, device specific routines are both more efficient
and more economical, but they lose in portability and ease
of development.

The agent management and communication follow FIPA
specifications, which describe the management services
and communication protocols and formats.

Future development plans include porting the tester
agents on more platforms, as well as making the tests
more automated and transparent for the user. Implement-
ing on line DBISTDBISR is an important goal for high
availability systems on one hand, and for impatient hand-
held users, on the other. This, however, implies that the
device must have multitasking capabilities (or additional
hardware for the purpose), and its peripherals supporting
on line testinghepairs (e.g. marching memory tests or on
the fly reconiigurable circuitry [20]).

A big problem of the approach we presented here is to
fmd a balance between the simplicity and cost of the com-
ponents of the distributed system and the depth and accu-
racy of the tests and repairs. If the processing power,
memory and peripheral requirements of the
DBISTDBISR are high, test accuracy and system avail-
ability will be high as well, but the costs will increase
accordingly, reducing the feasibility of the project. On the
other hand, reducing the requirements will limit testing
and repair capabilities as a result. Costs will be lower, but
so will be availability, too.

5. Acknowledgements
The authors would l i e to thank dipl. cng. Lucian Bu-
Wniu, MSC and dipl. eng. Andrei Vancea for their help
with the microagent development.

6. References
[l] L.Miclea, Enyedi Sz., R. Orghidan, On line BIST

Experiments for Distributed Systems, IEEE Euro-
pean Test Workshop ETW’2001, Stockholm, Swe-
den, May29th - June lst, 2001, pp 37-39

Paper 31.2
873

[2] L. Miclea, D. Cimpoca, M. Gordan, An On-Line
BIST Structure for Distributed Control Systems, Di-
gest of IEEE European Test Workshop ETW'2000,
Cascais, Portugal May 23rd - 26th 2000, pp. 283-
284
A. Benso, S. Chiusano, S. Di Carlo, HD2BIST: a
Hierarchical Framework for BIST Scheduling, Data
patterns delivering and diagnosis in SoCs, ITC In-
temational Test Conference, pp. 899-901, IO - 2000.
Monica Lobetti Bodoni, A. Benso, S. Cbiusano, G.
di Natale, P. Prinetto, An Effective Distributed BIST
Architecture for RAMS , Informal Digest of IEEE
European Test Workshop ETW 2000, pp. 201-206
R. Pendurkar, A. Chatterjee, Y. Zorian, A Distrib-
uted BIST Technique for Diagnosis of MCM Inter-
connections, International Test Conference 1996
Proceedings, pp. 214-221
L. Miclea, Enyedi Sz., G. Toderean, P. Prinetto, A.
Benso, Agent Based DBIST / DBISR and its Web /
Wireless Management, Intemational Test Confer-
ence ITC 2003, Charlotte, NC, USA, September 30
-October 2,2003, pp. 952-960.
L. Miclea, Enyedi Sz., A. Benso, Intelligent Agents
and BISTBISR - Working Together in Distributed
Systems, Proceedings of International Test Confer-
ence, Baltimore, USA, 8th-loth October, 2002, pp.
940-946.
L.Miclea, Enyedi'Sz., Distributed Built-In Self-Test
using Intelligent Agents, IEEE European Test

[3]

[4]

[5]

[6]

[7]

[8]

Workshop EW2002, Corfu, Greece, May 2 6 t b
May 29th, 2002.

[9] J. Sheppard, M. Kaufman, IEEE 1232 and p1522
standards, AUTOTESTCON Proceedings, 2000
IEEE, 2000, pp. 388-397

[lo] .I. Ferber, Multi-Agent Systems: An Initduction to
Distributed Artificial Intelligence, Addison-Wesley,
1999

[1 I] 1. A. Letia, F. Craciun, Z Kope, A Netin, Distributed
diagnosis by BDI agents, In M H Hamza (ed),
IASTED International Conference "Applied Infor-
matics", Innsbruck, Austria, 2000, 862-867, ACTA
Press

[12] *** FIF'A standards and specifications,
http://www.fipa.org

[13] Qusay Mahmoud, Learning Wireless Java, OReilly,
2002

[I41 *** Official Java 2 Micro Edition site,
http://java.sun.comlj2me

[15] *** Official BREW site, http://
http://www.qualcomm.co"rew

[161 *** Official Symbian site, http://www.iiymbian.com
[I71 *** Official PalmOS site,

[18] *** Official pCLinux site, http://www.uclinux.org
[I91 *** Limlx Devices site,

[20] Diederik Verkest, Machine Chameleon, IEEE Spec-

http://www.palmsource.com

http://www.linuxdevices.com

trum, vol. 40, issue.l2,2003, pp. 41 46

Paper 31.2

a74

http://www.fipa.org
http://java.sun.comlj2me
http://www.qualcomm.co"rew
http://www.iiymbian.com
http://www.uclinux.org
http://www.palmsource.com
http://www.linuxdevices.com

