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We analyze heat and work fluctuations in the gravitational wave detector AURIGA, modeled as a

macroscopic electromechanical oscillator in contact with a thermostat and cooled by an active feedback

system. The oscillator is driven to a steady state by the feedback cooling, equivalent to a viscous force.

The experimentally measured fluctuations are in agreement with our theoretical analysis based on a

stochastically driven Langevin system. The asymmetry of the fluctuations of the absorbed heat character-

izes the oscillator’s nonequilibrium steady state and reveals the extent to which a feedback cooled system

departs from equilibrium in a statistical mechanics perspective.

DOI: 10.1103/PhysRevLett.103.010601 PACS numbers: 05.40.�a, 04.80.Nn, 05.70.�a, 85.85.+j

Cold-damping feedback efficiently reduces the thermal
noise motion of an oscillator by applying a viscous force.
Since its first application in electrometers [1], it succeeded
in a wide variety of devices [2,3], from nano- to macro-
scopic resonators, and in a variety of implementations,
including both optical and electrical forces. In basic re-
search, cold damping is considered in order to reduce
below the level of intrinsic quantum fluctuations the un-
certainty due to thermal noise of the position of macro-
scopic bodies [4], and to improve the behavior of
gravitational wave detectors [5]. In this Letter we experi-
mentally investigate the fluctuations of thermodynamic
quantities of a cold-damped electromechanical oscillator:
the resonant-bar gravitational wave detector AURIGA [6].
In particular we verify that they are consistent with recent
theories of nonequilibrium phenomena.

After the seminal works of Ref. [7], which introduced
the fluctuation relation (FR) concerning the probability
density function (PDF) of the entropy production rate in
nonequilibrium systems, a large number of papers have
been devoted to similar problems (see, for instance,
Ref. [8] for a review). One finds that the FR for some
properly identified observable (called dissipation function)
is quite generally valid in systems of physical interest [9].
After the experimental evidence obtained for dragged col-
loidal particles [10], electrical circuits [11], and mechani-
cal oscillators [12], the FR has become a standard tool to
characterize nonequilibrium systems. Here, following
Ref. [13], we focus on the FR for the PDF of the power
necessary to maintain a dissipative system in a nonequi-
librium steady state (NESS). A specific FR, obtained for
the fluctuations of the injected power in a stochastically

driven Langevin system [14], was recently confirmed in a
simple electrical realization of that model [15]. Actually,
this FR accurately fits the fluctuations of the injected power
in wave turbulence as well [16]. We also show that the
AURIGA detector, which is maintained in a NESS by an
external driving in a feedback cooling scheme, can be
described as a mechanical oscillator forced by a stochastic
driving. We then analyze its behavior and demonstrate that
(a) the statistics of its thermodynamic variables show a
characteristic asymmetry between positive and negative
fluctuations and (b) the statistics of the injected power
are in agreement with the FR of Ref. [14]. These results
reveal the extent to which a feedback cooled system de-
parts from equilibrium in a statistical mechanics perspec-
tive and prove the limits of usual assumption that cold-
damped oscillators at temperature T0 are equivalent to
higher-loss ones, in thermodynamic equilibrium at a tem-
perature Teff < T0.
AURIGA is based on a 2:2� 103 kg, 3 m long bar made

of a low-loss aluminum alloy (Al5056), cooled to liquid
helium temperature T0 ¼ ð4:6� 0:2Þ K. The fundamental
longitudinal mode of the bar, sensitive to gravitational
waves, has effective mass M ¼ 1:1� 103 kg and reso-
nance frequency !0=2�� 900 Hz. The bar resonator mo-
tion is detected by a capacitive transducer followed by a
double stage dc-SQUID amplifier; the displacement sensi-

tivity is about 5� 10�20 m=
ffiffiffiffiffiffi
Hz

p
over a �100 Hz band-

width around !0, largely limited by thermal noise. The
detector can be modeled by three coupled low-loss reso-
nators: two mechanical ones (the bar and a plate of the
capacitive transducer) and an LC electrical one [17,18].
The dynamics is described by three normal modes at
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separate frequencies, 865.7, 914, 953 Hz, with quality
factors, respectively, of 1:2� 106, 0:88� 106, 0:77�
106, determined by mechanical losses in the bar and the
transducer and by dielectric losses in the electrical compo-
nents. Each mode is modeled as a series-RLC electrical
oscillator with an effective inductance L, capacitance C,
and resistance R, which assume different values for the 3
oscillators (Fig. 1). These modes are electromechanical
rather than purely mechanical, but each one collects a
significant fraction of the energy of the two mechanical
resonators. From the detector calibration we estimate that
the energy injected by an impulsive excitation of the
longitudinal mode of the bar is shared by the 3 modes in
the ratio 48:36:16.

For the sole purpose of improving the electronics stabil-
ity and easing the data analysis, AURIGA employs an
electronic feedback cooling scheme on the detector
(Fig. 1), which is equivalent to a viscous force on the
oscillators [19]. The dynamics of each electromechanical
oscillator is described by the equations

ðL� LinÞd
2qðtÞ
dt2

þ R
dqðtÞ
dt

þ qðtÞ
C

¼ VTðtÞ � VdðtÞ; (1a)

VdðtÞ ¼ Lin

dIsðtÞ
dt

; (1b)

IðtÞ þ IdðtÞ ¼ IsðtÞ; (1c)

where the current Is is the observable, q is the charge on the

capacitor, I ¼ dqðtÞ
dt the current through the inductance L,

Vd is the voltage at the node where the feedback is applied,
and Lin is the input inductance of the SQUID amplifier. In
thermodynamic equilibrium, each oscillator is driven by
the stochastic voltage: VTðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT0R

p
�ðtÞ, where � is a

Gaussian white process. This should hold even in our
nonequilibrium case, since the feedback cooling concerns
only 3 modes, out of the very many degrees of freedom of
the thermal bath, and is not expected to significantly affect
the thermal noise due to the bath. The noise due to the
SQUID can be neglected at moderate feedback gains, as

those used in this experiment. The very high quality factor
of the oscillators implies that the currents Is, Id, and I

oscillate at !r ¼ 1=
ffiffiffiffiffiffiffi
LC

p
with amplitude and phase

changing appreciable only on time scales of several cycles.

Thus, the quasiharmonic approximation IðtÞ ¼ ÎðtÞ�
sin½!rtþ �̂ðtÞ�, like the analogous ones for Is and Id,
seems appropriate. Operatively this is implemented by
considering the signal only in a narrow frequency band
around !r. Near resonance, a feedback force equivalent to
a viscous damping can be obtained with the feedback
current

IdðtÞ ¼ GIsðt� tdÞ; (2)

where td ¼ �
2!r

and G � 1. Equation (1b) includes mem-

ory effects due to contributions from times t� td, because
of the constraints (1c) and (2); in the quasiharmonic ap-
proximation we have Isðt� tdÞ ’ !rqsðtÞ. Hence each
oscillator obeys

L
dIsðtÞ
dt

þ IsðtÞ½Rþ Rd� þ qsðtÞ
C

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT0R

p
�ðtÞ (3)

with IsðtÞ ¼ dqsðtÞ
dt . Here Rd ¼ G!rLin expresses the vis-

cous damping on the oscillator due to the feedback loop;
the feedback efficiency is defined as g ¼ Rd=R. The qua-
siharmonic approximation is valid as long as the feedback
damped oscillator is still a low-loss one. In Eq. (3) the
driving is the same white process of Eq. (1): this is con-
firmed experimentally by the Lorentz-shaped power spec-
trum of the current Is around the resonance [19]. Equation
(3) is not invariant under time reversal (q0s ¼ qs, I

0
s ¼ �Is,

t0 ¼ �t) and does not satisfy the Einstein relation.
Nevertheless, it is formally identical to that describing an
oscillator with damping Rþ Rd, in equilibrium at the
fictitious ‘‘effective temperature’’ Teff ¼ T0=ð1þ gÞ. The
discrepancy between Teff and the thermal bath temperature
T0 reveals the nonequilibrium nature of the phenomenon.
Hence, the feedback cooled oscillator is usually treated as
an equilibrium system, with Teff derived from the experi-

mental value of hÎ2sðtÞi ¼ 2 kBTeff

L , even if no bath at Teff is

present.
Multiplying Eq. (3) by IsðtÞ and integrating between t

and tþ �, in the quasiharmonic approximation we get
an expression for the average power P� ¼ 1

� �R
tþ�
t Isðt0ÞVTðt0Þdt0 injected by the stochastic thermal force

during a time �:

P� ¼ �U� þ Rþ Rd

�

Z tþ�

t
I2s ðt0Þdt0; (4)

where �U� ¼ Uðtþ�Þ�UðtÞ
� , UðtÞ being the stored energy

UðtÞ ¼ 1

2
LI2s ðtÞ þ 1

2

q2sðtÞ
C

¼ 1

2
LÎ2sðtÞ: (5)

The term proportional to R represents the heat dissipated
by the oscillator toward the bath, while that proportional to

dc SQUID amplifier

resonant mode

I

Id

Is

Vd

feedback

LinL-Lin

R Vt

C

Id = GIs (t-td)

Vout

FIG. 1 (color online). The normal mode is approximated,
around its resonance frequency, by a series-RLC circuit. The
dc SQUID is represented as a current amplifier. The observable
is the current Is, and the electronic feedback cooling is obtained
by sending back a current Id which is a delayed copy of Is
reduced by G � 1. The SQUID output voltage is Vout ¼ AIs
with A ¼ 2:6� 106 �.
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Rd is the work done by the oscillator on the feedback:

W� ¼ � 1

�

Z tþ�

t
Idðt0ÞVdðt0Þdt0 ¼ Rd

�

Z tþ�

t
I2s ðt0Þdt0: (6)

Notice that the last identity is strictly valid only within the
quasiharmonic approximation, which relates both Isðt�
tdÞ and dIsðtÞ=dt to the instantaneous current IsðtÞ. Further,
if � ¼ N 2�

!r
, N integer, in the same approximation we can

also write

W� ¼ 1

�

Rd

2

Z tþ�

t
Î2sðt0Þdt0: (7)

By energy conservation we obtain the heatQ�, absorbed by
the oscillator from the bath and averaged in a time �:

Q� ¼ �U� þW�: (8)

To study nonequilibrium properties, we focused on the
lowest frequency mode out of the three, which is well
separated in frequency from the other two and is thus our
best approximation of a single oscillator. The sampled
current IsðtÞ was processed via the AURIGA data analy-

sis and integrated over the resonance in a 10 Hz bandwidth

to obtain the current amplitude ÎsðtÞ in the harmonic ap-
proximation. From dedicated calibration of AURIGA we
measure L ¼ ð1:67� 0:01Þ � 10�4 H and Lin ¼ ð1:48�
0:01Þ � 10�6 H. A first set of data covers a continuous 10
day time span in March 2008. The data yield !r=2� ¼
865:7 Hz, Teff ¼ ð21:1� 0:2Þ mK, and decay time �eff ¼
ð2:36� 0:04Þ s; hence we estimate g ¼ 207� 10, R ¼
ð6:8� 0:5Þ � 10�7 �, and G ¼ ð1:74� 0:06Þ � 10�2.
The quality factor !r�eff=2 ’ 6:5� 103 is high enough
to justify the quasiharmonic approximation leading to
Eq. (3). Figures 2(a) and 2(b) show the PDF of the energy
difference �U� and of the work done by the oscillator W�

averaged over growing times �: they are calculated from
Eqs. (5) and (7) after dividing the experimental data in
contiguous time intervals of duration �. Figure 2(c) shows
the corresponding heatQ� exchanged by the oscillator with
the bath averaged over the time �, computed via the energy
conservation of Eq. (8). The fluctuations of Q� are asym-
metric, as expected for a NESS. Figure 2 also shows ex-
cellent agreement with numerical simulations of Eq. (3).
The PDF of �U� is symmetric with respect to zero, as

for an equilibrium oscillator. It has exponential tails which
decay faster for longer �. The PDF of W� is highly asym-

metric. From Eq. (7) and hÎ2sðtÞi ¼ 2kBTeff=L we infer that
W� is positive and has mean value ’ 0:84 kBTeff=s. Hence,
Q� takes negative values only for short integration times,
with the characteristic time scale given by the cold-damped
oscillator decay time �eff ¼ 2L=ðRþ RdÞ. For � � �eff
the contribution of the time averaged energy is negligible.
So in the presence of feedback (Rd > 0) there is a net heat
transfer from bath to oscillator: this is the energy flux that
feeds the NESS and makes the PDF of the heat asymmet-
ric. On the contrary, if the feedback were switched off, we
would have Rd ¼ 0 and W� ¼ 0; hence Q� ¼ �U� from
Eq. (8). In this case the PDF of Q� would be symmetric
with respect to its (zero) mean value, as in Fig. 2(a), but
with Teff ¼ T0.
The PDF of the injected power P� is essentially identical

to that ofQ�, shown in Fig. 2(c), since P� � Q� when g �
1. Notice that of the two terms in Eq. (4), only �U� is
responsible for the negative values of P�. Thus, large
positive values of P� are dominated by the contribution
of the dissipated power [the integral in (4)] more than they
are for small values of P�. The transition between these
two regimes affects the shape of the PDF, which has been
calculated in Ref. [14]. In a limit of large integration times
it obeys

fð~��Þ 	 lim
�!1

lnPDFð~��Þ
�

¼
���ð1� 2~��Þ if ~�� 
 1

3� �
4~��

ð~�� � 1Þ2 if ~�� � 1
3 ;

(9)

where ~�� ¼ P�L=ðkBT0RÞ is the reduced injected power
and � ¼ ðRþ RdÞ=L ¼ 2=�eff . A remarkable singularity,
located at ~�� ¼ 1=3, is present in the second derivative

FIG. 2 (color online). PDF [units of s=ðkBTeffÞ] of (a) the time
averaged energy difference �U�, (b) the work W�, and (c) the
heat Q� averaged at increasing values of the ratio �=�eff . Data
were collected by AURIGA in a 10 day time span. The dashed
vertical line at 0:84 kBTeff=s corresponds to the mean value of
W�. The dotted lines are obtained by numerical simulation of
Eq. (3) for a 50 day time span. The discrepancies observed at
short � between experimental and numerical data are within the
uncertainty due to the experimental error in �eff .
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of fð~��Þ. In Fig. 3(a) we plot the quantity D2ð~��Þ 	
@2fð~��Þ=@~�2� evaluated from the output of AURIGA in
the time span May 2005–May 2008; here Teff ¼
ð22� 1Þ mK and �eff ¼ ð2:4� 0:2Þ s. A valley is clearly
visible in the experimental data, which we interpret as a
precursor of the asymptotic singularity. The agreement
with the asymptotic theory consistently improves as
�=�eff grows. This indicates that the asymptotic relation
of Eq. (9) holds even in the presence of a harmonic pinning
potential [14].

Equation (9) easily leads to the FR for the injected
power, i.e., to the ratio between the probability of positive

and negative fluctuations of ~��. If we define �ð~��Þ ¼
lim�!1 1

� ln
PDFð~��Þ
PDFð�~��Þ , we have

�ð~��Þ ¼
�
4�~��; if ~�� <

1
3 ;

�~��ð74 þ 3
2~��

� 1
4~�2�

Þ; if ~�� � 1
3 :

(10)

As shown in Fig. 3(b), positive values of ~�� are exponen-
tially more probable than negative ones. Two conflicting
features determine the details of the experimental curves:
the agreement with the asymptotic theory improves with
�=�eff , but the statistics blur at large values of ~�� since
negative events are rarer. For this reason a slope change is
clearly seen for small values of �=�eff where the precursor
of the singularity occurs as shown in Fig. 3(a), while it
becomes barely visible at longer integration times.

In conclusion, we demonstrate that the actively cooled
AURIGA detector is well described by the Langevin model
of Eq. (3), which led us to evaluate the power P� injected
by the stochastic thermal force, the work W� done on the
feedback, and the heat Q� exchanged with the thermal
bath. The statistics of P� are consistent with Eq. (9), and
with the consequent nonlinearity of the FR. The fluctua-
tions of Q� are asymmetric as expected for a NESS.
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FIG. 3 (color online). Comparison between theory (dashed
lines) and experimental data at increasing values of the ratio
�=�eff ¼ 1:2, 2.0, 2.9, 3.7: the data set is, respectively, 828, 768,
729, 457 days long. (a) Plot of second derivative D2ð~��Þ; the
experimental data of D2 for �=�eff ¼ 2:0 are not shown for
clarity. (b) Plot of �ð~��Þ. Vertical error bars on experimental
points of both plots come from statistical uncertainty. The
shaded areas on the theoretical curves represent the uncertainty
due to the experimental errors on the parameters, �eff , Teff ,
and T0.
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