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Detecting Chains of Vulnerabilities in Industrial
Networks

Manuel Cheminod, Ivan Cibrario Bertolotti,Member, IEEE,Luca Durante, Paolo Maggi, Davide Pozza,
Riccardo Sisto, and Adriano Valenzano,Senior Member, IEEE

Abstract—In modern factories, personal computers are starting
to replace traditional Programmable Logic Controllers, due to
cost and flexibility reasons, and also because their operating
systems now support programming environments even suitable
for demanding real-time applications. These characteristics, as
well as the ready availability of many software packages covering
any kind of needs, have made the introduction of PC-based
devices at the factory field level especially attractive.

However, this approach has a profound influence on the extent
of threats that a factory computing infrastructure shall be pre-
pared to deal with. In fact, industrial personal computers share
the same kinds of vulnerabilities with their office automation
counterparts. Then, their introduction increases the riskof cyber-
attacks.

As the complexity of the network grows, the problem rapidly
becomes hard to tackle by hand, due to the subtle and unforeseen
interactions that may occur among apparently unrelated vulner-
abilities, thus bearing the focus on the full automation of the
analysis. Going into this direction, this paper presents a software
tool that, given an accurate and machine-readable description of
vulnerabilities, detects whether or not they are of concernand
evaluates consequences in the context of a factory network.

Index Terms—Industrial communication systems, computer
network security, chains of vulnerabilities, automatic analysis
tools.

I. I NTRODUCTION

NOWADAYS, personal computers are starting to replace
more expensive and less flexible special purpose hard-

ware such as, for example, Programmable Logic Controllers,
at the field level of the factory environment.

This trend has been made possible because, recently, the
most important limiting factor in this respect, that is, the
limited ability of personal computers and their operating
systems to support demanding real-time applications, has been
overcome. In fact, several products, either commercial or open-
source, now tightly integrate real-time control applications
with a general purpose operating system [1]–[6]. The ever
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increasing viability and interest of this approach are corrobo-
rated by the importance and reputation of its supporters.

However, besides advantages, this approach contributes to
bring to the factory field level the typical risks experienced
daily in office automation, such as bugs, system vulnerabilities,
and cyber-attacks, also because the tighter integration among
different management levels makes the factory field level
more sensitive to faults and errors propagating from other
layers. Indeed, the widespread usage of commercial off-the-
shelf software products and the increased connectivity among
the field level and the corporate network — and even the
Internet — is a trend widely aknowledged [7]–[9].

The increased and widespread interest in the security of
factory field infrastructures is highlighted in [10], wherea
broad overview of cyber security and risk assessment for
Supervisory Control and Data Acquisition (SCADA) and
Distributed Control Systems (DCS) is provided, together with
references to public and private groups which are active in
this area. Moreover, the National Institute of Standards &
Technology (NIST) has recently provided a comprehensive
set of best practices and design criteria of Industrial Control
Systems (ICS) [11] to meet their (new) security requirements
and needs in the framework of a standardization effort aimedat
both rising awareness and setting guidelines for enhancingthe
security of control networks and SCADA systems in general.

In turn, this means that, nowadays, the design and manage-
ment of the factory field infrastructure have to deal with a
whole new set of risks which were generally neglected in the
past.

This process is speeded up by the coexistence of real-time
tasks with a general-purpose operating system on the same
host that makes the former susceptible, at least to some extent,
to the same vulnerabilities affecting the latter. In particular, any
vulnerability of the general-purpose operating system, which
grants the attacker the ability to run code in the most privileged
execution mode of the CPU (for example, privilege ring 0 in
Intel processors), also enables the attacker to halt or disrupt
the system as a whole, including real-time tasks.

As a consequence, the paramount problem is reasoning
about consequences of a vulnerability in the context of a
factory network, often part of a multi-layered corporate net-
work, but performing this task by hand is very tedious, error-
prone, and thus impractical for large networks. Taking into
due account the subtle interactions among apparently unrelated
vulnerabilities only makes things worse, also because it isof-
ten possible for the attacker to take advantage of a vulnerability
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in order to make another network component vulnerable as
well, giving rise to a so-calledchain of vulnerabilities.

Currently, the job of discovering the hosts in a network
that are potentially prone to known vulnerabilities can be
automated by using vulnerability scanners [12]–[14], but these
tools give little or no information about attacks that can be
conducted throughsequencesof vulnerabilities encompassing
multiple hosts.

System vulnerability analysis is not a new topic by itself, at
least from the theoretical point of view [15]–[26], but, as far as
the authors know, no attempts have been made in the field of
factory infrastructures: [10], [11], [27] only address best prac-
tice design criteria and risk assessment based on probability
of malicious intrusions, without taking into account attacks
that can be conducted through sequences of vulnerabilities,
and automatic tools for their detection, while [28] proposes
an automatic technique, based on a stochastic attack model
too, to provide risk assessment of control networks and of the
controlled power plants.

More recently, [29] attempted to integrate system vulner-
ability and fault propagation analysis [30]–[32] — another
important source of concern in industrial networks — in order
to address both of them within a single framework, comprising
both the system description and the analysis method.

Since several preliminary and more qualitative results pre-
sented in [33] look promising from the feasibility point of
view, the goal of this paper is to show how the analysis
technique outlined in [29] can be profitably implemented as a
usable tool and then applied to real-world factory information
systems with an acceptable computational effort. However,
this paper mainly focuses on vulnerability analysis, so fault
propagation is not going to be considered in the following.

The extent and quality of the information provided by
any tool of this kind is strongly influenced by its input
data, hence another important issue to be considered is the
availability of accurate, machine-readable information about
the new vulnerabilities that are continuously being discovered,
in order to consider them and determine what vulnerabilities
can represent a real threat for a given system.

Moreover, the existing vulnerability databases [34]–[39]are
mainly designed for human consumption, and the information
they contain is not easy to read and process automatically.
In order to tackle this issue, this paper adopts an extended
XML-based language to describe vulnerabilities, based on the
existing Movtraq [40] and OVAL [41] projects and described
in [42].

Both the analysis tool and the vulnerability description
language have been developed within, and integrated with,
the formal analysis workflow of the European Union FP6/IST
Integrated Project “Dependability and Security by Enhanced
Reconfigurability” (DESEREC) [43]. As far as we know, no
practical experience about the application of these techniques
to real factory information systems has ever been reported
elsewhere in the literature.

The paper is organized as follows: Section II presents the
overall architecture of the analysis tool, as well as its typical
workflow. Then, Section III summarizes the formalism being
introduced for vulnerability description and Section IV de-

Fig. 1. Overall architecture of the analysis tool, with the elements presented
in detail in this paper highlighted.

scribes in detail the underlying Prolog-based analysis engine.
Section V draws an application example in the context of fac-
tory networks and Section VI gives some information about the
performance and scalability of the tool. Section VII reviews
some of the related works and draws some conclusions.

A demonstration version of the tool is also available online
for further experimentation, athttp://www.dai-arc.
polito.it/enginframe/analyze.

II. A NALYSIS ARCHITECTURE

The overall architecture of the analysis tool is shown in
Fig. 1. The analysis engine takes its input from several sources
of information by means of appropriate translators:

• The vulnerability descriptions convey information about
known vulnerabilities and their effects, as better described
in Section III.

• The fault descriptions contain information about the
possible faults that can affect the network components.

• The systemdescription describes the architecture of the
network being analyzed, as well as the configuration of
each host of the network, services running in the network,
and relationships and dependencies among hardware and
software components of the network.

The system description can, in principle, be very detailed
and include the list of installed software with their configura-
tions for each network node, as well as fine-grained details on
running processes and the list of available services. The more
precise these models are, the more accurate the analysis is.
However, modelling precisely the configuration of every host
in the network is not always feasible, because some details can
be unavailable or simply unknown when the analysis is being
performed. Therefore, the description formalism must admit
that details might be missing and the analysis tool must be
prepared to degrade its performance gracefully when coping
with such a potential lack of details.

This means that the tool makes some conservative assump-
tions in order to provide a “worst case” analysis: missing or
unknown details in the configurations are assumed to be the
worst, from the point of view of the system administrator (who
yearns for a secure network), but, at the same time, to be
the best from the point of view of a malicious agent (who
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tries to compromise the network). Of course, the drawback of
these conservative assumptions is that if details are missing the
probability of false alarms increases. In our case, a false pos-
itive is a weakness situation checked by analyzing the model,
which simply does not exist in the real system. However,
because of the conservative nature of our assumptions, it isnot
possible that in the absence of certain details some attacksgo
undetected while being instead detectable on the fully detailed
model.

Working on its input models, the analysis engine performs
an exhaustive search for every action an attacker can perform
in order to reach his malicious goals, considering both vul-
nerabilities and faults. The output of the tool is anattack and
fault propagation graph, in which every node is a step of an
attack or of the propagation of a fault and arcs connect steps
together to build a causal and temporal relationship between
them. That is, two nodes are connected by an arc if the attack
step described by the latter node is enabled as a consequence
of the exploitation of the attack step described by the former.
Root nodes represent the “access points” of the attacker into
the network, that is, they represent the attack steps that can
be carried out on the network from the very beginning of the
attack itself.

Attack steps can also have different meanings, depending
on the kind of attacker’s action associated with them. Namely,
the attacker can try to exploit some vulnerabilities on hosts he
has access to, or he can try to perform some actions allowed
by the configuration of the system. For instance, a host can
be configured in order to allow a password-less login from a
trusted remote computer, but if such a remote host is already
compromised, then the attacker can perform the password-
less login without actually “attacking” the system, ratherby
“leveraging” its configuration.

Every time the malicious agent can perform more than one
action, the tool has to consider all of them, thus leading to
more than one arc coming out from a node and to a tree-like
structure in the graph.

III. V ULNERABILITY MODEL

The vulnerability definition language has been defined as an
extension of the OVAL language [41], aimed at overcoming its
main limitations and at making it more suitable as a modeling
language for automatic analysis. First of all, the test clauses
of OVAL determine if a vulnerability ispresenton a given
host in terms of installed software and its configuration, but
they do not assess if the vulnerability can beexploited, that
is, if an attacker has the capabilities — in terms of required
privilege level, connectivity, file access rights, and so on— to
leverage a vulnerability known to be present on a given host.
Furthermore, theeffectsof the exploitation of a vulnerability
cannot be described.

Instead, both these concepts are well defined inMov-
traq [40] and are very useful, because they allow to verify
if the exploitation of a vulnerability can induce the conditions
needed for the exploitation of other vulnerabilities in the
system, thus creating achain of vulnerabilities. On the other
hand, the choice of OVAL as the starting point is strongly

motivated by the existence of a comprehensive OVAL vulner-
ability repository, whose contents can be readily converted into
the enhanced modeling language once complemented with the
missing information; the same is not true for Movtraq [40].

In more detail, the main changes revolve around the ex-
tension of the XML element that defines a vulnerability (the
definition element) to incorporate two new sub-elements,
pre-conditions andpost-conditions:

• The pre-conditions section extends the information
provided by thecriteria section of standard OVAL
(that describes the tests needed to establish whether
a vulnerability exists or not) by supporting additional
tests aimed at checking whether a vulnerability can be
exploited or not. The extended grammar provides support
for logic statements like, for example, “the vulnerability
can be exploited only if the attacker is a local user with
root access” or “the vulnerability can be exploited only
if there is no free space on the disk”.

• The post-conditions section contains the conditions
that will hold after the vulnerability is exploited, that
is, it contains definitions of effects of the vulnerabil-
ity exploitation. Like thepre-conditions section, the
post-conditions one is made up of one or more
criteria elements joined together withAND and OR

operators. In turn, eachcriteria element is com-
posed ofpost-criterion elements and/or other nested
criteria. Unlike the criterion statements in the
pre-conditions case,post-criterion elements do
not refer to tests, but to effects.

It is worth noting that tests and effects do not have the
same expressive power. In general, effects describe higherlevel
conditions than tests, whereas tests express more precise and
detailed conditions than effects. This situation arises because
vulnerability post-conditions usually imply a larger set of new
attacker capabilities and such conditions are also more difficult
to be determined in a precise way.

Hence, the automatic reasoning tool will be responsible for
mapping post-conditions (i.e. a small set of wide conditions)
into preconditions (i.e. a larger set of detailed and precise
conditions). This mapping can be performed by means of rules
that correlate post-conditions with preconditions. For example,
consider a vulnerability where the effect is “the attacker can
write on file X”. Now, consider the following vulnerability
precondition: “File X must contain the text Y”. In that case,
a mapping rule could infer that if an attacker can write into
a certain file, then he can change the file contents so that the
file includes the required text and consequently exploit the
vulnerability.

Another extension, not further discussed in this paper,
provides the ability to indicate, for each vulnerability, aset
of metrics that describe its characteristics and impact such as,
for example, the effects severity, the exploitation complexity,
whether authentication is required or not to exploit the vul-
nerability and the kind of impact in terms of confidentiality,
integrity, availability, and privilege escalation. Thesemetrics
are based on the Common Vulnerability Scoring System
(CVSS v2) [44] and can be useful to perform risk analysis, in
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order to determine which vulnerabilities are more likely tobe
exploited and which ones can cause more harm.

Besides the major changes and additions presented above,
a minor but very important enhancement has also been intro-
duced. It consists of the addition of a new boolean attribute
to criterion elements. This attribute, calledmutable, has
been designed as a hint to improve the performance of the
analysis tool. Ifmutable is false, it is assumed that the result
of the test thecriterion refers to cannot change over time.
Hence, the analysis tool is allowed to evaluate the test only
once and cache the result. Ifmutable is true instead, the
outcome of the test may change during analysis, as an effect
of the exploitation of some other vulnerability.

For example, a criterion that checks whether the contents
of a certain configuration file match some requirements will
likely be mutable, because the contents may change if the
attacker gains write rights on that file. On the other hand, a
test that checks the version of the operating system running
on a host is unlikelymutable, because the installation of a
new operating system version as part of an attack is usually
considered an extremely unlikely event.

As an example, the listing of Fig. 2 shows a machine-
readable description of the vulnerability “CVE-2006-0058”.
Albeit several parts of the description, not relevant to the
discussion, have been either simplified or omitted completely,
the main elements described in this section are still evident.

In particular, the vulnerability preconditions criteria (rows
12–24 of the listing) are expressed as the logical and/or
combination of several tests, fromtst:1 to tst:8. In turn,
these tests are defined in their own<tests> section: for
example,tst:1 (rows 33–36) is a software existence test, and
is true if at least one instance of the software objectobj:1

is found on the victim host. The details about this software
object are found in their own section (rows 54–57), which
specifies to look forSendmail version8.13.0.

Tests tst:2 through tst:6 have been omitted because
are quite similar, and check forSendmail versions8.13.1
through 8.13.5, respectively. Hence, the first part of the
preconditions criteria (rows 14–18) is met if either one of these
sendmail versions are running on the victim host.

The second part of the criteria (rows 19–22) is met if
either tst:7 or tst:8 is true, that is, if the attacker is
either a remote (rows 58–60) or a local (rows 61–63) user as
specified by the corresponding user objectsobj:7 andobj:8.
These two tests are neither mutually exclusive, nor exhaustive,
because being a remote user requires the ability of reaching
the target node. Hence, for instance, a user can both have a
local account on a host and be able to reach it through the
network (thus being both a local and a remote user). On the
other hand, it is also possible for a user not to have a local
account and being unable to reach the target node (in this case,
that user is neither local nor remote).

The overall criteria are then met if both parts are satisfied,
because they are tied by a logicalAND relation (row 13).

The preconditions of the above-mentioned vulnerability can
also be expressed in natural language as:

1) a sendmail server version 8.13.x, with 0 ≤ x ≤ 5, is
running on the victim host, and

2) the attacker is either a local user on the victim host, or
can reach the server as a remote user.

Moreover, by looking at thesendmail server characteristics,
found in the system description, the tool can also determine
that thesmtp remote access must come through port 25 that,
in this case, corresponds to the default port.

The vulnerability post-conditions (rows 25–29) describe the
vulnerability effects, onlyeff:1 (rows 48-52) in this case.
The effect specifies that the attacker gains user-level privileges
(ste:1, rows 66–68) as a local user (obj:8, rows 61–63).

IV. SYSTEM DESCRIPTION ANDANALYSIS ENGINE

The analysis tool relies and works on the abstract concept
of node, into which all aspects of the input descriptions are
mapped. In turn, each node is given a set ofattributes that
convey various kinds of information about the node itself.
Unlike node and attribute names, which are restricted to be
Prolog atoms, an attribute value can be any valid Prolog
term and thus hold structured, complex data items and even
functions.

Special attributes, containing references to other nodes,are
used to arrange the nodes into a layered, hierarchical architec-
ture that reflects the structure of the system and, according
to an object-oriented paradigm, the organization of nodes
into classes. In order to give the representation expressive
power enough to cover all requirements of the analysis without
sacrificing its efficiency, the binding between an attributeand
its value is established on-demand, that is, only when the value
is actually required.

Besides a static assignment, the value itself may be derived
from several dynamic sources, namely, the knowledge base
built during the analysis or the lazy evaluation of a Prolog
predicate. In logic programming, this technique delays a
computation until it becomes known that its results are actually
needed. As a consequence, performance increases because
unnecessary calculations are avoided, especially when dealing
with complex control and data structures.

Moreover, an inheritance mechanism allows nodes to get
attribute values from their ancestors in the class hierarchy. A
value accumulation mechanism can also be enabled for an
attribute; it allows an attribute to get multiple values, from
both a given node and its ancestors. In this way, attributes are
able to represent both information taken directly from an input
description and information deduced by the tool itself during
the course of the analysis in a convenient and unified way.

As an example, Fig. 3 shows the internal description of sev-
eral components of a simple network. In the figure, solid ovals
represent components, dashed ovals denote classes, and dotted
arrows are a graphical representation of the special attribute
conveying the instance/class and class/class relationship. Other
attributes are listed beside the nodes themselves.

The host node is a generic super class with two attributes:
type andvulnerabilities list. The first one simply states what
kind of node is represented by the class, a genericcomputer

in this case. The second attribute, on the contrary, is one of
the most important attributes in the analysis process, because
it explicitly lists all the vulnerabilities modeled in the system.
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1 <?xml version="1.0" encoding="utf-8"?>
2 <deserec_definitions>
3 <definitions>
4 <definition id="..." class="vulnerability">
5 <metadata>
6 <affected family="unix">
7 <platform>Any</platform>
8 <product>Sendmail</product>
9 </affected>

10 <reference source="CVE" ref_id="CVE-2006-0058"/>
11 </metadata>
12 <preconditions>
13 <criteria operator="AND">
14 <criteria operator="OR">
15 <criterion test_ref="tst:1"/>
16 ...
17 <criterion test_ref="tst:6"/>
18 </criteria>
19 <criteria operator="OR">
20 <criterion mutable="true" test_ref="tst:7"/>
21 <criterion mutable="true" test_ref="tst:8"/>
22 </criteria>
23 </criteria>
24 </preconditions>
25 <postconditions>
26 <criteria operator="AND">
27 <postcriterion effect_ref="eff:1"/>
28 </criteria>
29 </postconditions>
30 </definition>
31 </definitions>
32 <tests>
33 <software_existance_test
34 check="at least one" id="tst:1">
35 <object object_ref="obj:1"/>
36 </software_existance_test>
37 ...

38<user_test
39check="at least one" id="tst:7">
40<object object_ref="obj:7"/>
41</user_test>
42<user_test
43check="at least one" id="tst:8">
44<object object_ref="obj:8"/>
45</user_test>
46</tests>
47<effects>
48<gain_effect id="eff:1">
49<object object_ref="obj:8" />
50<state state_ref="ste:1" />
51</gain_effect>
52</effects>
53<objects>
54<software_object id="obj:1">
55<name>Sendmail</name>
56<version>8.13.0</version>
57</software_object>
58<user_object id="obj:7">
59<type>remote</type>
60</user_object>
61<user_object id="obj:8" version="1">
62<type>local</type>
63</user_object>
64</objects>
65<states>
66<user_state id="ste:1">
67<privilege>user</privilege>
68</user_state>
69</states>
70</deserec_definitions>

Fig. 2. A machine-readable description of vulnerability “CVE-2006-0058”.

Fig. 3. A simplified example of system description.

Unless otherwise specified, they all are supposed to affect the
components derived from this class.

Two different classes are derived from this base class:
windows and linux, each one represented by a node. These
classes represent two distinct families of computers with
different potential vulnerabilities, hence thevulnerabilities list

attribute is overridden in order to distinguish vulnerabilities
affecting the Windows systems from those concerning Linux.

At this level of abstraction, classes have additional attributes
like, for example,operating system. These attributes can just
be placeholders without other details, or can behave as shared
attributes with a default value. In the example, thelinux

class points out agenericlinux operating system, whereas the
windows class precisely indicates that the running operating
system is windows xp sp1. Moreover, the software object

attribute specifies that theoffice 2002 suite is installed. Every
derived subclass or instance will inherit such attributes.

The software object attribute also shows how the value
accumulation mechanism already described can be useful. In

this case, it allows the system description to specify which
software has been installed on each host in an incremental way
starting, for example, from software common to a group of
hosts (to be described insoftware object attributes associated
with the corresponding host class) and then delving into the
fine details about the software configuration specific to one
single host in thesoftware object attributes associated with
that specific host.

Finally, thedb server, desktop andmanagement nodes are
declared as instances of two derived classes. More precisely,
db server describes a server of thelinux family that runs the
mysql database software version5.0.15, desktop is an instance
of the windows class (and inherits all the attribute values
specified for that class). Finally,management also inherits
the attribute values of thewindows class, but further specifies
the architecture as being64 bit and adds apatch object to
model the installation of a patch for the Office suite.

With this kind of configuration, if theoperating system

attribute of the management node is needed, the Prolog
engine will step through the class inheritance mechanism,
eventually retrieving the attribute value of thewindows class.
On the contrary, the value of thearchitecture attribute will be
retrieved directly from themanagement node.

The Prolog analysis tool is layered on top of the factual
information just described. In particular, an intermediate layer
contains information about the meta-model, that is, it defines
which classes and attributes are meaningful and available
for use in the analysis. This layer also gives semantics to
complex attributes, whose value cannot be found in the system
description, but comes from a possibly elaborated computa-
tion. Barring the fact that these attributes are defined at the
class level through lazily evaluated Prolog functions, they can
nonetheless be used like any other.
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Finally, the topmost layer is the Prolog engine. It rea-
sons about the input descriptions (bottom layer), by means
of the meta-model (intermediate layer). As done by other
authors [18], the most important assumption taken for granted
at this level is the so-calledmonotonicityassumption, which
states that if a new knowledge item is gained, then it is never
thrown away. Since it implies that further reasoning can never
retract an already stated fact, this assumption has the advantage
of mitigating the complexity of the analysis but, at the same
time, does not loose its realism.

In the prototype of the tool described in [29], the concept of
vulnerability and its associated model were both quite abstract.
That is, vulnerabilities preconditions and post-conditions were
represented in a straightforward way, as Prolog facts concern-
ing the node affected by them, like other authors did [22].

Unfortunately, this approach lacks the necessary expressive
power when confronted with the way real-world vulnerabilities
are described in the existing vulnerability databases because,
as discussed in Section III, the vulnerability model used in
this case must be much more sophisticated. In particular, the
possibility of exploiting a certain vulnerability is related to
the evaluation of a set oftests, and not to merely considering
whether a certainfact about a node is true or not.

The core of the analysis, however, still resides in the
unification between the preconditions of a vulnerability and
the current state of the system. For instance, if a precondition
requires the presence of a specificsoftware object in the
system, like a software namedsendmail with version number
8.13.1, the tool has to navigate through the system description
in order to find a compatible object, otherwise the precondition
is evaluated as not valid. This search mechanism enables the
analyzer to automatically identify any possible initial attack
point in the modelled network as well as any subsequent attack
node.

The state of the system, though, can change when a vulnera-
bility is exploited and, therefore, the effects of the vulnerability
have to be applied to the system in order to bring it into the
new state. This action is performed by updating or adding the
attributes associated with the affected nodes.

For example, a vulnerability that allows an attacker to
gain user level privileges on the victim host, once exploited,
associates the new attributeprivileges(user) with the victim.
This new information can then be matched with a precondition
like “the attacker needs to have user level privileges on victim
host”, thus potentially starting a new step in an attack path.

It should also be noted that the unification process is not
always trivial like in the previous case, because preconditions
and effects can contain and depend on variables and their
relationships. For instance, a vulnerability can have an effect
like “the attacker can modify any file in directory X”, whereas
another vulnerability can have the precondition “the configu-
ration file F must contain a certain string S”, with S known
to, or computable by, the attacker.

When the tool checks whether the second vulnerability can
be exploited or not, first of all it has to determine whether file
F resides in directory X or not. Then, it can infer that if the
attacker can modify the contents of file F, it can also change
its contents so that it contains the required string S and come

Fig. 4. Structure of the industrial network considered in the example.

to a conclusion.
Hence, the fact that a vulnerability can be exploited does

not depend only on the presence of a vulnerable agent running
on a given host, but may also be affected by the details of
the host configuration. This additional information may notbe
captured by other tools that only use the results of a scanner
as their source of vulnerability data [21]–[24]. For example,
a remote scan executed at the sub-network level could not
detect the presence of vulnerabilities affecting a given software
component if that component were not running at the time the
scan is performed.

The same framework can also be used to model complex
post-conditions such as, for example, arbitrary code execution
in a simple and efficient way. Since the match between
vulnerability preconditions and system state is carried out by
unification, arbitrary code execution can be represented by
means of a process object containing a unification wild card
as the process name.

V. A N EXAMPLE

A. Network Architecture and Configuration

The architecture of the network being analyzed is depicted
in Fig. 4. Albeit simplified to keep the example short, its
overall structure has been inspired by a real factory network
that was designed to control a (small) production system. It
still bears a strong resemblance with the network from which
it has been derived. The network is subdivided into three main
areas:

• A DeMilitarized Zone (DMZ), where publicly accessible
servers are hosted. All hosts in this area have public IP
addresses, in order to accept connections from the outside
world.

• A private LAN, with internal corporate hosts and internal
services. The hosts in this area have private IP addresses
sincefirewall2 also performs Network Address Transla-
tion (NAT). Albeit a typical corporate network comprises
many computers for administrative and office personnel,
such richness of nodes has been here abstracted away
into two classes:desktop and management nodes. This
abstraction is realistic because it is likely that nodes with
similar purposes have almost identical configurations.

• The field level of the network resides behindfirewall3 and
is made up ofsoftPLC computers that run both a general
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TABLE I
SOFTWAREPACKAGES INSTALLED ON THE EXAMPLE NETWORK

Host Software Version

web server apache 2.0.59
internal mail server MS Exchange 2007
external mail server sendmail 8.13.1

DNS server MS Windows Server 2003
DB server mysql 5.1.15
desktop MS Office 2002

management MS windows XP 64bit SP1
soft PLC Linux kernel 2.6.10

TABLE II
MAIN FIREWALL RULES FORCONNECTIONREQUESTS

Firewall Direction Protocol Host

in http web server
1 in smtp external mail server

out any any
in smtp internal mail server2 out any any
in ssh management

3 out any any

purpose operating system and a real-time application.
As before, it is assumed that the singlesoftPLC node
depicted in the example actually models a whole class of
hosts with the same configuration.

The network exposes, in the DMZ area, two public servers:
theweb server and theexternal mail server. The former hosts
anapache web server, whereas the latter is asendmail server
configured as a relay for theinternal mail server. This is
a commonly used practice to avoid direct exposure of the
corporate mail server to the Internet. In the internal network,
the dns server and thedb server provide DNS features and
general DB storage capabilities, respectively.

Last, desktop represents a set of generic office computers
andmanagement stands for a set of administrative computers.
The main difference between these two classes, besides the
installed software packages, is that only an administratorof the
network can have an account on the administrative computer.
Moreover, the administrative computer allows incoming Server
Message Block (SMB) connections from thedesktop machine,
and an SSH trust relationship between themanagement and
the softPLC hosts allows management people to log into the
softPLC host without typing any password once they have
logged into the management computer.

Table I summarizes the software packages installed on
the various hosts of the network, which are relevant for the
example.

The network is partitioned into different areas by means of
threestatefulfirewalls that, besides examining the protocol and
port fields of incoming packets as stateless firewalls do, also
keep track of the state of network connections going through
it and, in particular, are aware of and act upon TCP connection
requests. More precisely:

• The first firewall,firewall1, protects the factory network
from the outside world of Internet. It only allows in-
cominghttp andsmtp connections directed to the hosts
in charge of them (within the DMZ zone) and does not
provide any kind of routing.

• The second firewall,firewall2, acts as a filter to isolate the
private, internal LAN and routes traffic from the private
LAN to the Internet through a NAT service. The only
incoming connections allowed by this firewall aresmtp
connections directed to theinternal mail server. This is
necessary in order to accept the relay of the incoming
mail from theexternal mail server.

• The third and last firewall,firewall3, protects hosts at the
field level from unauthorized access. The only incoming
connections allowed by this firewall aressh connections.
This kind of connection is used to supervise and manage
the field level equipment from themanagement node.

The actual firewall rules are shown in Table II: from left
to right, the columns list the firewall number, traffic direction,
protocol and destination host. With respect to Fig. 4, the “in”
traffic direction refers to traffic from the outside (left side of
the picture) to the inside (right side of the picture), whereas
“out” refers to traffic from inside to outside. In Table II, the
host represents either the source or the target of the connection
request, depending on the direction.

The topology described here prevents the field level from
being directly accessed by untrusted users. However, this
small example also shows how the extent of connectivity in a
real industrial network has significantly increased from the
scenario in which human operators initially worked within
the process control system’s “blast zone” with its stand-alone
network [9].

B. Analysis Results

At a first glance, the network described in the previous
section does not allow any kind of direct access from the
Internet to the field area. As expected, the only servers
accessible from outside the corporate network are the web
server and the external mail server. In a perfect world, this
configuration would be secure and the field area would be
effectively isolated from the outside.

However, the analysis of the network produces an attack
graph with 35 nodes and 11 distinct attack paths. For the sake
of brevity, only one of the attack paths, shown in Fig. 5, will
be discussed in detail. In the picture each node, representing
an attack step, has been labelled with the name of the network
element being attacked. Solid nodes correspond to the exploit
of a vulnerability, whereas dashed nodes represent attack steps,
in which the attacker used an intended quality of the network
to his own advantage. A more detailed description of the attack
step, including a reference to a vulnerability database entry if
appropriate, appears beside each node.

In this example, the attacker initially acts from the Internet,
that is, from outside the corporate network. From there, his
first malicious action is directed to the DMZ zone and, in
particular, to theexternal mail server. As specified in Table I,
this host runs version 8.13.1 ofsendmail , but for this software
version the tool is aware of vulnerability “CVE-2006-0058”.
This vulnerability is exactly the one discussed in Section III
and Fig. 2. As all other vulnerabilities discussed in the paper, it
is a real-world vulnerability taken from the CVE database [34]
and its description is publicly available on the CVE web server.
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Fig. 5. An attack path from the Internet to the factory field level.

In this case, both preconditions of the vulnerability are
satisfied and the attacker can exploit it. The exploitation
leverages a signal handler race condition insendmail and
allows the remote attacker to execute arbitrary code on the
server, thusacquiring privilegeson the victim host. Since this
host is within the DMZ, the attacker actually gains access to
a server behind the first firewall.

The external mail server has been configured to act as a
relay for the internal mail server, hencefirewall2 has been
configured to allowsmtp connections from the DMZ to the
corporate network. Due to the previous attack step, which gave
to the attacker user level privileges on the external mail server,
he can now access the internal mail server and exploit one of
its vulnerabilities, namely, the “CVE-2007-0213” vulnerability
concerning the Exchange product family.

In more detail, this flaw in the email decoding process
allows an attacker to gain administrator level privileges on
the victim host by sending it an appropriately forged email
message. This is a very important accomplishment for the
attacker, because it can now use a host within the corporate
network to further pursue its goals.

Indeed, from the internal mail server it can exploit the
“CVE-2007-0027” vulnerability, affecting the Microsoft Office
suite. More precisely, he can gain administrator level privileges
on thedesktop node by sending a specially crafted file to it
and tricking the victim user into opening it with Microsoft
Excel. This attack step is indeed possible, because the attacker
can now send email messages to the corporate hosts from the
internal mail server, and thedesktop user is supposed to trust
emails coming from this source (and modeled accordingly).

It is worth noting that the tool does not report the
management node as susceptible to the same vulnerability.
This is correct because the vulnerability has among its pre-
conditions the absence of software patch “KB925523” and,
as shown in Fig. 3, the system description states that the
patch has indeed been installed only on themanagement node.
This example remarks the importance of a detailed system
description in order to have accurate results and also shows
how the hierarchical description method being used supports
a compact description of wide node classes without hindering

the specification of fine-grained details about a single node
when appropriate.

From the compromiseddesktop host the attacker can estab-
lish an SMB connection with, and gain user level privileges
on, the management host. Then, the tool found that the
SMB component of Windows XP 64bit SP1 installed on the
management host has a flaw that allows a local user toelevate
his privileges.

After acquiring administrator level privileges on the
management node, the attacker uses the SSH trust relationship
between themanagement node and thesoftPLC to his own
advantage. Finally, the last step involves another local vul-
nerability, “CVE-2004-1235”, which affects the Linux kernel
version 2.6.10 running on thesoftPLC host. This vulnerability
is quite severe and very relevant in this example, since it
permits execution of arbitrary code in privilege ring 0 and
the consequent possible disruption of any real-time application
running on that host.

After examining the results of the analysis, the system
administrator can now look for countermeasures to apply
in order to avoid such an attack scenario. For instance, in
this case, a good choice would be to patch the Office suite
on the desktop host (like it has already been done on the
management node), given that a patch is readily available.
After having applied this modification, another run of the tool
can then be performed in order to show how many problems
have been solved.

VI. PERFORMANCE ANDSCALABILITY

In general, the performance and scalability of a software tool
can be assessed in two very different ways. On the one hand,
its design documents and source code can be inspected in order
to determine the computational complexity of the algorithms
being used in ananalytic way. On the other hand, it is also
possible to perform a set of experiments, in which the tool
is actually executed on a set of test problems believed to be
representative of real-world usage patterns, andmeasureits
performance in some way.

In this particular case, due to some intrinsic difficulties of
the Prolog language, like the lack of an explicit control flow, an
approximate assessment of the complexity was carried out by
analysis, and then double-checked with a set of experiments.

For what concerns measurements, although theexecution
time is with no doubt a very useful performance index because
it provides an immediate idea of the practical usefulness ofthe
tool, when using the Prolog language another common way
of measuring performance is to count the number of logical
inferencesexecuted by the software during its execution.
This approach has the advantage of providing a platform-
independent indicator, which measures the actual complexity
of the algorithms being executed rather than the level of
sophistication of the Prolog execution engine or the raw speed
of the computing platform being used. Both these factors are
in fact likely to rapidly change in the future.

For this reason, the results presented in this paper use
the inference count as the primary performance index. To
correlate this information with the real behavior of the tool on
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TABLE III
NOTATION USED IN THE COMPLEXITY ANALYSIS.

Symbol Meaning

n Number of nodes
v Number of known vulnerabilities
p Max. number of preconditions
q Max. number of post-conditions
v
′ Max. number of vulnerabilities affecting a node

r Number of reachability rulesets

a consumer PC platform, its execution times — using the SWI
Prolog engine version 5.6.14 on a Linux PC with a 1.73 GHz
Intel Pentium M CPU and 1.5 GByte of RAM — are also
given in a few cases.

A. Analytic Assessment

The tool consists of two sequential phases whose complex-
ity has been evaluated separately:

1) In the first phase, for each node in the network and
for each known vulnerability, the tool evaluates its
preconditions to check whether it can be exploited or
not on the node under consideration. If it is, its post-
conditions are put into effect, thus possibly introducing
new items into the knowledge base (and enabling the
exploitation of other vulnerabilities). The whole process
is repeated until a fixed point in the knowledge base is
reached, that is, until a whole iteration of this procedure
does not add any new item to the knowledge base.
The analysis starts from a finite set of locations in
the network, assumed to represent the attacker’s initial
positions. These locations are specified by the network
administrator and the tool considers them all in the
analysis. In most cases, unless the administrator wants
to consider attacks that originate from inside his own
network, a sensible choice is to choose these locations
so that the attacker is located anywhere in the Internet.
This phase determines themaximal set of vulnerable
nodes (that is, the set of all nodes on which a vulnera-
bility can possibly be exploited), a piece of information
which can indeed provide valuable insights to the de-
signer, because it can point out the risky nodes in the
network within a short amount of analysis time. Then,
the designer can fix the most important vulnerabilities
and then possibly target the second phase of the analysis
only on the problematic areas, instead of using it on the
whole network at once.
In addition, this phase also provides several important
opportunities for optimization. In particular, during the
precondition evaluation, the truth value of the precon-
ditions flagged as notmutable is calculated once for
all, so that the same calculation will never be repeated
in the future. Moreover, for each node, themaximal
set of vulnerabilities that can possibly be exploited on
that node is also determined. This information greatly
restricts the number of vulnerabilities to be considered
during the second phase.
The evaluation of a vulnerability requires a number of
inferences that is linear in the number of its precon-

ditions. Once a vulnerability has been detected as ex-
ploitable, applying its post-conditions to the knowledge
base also requires a number of inferences that is linear
in the number of post-conditions.
Assuming that all vulnerabilities are exploitable on all
nodes, the best situation for the complexity happens
when all of them are discovered in a single iteration. In
this case, using the notation of Table III, the complexity
is linear with respect ton, p, q, and the number of
vulnerabilitiesv because the whole set of vulnerabilities,
with their preconditions and post-conditions, must be
evaluated once for each node. On the other hand, the
worst case implies discovering the vulnerabilities one at
a time, inv iterations. The complexity of a single itera-
tion is still the same as before, but the overall complexity
now depends onv2 instead ofv. The complexityC1 of
the first phase can therefore be estimated as:

C1 = O(npqvk), with 1 ≤ k ≤ 2 (1)

It should be noted that this formula represents a rela-
tively pessimistic upper bound also because it does not
take into account that the post-conditions of a vulnera-
bility are evaluated only when the vulnerability can be
exploited, and further assumes that all preconditions are
mutable.

2) The second phase of the analysis refines and completes
the information provided by the first one, by determining
thecausalityrelationship among attacks, thus leading to
the construction of the actual attack graph.
As in the previous phase, the analysis starts from a finite
set of locations in the network, assumed to represent the
initial attacker’s positions, and considers them all. From
there, the set of nodes the attacker can reach is computed
from the network topology and logical reachability re-
lations among nodes. The calculation requires a number
of inferences linear with respect to the number of nodes
and reachabilityrulesets, that is, the possible ways of
inferring reachability rules. Currently, the reachability
rulesets include physical reachability, trust relationships
and client/server relationships.
Given this set, the analysis proceeds to check whether,
for each node, the attacker can exploit one of the
remote vulnerabilities that may possibly affect that node
according to the results of phase one. Each successfully
exploited vulnerability opens a new path in the attack
graph, leading to the attacked node. When the analysis
follows each one of these paths, it applies the post-
conditions of the corresponding vulnerability.
Then, for each new node added to the attack graph, the
tool examines each local vulnerability possibly affecting
that node in order to determine whether it can now
be exploited. For what concerns local vulnerabilities,
the tool does not determine all possible sequences of
exploitation, in order to achieve a better efficiency.
Instead, only one of the maximal sequences is put into
the attack graph. This approach does not imply any loss
of information, because the sequence taken into account
comprises all the locally-exploitable vulnerabilities, and
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thus gives to the attacker the best position for his next
step.
At this point, the whole process is repeated until the
attacker is unable to gain further privileges or access
rights in the network. Again, this condition happens
when a fixed point in the knowledge base is reached.
The overall complexity of the second analysis step
depends on the relationships between the attacked nodes,
namely:

• If the attacked nodes areuncoupled, that is, they
are unable to attack each other, the complexity of
each iteration of the analysis is cubic with respect
to the number of nodes in the network, and the
method converges in the worst case after adding all
nodes to the attack graph. Following the same line
of reasoning adopted to derive (1), and using again
the notation of Table III, the complexity can then
be expressed as:

C2 = O(nmrpqv′), with 3 ≤ m ≤ 4 (uncoupled)
(2)

• Instead, if k of the n nodes arecoupled, that is,
they can attack each other, the analysis enumerates
all possible2k subsets of these nodes in the attack
graph. In turn, since0 < k ≤ n, this necessarily
leads in the worst case to an exponential complexity
with respect to the number of nodes:

C2 = O(enrpqv′) (coupled nodes) (3)

B. Experimental Results

The set of measurements presented in this section was
carried out on several concrete instantiations of the general
network structure described in Section V. Since the analysis
discussed in SectionVI-A points out that the number of nodes
in the network is the most critical parameter for complexity,
the test cases being examined share the same baseline dis-
cussed in Section V but differ from one another in the numbers
of hosts.

More specifically, each test case includes different num-
bers of replicas of thedesktop, internal mail server, and
external mail server nodes in the network. These nodes were
chosen for parameterization because they are the closest tothe
Internet, the attacker’s access point. Hence, they are alsothe
closest to the root of the attack graph (as it can be seen by
looking at the attack path of Fig. 5) and their replication has
the worst possible effect on the growth of the attack graph
itself.

For the internal mail server nodes, two different config-
urations were considered. In the first case, the nodes have
been keptuncoupled, whereas they have beencoupledin the
second one. The latter situation has been considered because,
as explained in Section VI-A, it affects performance most
heavily.

The analysis efforts in the scenarios just discussed are
compared in Fig. 6, where the number of Prolog inferences
is plotted versus the number of replicated nodes of each
kind, the remainder of the network being the same. It can
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be seen that, when thedesktop, external mail server, and the
uncoupledinternal mail server nodes are replicated, even in
the worst case the experimental data are bounded in a very
good way by a power functiony = nxm with an exponent
m = 2.66, leading to a polynomial complexity. The same
trend is confirmed by looking at the actual execution times of
the analysis, presented in Fig. 7.

It should be noted that the correlation between number of
inferences and execution time is not necessarily linear because
several parameters, for instance the size of the knowledge base,
may certainly have an impact on the time required to perform
an inference, even if they do not affect the inference count
directly.

In order to further inspect the behavior of the tool and show
that it is suited to analyze larger networks, too, the example
was further extended to comprise up to about 300 nodes.
In this case, the focus was put only on thedesktop nodes
because, among the kinds of node considered in the previous
experiments, they are the only ones that can be replicated
without hindering the realism of the resulting network. In fact,
it is unlikely for an industrial network to have more than a few
mail servers, whereas desktop computers usually abound.

The results, in terms of Prolog inferences versus the number
of replicated desktop nodes are presented in Fig. 8. The
experimental data fit very well a power functiony = nxm

with an exponentm = 3.36, hence they substantially agree
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with the complexity trend (2) determined in Section VI-A.
With respect to Fig. 6, the exponent of the fitting function
increased because, with a bigger number of nodes, the relative
weight of the higher powers ofx in the complexity formula
increased. It should also be remarked that, even in the most
challenging case, the total run time of the tool did not exceed
several hours.

By contrast, referring again to Fig. 6, the case of thecoupled
internal mail server nodes is very different. As estimated in
(3), it correlates very well with the exponential functiony =
e1.98x, where x is the number of replicated nodes. In this
case, one method to alleviate the complexity can be to forgo
the attacksorder and only look at theset of attacked nodes.
This corresponds to the execution of the first analysis step
described in Section VI-A and, as estimated in (1), it has a
much lower, polynomial complexity in all situations, as it can
be seen in Figs. 9 and 10, for a small and large number of
nodes, respectively.

Actually, it can also be noted that the measured complexity
shown in Figs. 6–10 is lower than predicted. This is due to
the fact that (1) and (2) are worst-case, asymptotic bounds that
are reached only for a large number of nodes and have been
calculated neglecting several optimizations performed bythe
tool.

By contrast, the measurements have been taken for a rela-
tively small number of nodes, leading to an optimistic approx-
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imation. This point of view is also corroborated by observing
that the results better match the theoretical expectationsas the
number of nodes gets larger.

VII. R ELATED WORKS AND CONCLUDING REMARKS

The vulnerability analysis problem was already addressed
in pioneering works such as [15], [16], and [19]. In particular,
[15] makes use of ad-hoc solutions, whereas [16] and [19]
rely on more standard model checking techniques and tools.
All these works compute an attack graph where each vertex is
a system state, and each edge takes into account a system state
transition, triggered by some attacker’s action. An exponential
computational complexity is the price paid for generating all
the possible attack paths. [17] introduces a technique aimed at
reducing the graph size of [15], although the problem of the
graph generation is not completely addressed.

The computational complexity of the attack graph gen-
eration can be reduced in most practical cases under the
hypothesis of monotonicity introduced in [18]. Assuming that
any exploit doesn’t involve more than three hosts, [18] shows
that the computational complexity can beO(n6), where n

is the number of hosts in the network. Some hypothesis of
monotonicity has been adopted in most of subsequent works.

The Topological Vulnerability Analysis (TVA) tool pre-
sented in [20] follows the same approach as [18], but the
authors mainly focus on the post-processing of attack graphs,
i.e. how the information provided by the attack graph can be
profitably presented to the network manager in order he can
make the network stronger against potential attacks [45], [46].

An alternative approach to network vulnerability analysis
is based on the perspective that penetration testers can have
about the maximal level of possible penetration on a given
host and was proposed in [21]. The underlying data structure
in that case is an access graph, where vertices correspond to
hosts, and edges show how an attacker can reach a destination
host starting from a given source. In order to keep the com-
putational complexity as low as possible, the authors propose
a greedy algorithm, without backtracking. Instead of taking
into account all the ways an attacker can reach the target host
starting from a given source, the way giving the attacker the
greatest power on the target is selected. This approach leads to
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a sub-optimal solution, where only the worst-case attack paths
to all compromisable hosts are computed, with a computational
complexityO(n3).

The authors of [23] compute a logical attack-graph with
a complexity betweenO(n2) and O(n3) by using Datalog
and its inference engine to model the system and perform
the analysis. A computation complexity ofO(n2) is obtained
under the hypothesis of constant table look-up time which
does not always hold, unfortunately. [26] extends the rulesof
MulVAL [22], [23] to include the security policies of popular
operating systems such as Windows XPR© and SELinuxTM.
Moreover, its authors take an incremental approach to update
the attack graph, in order to keep the computational complexity
low when a what-if analysis is required.

The commercial tool Sky Box View [47] carries out attack
graph analysis and the company’s patent [48] claims that the
algorithm isO(n3), andO(n2) is possible.

Finally, by aggregating hosts with respect to their reach-
ability in the network, NetSPA [24] computes multiple-
prerequisite attack graphs of the provided example nearly
in a linear time. Multiple-prerequisite attack graphs can be
expanded in the corresponding, full attack graph: it means
that details are not lost in the compact representation. More-
over, NetSPA is also able to deal with credentials, such as
passwords, besides usual preconditions.

The automatic tool presented in this paper checks the com-
bined effects of a chain of software vulnerabilities. Also thanks
to the development of a sophisticated, XML-based description
language stemming from recent research and non-profit or-
ganization efforts, notably Movtraq [40] and OVAL [41], the
tool is able to reason about real-world threats and can hence
be applied in the context of a realistic industrial network.

Even if the raw performance of this tool appears to be worse
with respect to some of the competing works [23], [24], at least
on the given examples, it should also be noted that its way of
modeling vulnerabilities is more powerful due, for example, to
the support ofmutable attributes and to the use of unification
in matching vulnerability preconditions with the system state.
Both capabilities can be useful in the analysis of real-world
networks.

The practical relevance of this problem will likely grow in
the near future, due to the ever increasing adoption of hardware
and software derived from the office automation environment
at every level of the factory computing infrastructure, andeven
at the field level.

The operating principle and practical applicability of the
tool were first described by means of a small example. Then,
most importantly, encouraging results about the performance
and scalability of the tool with respect to the network size and
structure were also derived on realistic networks with up to
about 300 nodes. A simplified variant of the analysis was also
shown to be suited, at least in principle, to check even much
larger networks.

As a future work, we will investigate the possibility of
extending the tool to perform risk analysis based on ap-
propriate metrics associated with each vulnerability. Another
area of further research is the automatic acquisition of the
input data needed by the analysis tool such as, for example,

relevant information about vulnerabilities, system structure and
configuration. Of course, automation becomes more and more
important as the size of the system under analysis grows.
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