
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

An Efficient Data Aggregation Algorithm for Cluster-based Sensor Network / Mozumdar, MOHAMMAD MOSTAFIZUR
RAHMAN; Guofang, N.; Gregoretti, Francesco; Lavagno, Luciano; Vanzago, L.. - In: JOURNAL OF NETWORKS. - ISSN
1796-2056. - 4:(2009), pp. 598-606. [10.4304/jnw.4.7.598-606]

Original

An Efficient Data Aggregation Algorithm for Cluster-based Sensor Network

Publisher:

Published
DOI:10.4304/jnw.4.7.598-606

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2283162 since:

Academy Publisher FINLAND

An efficient data aggregation algorithm for
cluster-based sensor network

Mohammad Mostafizur Rahman Mozumdar, Nan Guofang, Francesco Gregoretti, Luciano Lavagno
Department of Electronics, Politecnico di Torino, Italy

email: {mohammad.mozumdar, guofang.nan, gregoretti,lavagno}@polito.it
Laura Vanzago

STMicroelectronics, Milano, Italy
email: laura.vanzago@st.com

Abstract— Data aggregation in wireless sensor networks
eliminates redundancy to improve bandwidth utilization
and energy-efficiency of sensor nodes. One node, called
the cluster leader, collects data from surrounding nodes
and then sends the summarized information to upstream
nodes. In this paper, we propose an algorithm to select
a cluster leader that will perform data aggregation in a
partially connected sensor network. The algorithm reduces
the traffic flow inside the network by adaptively selecting the
shortest route for packet routing to the cluster leader. We
also describe a simulation framework for functional analysis
of WSN applications taking our proposed algorithm as an
example.

Index Terms— data aggregation, cluster leader, simulation
framework

I. INTRODUCTION

In the last decade, the landscape of wireless sensor
network (WSN) applications has been extending rapidly
in many fields such as factory and building automation,
environmental monitoring, security systems and in a wide
variety of commercial and military areas. Advancements
in microelectro-mechanical systems and wireless commu-
nication have motivated the development of small and
low power sensors and radio equipped modules which are
now replacing traditional wired sensor systems. These tiny
modules usually called “motes” can communicate with
each other by radio and act like as neurons to collect
information from the environment. However, designing
applications for WSN is quite challenging because of
energy constraint and also for resource limitation on
the mote. Because of the requirement of unattended
operations in remote or even potentially hostile locations,
sensor networks are extremely energy-limited. In [1], au-
thors argued that about 70% of energy consumption inside
WSNs is due to the data transmission. Thus aggregation
and routing of data inside WSNs need to be dealt with
very efficiently to save precious energy stored on a sensor
node.

In a densely covered sensor network, local variation
of the measured data among nodes is often the same,
thus transmitting it individually would lead to a significant
waste of energy. Using a clustering topology ([1], [2], [3])
is a popular approach by which the sensor network is par-

titioned into several clusters to collect data. In clustered
topologies, one or more nodes collect data from all other
nodes (called data aggregation) and then perform some
computations (e.g. average, standard deviation, gradient)
based on the collected data, prepare a single packet and
send it to the network sink. Instead of routing each data
packet from the nodes, a single summarized data packet is
transmitted from the cluster, thus reducing network traffic
load and ultimately saving energy.

We proposed an algorithm [4] for selecting the cluster
leader who will be in charge of data aggregation inside a
cluster. Most of the cluster leader selection algorithms as-
sume that in a cluster every node pair can hear each other,
which may not be the case in practice for many WSN
applications (such as hospital and industrial automation,
etc.). That’s why in our new contributions described in
this paper we assume that a cluster is partially connected,
hence we have to consider also in-network data routing
for aggregation.

Just like other embedded systems, WSN algorithms
need to be verified functionally before being implemented
on the actual platform. We proposed a simulation frame-
work [5] for functional analysis of WSN application
in a multi-node environment. This framework is based
on MathWorks [6] tools and it is capable of modeling,
simulation and multi-platform automatic code generation
of WSN application.

In this paper, we provide a formal mathematical de-
scription of the algorithm described in [4] and also
implement it with the simulation framework described
in [5]. Thus the major contribution of this paper is to
illustrate a complete path to design WSN application
by providing a novel algorithm and then refining and
analyzing its behavior by modeling it in a high level
simulation framework.

The rest of the paper is organized as follows: In section
2, we outline existing literature related to our proposed
algorithm. In section 3, we present the algorithm. In
section 4, we present our simulation framework, whereas
in section 5, we model the algorithm in our simulation
framework. We show the performance results of our
algorithm in section 6 and finally we conclude in section
7 with future directions.

II. RELATED WORK

In clustered environments, there are two main ap-
proaches for data aggregation. The first approach is known
as the Cluster Head (CH) method. The idea behind the
approach is that one node in the cluster will be elected as
the CH at the beginning of each aggregation round. The
rest of the nodes in the cluster will send data packets to
the CH according to the underlying MAC protocol. The
CH will collect all the data packets and will forward these
packets to the network sink. To ensure fair distribution of
the workload, the cluster leader is selected randomly at
each round of aggregation. A widely known example of
this type of algorithm is LEACH [7], [8], [9], [10]. In
general, convergence time and total energy consumption
are linear with respect to the number of nodes for this type
of algorithm. However, good performance is usually off-
set by the lack of robustness in handling a scenario such
as the death of the CH in the middle of the aggregation
process, that stops the aggregation and causes the loss of
data accumulated up to that point.

The second approach is peer-to-peer or gossip-based
algorithms. These algorithms have been proposed as a
fault-tolerant approach for the distributed computation of
aggregation functions. Let us consider a network of N
nodes where each node has some information. Making
each node aware of the information stored in every other
node is the main goal of the gossip approach [11], [12]. In
wired networks, this phenomenon has been widely studied
and it has various important applications. Several gossip
algorithms have been developed to compute aggregate
commutative functions such as max, min and average
among N values distributed over N nodes. In general,
these algorithms are quite complex but simplified versions
are available for simple aggregation functions (computing
sum or average of N values) [13]. In gossip based algo-
rithms, the trade-off is robustness versus convergence time
and energy consumption. Generally, the time and energy
consumption are O(NlogN) for a cluster of N nodes.
The root of this inefficiency is due to the point to point
communication that does not take inherent advantage of
the broadcasting nature of wireless channel. A variant of
gossip-based algorithms called DRG has been presented
in [14]. It takes the advantage of broadcasting. However,
implementing DRG in a clustered environment, where
every node of the cluster accesses the same commu-
nication channel, would create a substantial number of
collisions and jeopardize the advantage of the approach.
Furthermore, nodes only store the final result but do not
keep track of partial results. So, if an application requires
a non linear aggregation function, then the gossip based
approach cannot be utilized.

A hybrid approach that combines the robustness of
the gossip algorithm with the efficiency of the cluster
head algorithm is introduced in [2]. The algorithm is
called EERINA. Initially every node in a cluster plays the
same role and only at the end of the aggregation phase
the cluster leader is selected. It takes advantage of the
broadcast medium to minimize the number of transmitted

messages. The combination of bandwidth efficiency along
with the late selection of the cluster leader ensures a high
degree of robustness with respect of node malfunctions,
failures or temporary disconnections, with very limited
timing and performance overhead. Furthermore, the algo-
rithm is quite scalable and allows network changes (e.g.
node deletions and additions) without updating the overall
network structure.

The robustness and simplicity of this approach moti-
vated us to look at further details. EERINA assumes that
in a WSN cluster every node pair can hear each other,
which may not be the case in practice. In this paper, we
present a novel algorithm which has all the advantages
of EERINA and can perform aggregation by selecting the
cluster leader in a distributed partially connected sensor
network.

III. ALGORITHM

We considered the scenario where nodes in a cluster are
partially connected. That means that a node is connected
to only some of the (nearby) nodes of the cluster. An
example of simple cluster setup is shown in figure 1.

Figure 1. A simple view of the partially connected WSN cluster setup
(arrow indicates connectivity)

The goal is to select a cluster leader among the nodes,
who will aggregate the data from the sensor network and
will send it to the upper layer of the network.

The algorithm has four major phases:-
• Initialization Phase
• Contention Phase
• Exchange Phase
• Termination Phase

In the initialization phase, every node transmits and
receives packets randomly. At the end of the initialization
phase, nodes move to the contention phase where they
compete with each other to become the cluster leader.
Every node that has heard from other nodes can become
a potential cluster leader and transmits a Contention
Packet (CP) to the rest of the network that restricts other
nodes from becoming the cluster leader. After receiving
the CP, a node recognizes that some other node of the
cluster is trying to become the cluster leader and it
immediately stops its attempt to send the CP. The CP
contains information about the cluster leader and node IDs
that have been heard by the cluster leader. A node that
receives the CP packet, checks immediately whether it has
been heard by the cluster leader or not, by parsing the CP
packet. If it has been heard by the cluster leader then it

checks whether it has extra information that the cluster
leader does not have. If the node does not have extra
information, then it will not participate in the exchange
phase. In the exchange phase, only some nodes will be
active, namely the cluster leaders, the nodes that have
not been heard by the cluster leader and the nodes that
have been heard by the cluster leader but have extra
information. In the exchange phase, these nodes will
transmit packets to and receive packets from each other.
At the end of the exchange phase, all the nodes will again
participate in the contention phase and a potential cluster
leader will be elected. The loop of contention-exchange
phases continues until the termination condition is met
and a cluster leader (who has heard from all nodes) has
been selected. The flow of the algorithm is shown in figure
2.

Figure 2. Flow of the algorithm

A. Initialization Phase

In the initialization phase, each node can be in one of
three states: transmit, receive and sleep. Initially, every
node computes the next time for transmitting and receiv-
ing by exponential-randomization. Then it goes to sleep
until any one of these two timers expires.

If the transmitting timer expires, the node at first senses
the medium for a certain amount of time and if the
medium is free, then it broadcasts the packet to the
medium. After transmitting the packet or if the node
senses that the medium is busy, then the node computes
the next time for transmitting the packet and goes back
to sleep. If the receiving timer expires, the node turns
on the radio to receive for a certain amount of time.
In this state, the node collects packets from the other
surrounding nodes of the cluster. Each node maintains a
HeardFromTable (HFT) which contains information about
the nodes from which the node has heard directly (shown
in table 1). Every node spends a pre-specified amount of
time in the initialization phase, and then it moves to the
contention phase.

Let G = (V, HFTv) represents a partially connected
sensor cluster of N nodes, where V = { v1, v2, v3, .., vn

} is the set of all sensor nodes in the cluster and HFTv

is the set of all HFTs that are stored in N nodes (one for
each node).

TABLE I.
HFT OF NODE 2

{ Heard From Node, RT(Routed Through) }
{ 1 , {} }
{ 3 , {} }
{ 4 , {} }

......

HFTv = {HFTv1
,HFTv2

,HFTv3
, ..,HFTvn

}

HFTvi
= { { vj , RT}, ..} vi, vj ∈ V, vi hears from

vj by RT

RT =

Vk Vk ⊂ V , where Vk is the set of those
intermediate nodes by which vi can hear
from vj .

{} empty, when vi and vj are directly
connected to each other.

B. Contention Phase

After termination of the initialization phase, each node
enters into the contention phase where the main goal is
to elect the cluster leader based on the number of nodes
heard in the previous phase. Every node in the cluster
participates in the contention phase. At the beginning of
this phase, each node activates radio reception and sets
a Back-off Timer (BT) which is proportional to Nh − ni

(Where Nh is a constant higher than the number of nodes
(N) in the cluster, ni is the number of nodes from which
node i heard packets, calculated from the HFT). So, the
BT of node vi is set as

BT (vi) ∝ (Nh − ni)
where ni = ‖HFTvi

‖

Therefore, the potential cluster leader will be the node
vpcl ∈ V for which

BT (vpcl) = min(BT (v1), BT (v2), ..BT (vN))

The node whose BT expires earlier than the others,
becomes a potential cluster leader and transmits a CP.
This CP is a special type of packet that contains the ID
of the cluster leader and also the node IDs from which
the cluster leader has heard one or more packets during
the last phase. When the surrounding nodes of the cluster
leader hear the CP, they immediately stop the BT, wait
for a small randomized amount of time and re-broadcast
the CP. As the cluster is not fully connected, this flooding
of CP ensures that each node of the cluster receives the
contention packet, although the node may not be in the
radio range of the cluster leader.

For example, as node 2 is connected to the maximum
number of nodes, it has a higher probability of hearing
packets from most nodes. As a result, its BT will most
likely expire earlier than others. Node 2 then broadcasts

Figure 3. Node 2 transmits the CP packet

the CP packet (shown in figure 3). Nodes 1, 3 and 4
which are still waiting for the expiration of the BT, receive
the CP packet from node 2. They immediately stop the
timer and recognize that node 2 has become the cluster
leader. Nodes 1, 3 and 4 re-transmit the CP packet (shown
in figure 4) after waiting for a small random time.

Figure 4. Broadcasting of CP packet-1

Now Node 5 receives the CP packet, stops its timer and
broadcasts the CP packet (shown in figure 5). In this way,
the CP packet has been transmitted to the whole cluster
and every node becomes aware of the cluster leader. If a
node hears multiple CPs (either from one or from multiple
cluster leader candidates), it will ignore CPs after the first
one.

Figure 5. Broadcasting of CP packet-2

In this phase, every node analyzes the CP packet and
decides whether it will participate in the next exchange
phase or not. Let ICP be the content of the contention
packet and fhn(HFTvn

) is a function that returns a set
of heard from nodes from HFTvn

(stored in node n). For
example, fhn(HFTv2

) ={1, 3, 4} (HFTv2
is shown in

table 1). The content of the ICP packet transmitted from

node N will be {{N, fhn(HFTvn
) },..}. A node vx

1 will
participate in the exchange phase or not as follows:

vx ∈ ICP

{

fhn(HFTvx
) ⊂ ICP not participating

fhn(HFTvx
)not ⊂ ICP participating

vx /∈ ICP participating
We classify four types of nodes participating in the next

exchange phase (by using the definitions above).
• Type 1: Cluster leader nodes (Always RX mode)
• Type 2: Nodes that have not been heard by the cluster

leader (TX/RX mode)
• Type 3: Nodes that have not been heard by the clus-

ter leader and also have extra information (TX/RX
mode)

• Type 4: Nodes that have been heard by the cluster
leader but have extra information (TX/RX mode)

Figure 6. Scenario of analyzing the CP the packet

To explain the scenario, let us assume that the cluster
leader for example Node 2, has heard from nodes 1, 3 and
4 (shown in figure 6). So, it will convey this information
in the ICP . When nodes 1 and 3 analyze the ICP , they
will find that their packets have already been heard by
the cluster leader and also they do not have any extra
information of nodes .

v1 ∈ ICP , fhn(HFTv1
) ⊂ ICP

v3 ∈ ICP , fhn(HFTv3
) ⊂ ICP

So, nodes 1 and 3 will not participate in the exchange
phase. Node 4 knows that the cluster leader has its packet
but it also heard from node 5 in the previous phase, which
was not heard by the cluster leader (so, it will participate
in the exchange phase).

v4 ∈ ICP , fhn(HFTv4
)not ⊂ ICP

Node 5 will discover that the cluster leader has not
heard from it, so it will also participate in the exchange
phase.

v5 /∈ ICP

1Here vx is a node other than the cluster leader. A cluster leader node
will always participate in the exchange phase.

C. Exchange Phase

In this phase, the nodes that have not been heard
by the cluster leader and/or have extra information will
transmit and receive packets more frequently than during
the initialization phase2. Since in this phase fewer nodes
will participate compared to the initialization phase, the
increased rate of transmit and receive will help the algo-
rithm to converge more quickly. The cluster leader will
be always in listening mode to collect packets from the
other participating nodes.

Figure 7. Exchange phase

Continuing with the example of contention phase, when
the cluster leader (node 2) receives a packet from node 4,
it can find out that node 5 can be reached through node
4 (shown in figure 7). So, it updates the HFT, with the
information shown in the Table 2.

TABLE II.
HFT OF NODE 2

{ Heard From Node, RT (Routed Through)}
{ 1 , {} }
{ 3 , {} }
{ 4 , {} }

{ 5 , { 4 } }
......

Some nodes may be connected to the cluster leader
by multiple hops (shown in figure 8), hence the routed-
through (RT) data is a list and can contain information
about multiple nodes. The nodes that are transmitting
extra information to the cluster leader store a local for-
warding table. For example in figure 8, node 5 will
forward all packets from node 6 and node 4 will forward
all packets from node 5 and node 6.

This local forwarding table is synchronized with the
cluster leader later in the contention phase by the con-
tention packet. Figure 9 depicts another scenario where
there are two different paths between cluster leader node
2 and node 6 (2-4-6, 2-4-5-6). So the HFT of the cluster

2In the experiments described below this frequency increases to twice
that used in the initialization phase. We are currently analyzing the
impact on this parameter on the overall convergence time.

Figure 8. Multi-hops distance from the cluster leader (node 2 - node
6)

leader might have more than one entry for the same node.
In that case, the cluster leader will select the shortest
routing path by using following definitions.

Let HFTPCL = {{vi, RTi}, {vj , RTj}..}
if vi = vj
{

‖RTi‖ > ‖RTj‖, HFTPCL = {{vj , RTj}..}
‖RTi‖ <= ‖RTj‖, HFTPCL = {{vi, RTi}..}

Taking the scenario depicted at figure 9, let assume
that
HFT2 = {{vi = 6, RTi = {4}}, {vj = 6, RTj = {4, 5}}..}
Hence vi = vj = 6
‖RTi‖ <= ‖RTj‖, HFT2 = {{vi = 6, RTi = {4}}..}

The cluster leader selects the shortest path (2-4-6) and
conveys this information in the next contention packet. In
the contention packet, the cluster leader will send only
the required updated part of the HFT to synchronize the
local forwarding tables of the nodes. So after receiving
the contention packet, node 5 will discard node 6 from its
forwarding table. After completion of the exchange phase,
all nodes will again participate in the contention phase.

Figure 9. Multiple paths between node 2 and node 6

D. Contention-Exchange alternation

The contention-exchange alternation continues until
the termination conditions are met. It may happen that
the first contention phase ended with multiple winners,
but subsequent exchange-contention phases will reduce
the probability of having multiple cluster leaders. The
winners of earlier contention phases (potential cluster
leaders) will collect new information from the surround-
ing connected nodes in the exchange phase and in this way
they expand their subnetworks. A potential cluster leader
that has higher connectivity can collect information from
more unheard nodes (in the exchange phase) than other

Figure 10. A simple simulation framework

potential cluster leaders. So in the next contention phase,
its BT will most likely expire earlier than the last con-
tention phase, hence it can stop its nearest potential cluster
leader and then “capture” its subnetwork in the next
exchange phase. In this way, the highest potential cluster
leader expands its subnetwork and ultimately captures
the whole network. The contention-exchange alternation
will terminate when a node becomes the cluster leader
consecutively twice and there have been no changes in the
HFT in the last exchange phase. Then the cluster leader
node sends the contention packet with the information
that a final cluster leader has been elected and this will
terminate the contention-exchange alternation loop.

Figure 11. Connectivity matrix for the 16 nodes sensor network

IV. SIMULATION FRAMEWORK

Verifying behavior by simulation before implementa-
tion is extremely useful to reduce the development time
of an embedded application. This is even more true for
wireless sensor networks, since their nodes often provide
very rudimentary debugging facilities, and sufficiently
large networks for realistic analysis may be expensive to
deploy. Most of the available sensor nodes on the market
(such as MicaZ [15], TelosB [15], Tmote Sky [16]) only
provide a few on-board blinking leds as debug aids. This
makes code development on the actual platform virtually
impossible. To analyze the behavior of the algorithm,
we used the simulation framework described in [5]. The
simulation framework is developed by using Mathworks
[6] tools, namely Simulink [17] and Stateflow [18]. The
framework contains two main kinds of blocks such as
the sensor node and communication medium. Sensor node
blocks are connected to the communication medium block,
which provides a mechanism for the application developer
to define the connectivity between the nodes in sensor
network.

The communication medium block is implemented in C,
so it can be modified to reuse any existing channel and
connectivity models. The sensor node contains mainly a
timer, a random number generator, and a parameterized
Stateflow block which actually implements the algorithm

Figure 12. Stateflow modeling of the initialization and exchange phase of the algorithm

running inside each single node (shown in the figure 10).
The Stateflow block is a library object and each sensor
node contains an instance of it. Therefore, every node
of the framework is running an independent copy of
same algorithm. It is of course also possible to model
sensor networks having different algorithms running in
different nodes. In that case, one needs to create a small
Stateflow library and instantiate objects from it as needed.
To model a new sensor network application based on
this framework, the application developer only needs to
modify the template algorithm implementation (Stateflow-
library object) and set the connectivity of the nodes in the
communication medium block. Then simulation can be
started and statistical data can be collected using animated
state charts, scopes and displays to perform functional
analysis of the algorithm. The algorithm implementation
can be refined if the analysis of the results suggest to
do so. Eventually the developer will get a refined model
which represents the desired behavior.

Figure 10 shows a simulation setup for 16 nodes
using the framework. In the figure, the Stateflow block
(wsn algorithm) contains the implementation of the our
algorithm.

A. Communication Medium Model

This block contains the medium logic and also models
the connectivity between nodes. The logic of the commu-
nication medium block is implemented by a C based S-
Function, which contains a (parameterized) 16x16 matrix
to define the connectivity of the nodes in the sensor
network (shown in the figure 11). For example in fig-
ure 11, node 1 (row 1) is connected to nodes 3, 10, 12
and 15. Packets are the input and output object of the
communication medium block where incoming packets
from the nodes will be at first processed by the medium

logic and then fed to the appropriate nodes based on the
connectivity setup of the sensor network. In this block,
we have modeled a simple medium logic which at any
point of time computes the input (packet) of a node as
the summation of outputs (packets) of nodes connected
to it.

B. Node Block

This block contains sixteen nodes as shown in fig-
ure 10. The individual node model is fully parameterized
and contains mainly a timer, a random number generator
and a Stateflow algorithm block. The timer is used for
generating time events for the algorithm running inside
the Stateflow block wsn algorithm. Incoming and outgo-
ing packets of nodes consist of data (contains payload)
and signal (generates a PKT event).

V. ALGORITHM MODELING

We modeled our proposed algorithm inside the State-
flow wsn algorithm block. Figure 12 shows the im-
plementation of the initialization and exchange phases
of the algorithm. The algorithm starts in the init state,
in which it computes the next transmit (tNextTX) and
receive (tNextRX) times by calling a Stateflow function
(getRandTimeStamp). At the next CLK event, the appli-
cation moves to the Sleep state from the Init state. In
the Sleep state, the receiving and transmitting timestamps
will be decremented by one at every occurrence of the
CLK event. At the expiration of the transmit timestamp,
the algorithm moves to the Transmit Mode state. In this
state, it first checks whether the medium it is free or not
(by checking the value of payloadIN). If the medium
is busy, then it just computes the next transmit time
and goes back to sleep state again. If the medium is
free, the algorithm moves to the Transmit Packet state in

which it computes the payloadOUT and then generates a
packet out event (PKT EVENT OUT). While computing
the payloadOUT, in the initialization phase, the value of
the extraInfo is empty, while in the exchange phase it
contains the value computed in the contention phase. The
low byte of payloadOUT always contains the ID of the
current node. After transmitting the packet, the algorithm
moves to the Sleep state by computing the transmitting
time.

Similarly when the receive timer expires, the algorithm
makes a transition to Receive Mode from the Sleep state.
Note that in the simulation, the algorithm waits for 3
CLKs while transmitting a packet and at least 10 CLKs
in the receiving phase. This is because our algorithm
ensures that when a node turns on the radio in receiving
mode, it waits for a sufficient amount of time to receive
a complete packet. Our algorithm can perform adaptive
listening, meaning that if a node starts to receive a packet
nearly at the end of the reception interval, it completes
the packet reception although the specified receive timer
already expired.

In the Receive Mode state, the algorithm waits for
the incoming packet event (PKT EVENT IN). If a packet
event occurs, it immediately makes a transition to the
Received Packet state. In this state, it waits to receive the
complete packet. If another packet event occurs during
a packet reception, it moves to the Receive Mode state
by increasing the collision counter. If a packet is re-
ceived successfully then the HFT is updated by taking
information from the payload of the packet. Here the
algorithm also calls a Stateflow function (checkExtraInfo)
to know the extra information attached in the payload.
This segment of the payload is empty in the initialization
phase but may contain values during the exchange phase.
When the total waiting time expires in the Receive Mode,
the algorithm again moves to the Sleep state by computing
the next receive time.

In this manner, the algorithm makes transitions between
states (Sleep, Transmit mode, Receive mode, etc.) until in
the Sleep state it notices that the timer value exceeds
the specified threshold. Then it makes the transition to
the contention phase (not shown in detail but described
in section III). After finishing the computation of the
contention phase, the algorithm moves to the init state to
perform the exchange phase. This cycle continues until a
cluster leader is found in the contention phase.

VI. RESULTS

Figure 13 shows the convergence time with respect
to the average connectivity (number of edges incident to
a node). The convergence time is high for lower con-
nectivity because a large number of iterations is required
to propagate the data over a larger number of hops. It
decreases with increasing connectivity up to a certain
level (for a 16 node setup, the lowest convergence time
is achieved when the connectivity is around 6). After this
threshold, the convergence time again rises slowly due
to increased collisions. To compare the algorithm with

Figure 13. Convergence time (ms) vs. average connectivity between
nodes

Figure 14. Convergence time (ms) with respect to increasing number
of nodes

EERINA, figure 14 shows the convergence time of both
algorithms with respect to the number of nodes (with
average connectivity set to 6). The convergence time of
the proposed algorithm is shorter compare to EERINA
when the number of nodes increases. In EERINA, all
nodes are connected to each other, hence increasing the
number of nodes will increase the number of collisions
and the convergence time. We also modeled a simple grid-
based sensor network (shown in figure 15) to explore
the relationship between convergence time and radio
transmission power. If we increase radio transmission
power, each packet will travel farther, hence the average
connectivity among the nodes will increase. Figure 15
shows that increasing the radio power can decrease the
convergence time up to a certain level. But after crossing
this threshold, if we increase the radio power, the con-
vergence time increases because of higher collisions of
packets.

VII. SUMMARY AND OUTLOOK

We presented an algorithm for selecting the cluster
leader in a partially connected sensor network. Although
the algorithm can work in a fully connected sensor
network, it is best for a partially connected network. The
algorithm can find a cluster leader in a robust way by
using fewer packets than previous work [2], thus reducing
the energy consumption of the sensor network. In this

Figure 15. Convergence time (ms) vs. distance covered by radio

paper we did not address the time synchronization that is
needed at the start of the algorithm. One solution could
be to broadcast a beacon packet to start the algorithm. We
also modeled both EERINA and our proposed algorithm
by using the framework described in [5] and show its
performance in a variety of cases.

REFERENCES

[1] H. Çam, S. Özdemir, P. Nair, D. Muthuavinashiappan,
and H. O. Sanli, “Energy-efficient secure pattern based
data aggregation for wireless sensor networks,” Computer
Communications, vol. 29, no. 4, pp. 446–455, 2006.

[2] L. Necchi, A. Bonivento, L. Lavagno, L. Vanzago, and
A. Sangiovanni-Vincentelli, “Eerina: an energy efficient
and reliable in-network aggregation for clustered wireless
sensor networks,” in Proceedings of the Wireless Commu-
nications and Networking Conference, 2007, pp. 3364–
3369.

[3] A. Bonivento, C. Fischione, A. Sangiovanni-Vincentelli,
F. Graziosi, and F. Santucci, “Seran: A semi random
protocol solution for clustered wireless sensor networks,”
in Proceedings of MASS, Washington D.C., November
2005.

[4] M. M. R. Mozumdar, F. Gregoretti, L. Lavagno, and
L. Vanzago, “An algorithm for selecting the cluster leader
in a partially connected sensor network,” in ICSNC ’08:
Proceedings of the 2008 Third International Conference
on Systems and Networks Communications, Malta, 2008,
pp. 133–138.

[5] M. M. R. Mozumdar, F. Gregoretti, L. Lavagno, L. Van-
zago, and S. Olivieri, “A framework for modeling, simu-
lation and automatic code generation of sensor network
application,” in Proceedings of the Fifth Annual IEEE
Communications Society Conference on Sensor, Mesh and
Ad Hoc Communications and Networks, SECON, June
2008, pp. 515–522.

[6] The MathWorks - MATLAB and Simulink for Technical
Computing. www.mathworks.com.

[7] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan,
“An application-specific protocol architecture for wireless
microsensor networks,” IEEE Transactions on Wireless
Communications, vol. 1, no. 4, 2002.

[8] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan,
“Energy-efficient communication protocol for wireless mi-
crosensor networks,” Proceedings of Hawaii International
Conference on System Sciences, vol. 8, p. 8020, 2000.

[9] W. Heinzelman, A. Sinha, A. Wang, and A. Chandrakasan,
“Energy-scalable algorithms and protocols for wireless
microsensor networks,” Proceedings of IEEE International
Conference on Acoustics, Speech, and Signal Processing,
vol. 6, pp. 3722–3725, 2000.

[10] W. B. Heinzelman, A. P. Ch, IEEE, A. P. Chandrakasan,
Member, H. Balakrishnan, , and H. Balakrishnan, “An
application-specific protocol architecture for wireless mi-
crosensor networks,” IEEE Transactions on Wireless Com-
munications, vol. 1, pp. 660–670, 2002.

[11] D. Liu and M. Prabhakaran, “On randomized broadcasting
and gossiping in radio networks,” in COCOON ’02: Pro-
ceedings of the 8th Annual International Conference on
Computing and Combinatorics. London, UK: Springer-
Verlag, 2002, pp. 340–349.

[12] J. Luo, P. T. Eugster, J.-P. Hubaux, P. Th, and E. J.
pierre Hubaux, “Route driven gossip: Probabilistic reliable
multicast in ad hoc networks,” in Proceedings of the
INFOCOM, 2002, pp. 2229–2239.

[13] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based com-
putation of aggregate information,” in FOCS ’03: Proceed-
ings of the 44th Annual IEEE Symposium on Foundations
of Computer Science. Washington, DC, USA: IEEE
Computer Society, 2003, p. 482.

[14] J.-Y. Chen, G. Pandurangan, and D. Xu, “Robust com-
putation of aggregates in wireless sensor networks: dis-
tributed randomized algorithms and analysis,” in IPSN
’05: Proceedings of the 4th international symposium on
Information processing in sensor networks. Piscataway,
NJ, USA: IEEE Press, 2005, p. 46.

[15] Crossbow Technology : Inertial Systems. www.xbow.com.
[16] Sentilla, Pervasive Computing Solutions.

www.sentilla.com.
[17] Simulink - Simulation and Model-Based Design.

www.mathworks.com/products/simulink/.
[18] Stateflow - Design and simulate state machines and control

logic. www.mathworks.com/products/stateflow/.

Mohammad Mostafizur Rahman Mozum-
dar received his Bachelor degree in Computer
Science and Engineering from the Bangladesh
University of Engineering and Technology
in 2002 and Master of Science in com-
puter science from the Technical University
Aachen, Germany in 2004. In September 2005,
he joined in the computer science depart-
ment of the American International University
Bangladesh as an Assistant Professor. Cur-
rently, he is a Ph. D. candidate at the Elec-

tronics Department of Politecnico di Torino. His research is mainly in
the domain of wireless sensor network applications, including automated
code generation techniques to improve platform and operating system
independence.

Nan Guofang received the Bachelor degree
in Department of Automation from Beijing
Institute of Technology in 1998, and M.Sc.
degree in School of Automation from Tian-
jin University in 2002, he received his Ph.D.
degree in the Institute of Systems Engineering
from Tianjin University in 2004. He has been
with the Tianjin University in China since
2006 as an associate professor, and he is now
working as postdoctoral research associate at
Department of Electronics in Polytechnic Insti-

tute of Turin. His research interests include sensor networks, distributed
database and related topics.

Francesco Gregoretti graduated in 1975 from
Politecnico di Torino, Italy where is now a
Professor in Microelectronics. From 1976 to
1977 he was an Assistant Professor at the
Swiss Federal Institute of Technology in Lau-
sanne (Switzerland) and from 1983 to 1985
Visiting Scientist at the Department of Com-
puter Science of Carnegie Mellon University,
Pittsburgh (USA). His main research interest
have been in digital electronics, VLSI circuits,
massively parallel multi-microprocessor sys-

tems for VLSI CAD tools and in image processing architectures. More
recently his research has been focused to co-design methodologies for
complex electronic systems, to methodologies for reduction of electro-
magnetic emissions and power consumption of processing architectures
by the use of asynchronous methodologies.

Luciano Lavagno graduated magna cum laude
in Electrical Engineering from Politecnico di
Torino (Italy) in 1983 and received his Ph.D. in
Electrical Engineering and Computer Science
from the University of California at Berkeley
in 1992. From 1984 to 1988 he was with
CSELT Laboratories (Torino, Italy), where he
was work package leader in the ESPRIT 802
CVS project. In 1988 he joined the Department
of EECS at UC Berkeley, where he worked
on logic synthesis and testing of synchronous

and asynchronous circuits. Between 1993 and 2000 he has been the
architect of the POLIS project. He then participated in the architecting
and development of the VCC system-level design tool from Cadence
Design Systems and was involved in the ESPRIT 25443 COSY project,
which applied VCC to designs from Philips and Infineon. He has
served on the technical committees of several international conferences,
workshops and symposia in his field (technical Program Chair of the
Design Automation Conference in 2002 and 2003). He is currently an
Associate Professor at Politecnico di Torino, Italy. His research interests
include embedded system design, with a special focus on wireless sensor
networks, and asynchronous circuit design and testing.

Laura Vanzago holds a degree in Physics
from the University of Milano, Italy. She
joined STMicroelectronics in 1994 and she had
been working for seven years in the Central
R&D Division in several projects related to
CAD development and design methodologies
for IC Design. In 2001 and 2002 she was
a Visiting Industrial Fellow at the University
of California at Berkeley, working on System
Level Design Methodologies for HW/SW plat-
forms in the field of wireless communications.

Since 2003 to 2008 she leaded several research initiatives related to
the design of platforms for Wireless Sensor Networks in the Advanced
System Technology Division of STMicroelectronics. Since 2008 she is
responsible of the wireless sensor products program in the Subsystem
Product Groups Division of STMicroelectronics in Agrate Brianza, Italy.

