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Abstract—A common belief in the scientific community is that
traffic classifiers based on Deep Packet Inspection (DPI) are far
more expensive in terms of computational complexity compared
to statistical classifiers. In this paper we counter this notion by
defining accurate models for a Deep Packet Inspection classifier
and a statistical one based on Support Vector Machines, and
by evaluating their actual processing costs through experimental
analysis. The results suggest that, contrary to the common belief,
a DPI classifier and an SVM-based one can have comparable
computational costs. Although much work is left to prove that
our results apply in more general cases, this preliminary analysis
is a first indication of how DPI classifiers might not be as
computationally complex, compared to other approaches, as we
previously thought.

I. INTRODUCTION

Traffic classification has been one of the hottest research
topics in recent years. With the decline in effectiveness of clas-
sifiers based on the examination of transport-layer ports, Deep
Packet Inspection (DPI) techniques have emerged. Although
these techniques are usually extremely precise (provided that
traffic is not tunneled or encrypted) and are able to recognize
a large number of different protocols, their biggest problem
is perhaps the common belief that payload-based methods are
extremely expensive in terms of CPU cycles and memory re-
quirements, while the recently developed statistical techniques
are thought to be less demanding [3]–[8]. However, despite
run-time performances are an essential aspect for evaluating
the capability of a classifier to process traffic in real-time even
in presence of high-speed links, no serious investigations have
been performed so far in this respect.

This paper aims at filling this gap by analyzing the com-
putational complexity of two traffic classifiers, a software
implementation of a DPI classifier and a statistical classifier
based on Support Vector Machines (SVM) [15]. We carry
out the analysis by modeling the two classification algorithms
under examination in functional blocks. Since a mathematical
comparison of the two models is not possible because they
are based on different parameters, we decided to evaluate the
computational cost of each block of our models by dissecting
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the code related to their implementation. Finally, we derive
the overall costs by measuring the frequency of execution of
each block by running each classifier on traffic traces captured
on real networks.

The results we present here are preliminary for two reasons.
On one hand, we do not analyze the cost in terms of memory
usage because this paper focuses on software-based implemen-
tations, where usually memory consumption is not an issue.
On the other hand, only one category of statistical classifiers is
analyzed (SVM-based), whereas a more thorough evaluation
would need to consider other, possibly less computationally
intensive ones (e.g., Naive Bayes).

Despite the above limitations, the results presented in this
paper are significant, because they show that in real-world,
usable implementations, DPIs and statistical classifiers can
indeed lead to comparable computational costs, which goes
against the belief most researchers in this area, ourselves
included, have held so far.

This paper is organized as follows. Section II is dedicated
to the related work, while Section III gives a brief introduction
about the selected classification methods. Section IV presents
the methodology used in the evaluation of the two classifiers,
while Section V illustrates the most important characteristics
of our implementation of the classifiers. Finally, Section VI
presents and analyzes the experimental results, while Sec-
tion VII concludes the paper.

II. RELATED WORK

The experimental evaluation of the complexity of traffic
classification algorithms is a relatively unexplored topic. A
first work [10] evaluates five machine learning algorithms,
based on Naive Bayes, C4.5, Bayesian Network and Naive
Bayes Tree. The comparison is performed on different clus-
tering algorithms but using the same information and the
same features extracted from the traffic. They measured the
computation time of the WEKA implementation [12] of these
algorithms, normalized to the fastest one; both the time of
building protocol models and classification speed are analyzed.

A recent work [11] evaluates the performance of different
statistical classifiers: host-behavior based [13] and various ses-



sion features based systems, using also in this case the WEKA
implementation for the latter. They show the performance of
the classifiers as function of the number of the training set
samples, both in terms of accuracy and classification time.
Both [11] and [13] use DPI to establish the ground truth of
the protocols for the traces used in their experimental analysis,
but its complexity is not evaluated.

Many other works have presented and analyzed statistical
classification mechanisms in the recent past, including [3]–[8].
In all cases, the assumption behind these works is that DPI is
too computationally complex to be used in real time systems;
hence it is utilized mostly for post-processing traffic traces
(off-line) to derive ground truth information.

III. TRAFFIC CLASSIFIERS UNDER EXAMINATION

This Section introduces the two classifiers under exami-
nation. The DPI classifier is based on regular expressions
and strictly follows our own previous work [2]. Fhe SVM
statistical classifier [9], [14] is based on a single class SVM
algoritm [16], which was chosen for several reasons. First
of all, SVM traffic classifiers are among the ones that have
better accuracy [11]. Furthermore, since SVMs represent the
fundamental block of many traffic classification techniques,
our results can be easily used to extend our analysis to other
SVM-based classifiers.

Although this paper focuses on computational costs, we
selected classifiers that have similar classification accuracy. In
fact, both classifiers have been validated in previous works [2],
[14], and resulted equivalent in terms of classification accuracy
with more than 90% of traffic (in bytes) correctly classified.

A. DPI classifier

A DPI classifier relies on the observation that each appli-
cation protocol uses specific headers to initiate and/or control
the information transfer, which can be described by a regular
expression (the signature). When a packet belonging to a ses-
sion not yet associated to an application protocol is delivered
to a DPI classifier, this compares the application data with
all the signatures associated to the set of supported protocols.
Once a suitable signature has been found, it associates the
packet (and the entire TCP/IP session) to the corresponding
application protocol and then the signature checking is skipped
for all the packets belonging to that session.

Although there are several types of DPI classifiers, the
most common categories are (i) packet based, per-flow state
(in short PBFS) which analyzes data on a packet-by-packet
basis, and (ii) message based, per-flow state (in short MBFS)
that analyzes application-level payload as a unique stream of
data, after TCP/IP normalization1. While PBFS coud appear
to be less precise, [1], [2] suggest that its results are roughly
equivalent to the ones returned by a more complex MBFS
classifier in the vast majority of cases, and hence it represents

1TCP/IP normalization is a common term used to include the set of
techniques that are able to cope with fragmented IP packets (returning the
original re-assembled IP datagram) and that are able to re-create the TCP
stream starting from individual TCP segments.

a better trade-off between accuracy and complexity. This paper
will focus on a PBFS classifier, although enriched with the
capability to analyze correlated sessions2 albeit still on a
packet-by-packet base.

B. SVM-based classifier

The SVM classifier considered in this paper requires a pre-
liminary training phase to build a statistical model for each of
the p protocols under examination. Each protocol is modeled
as Gaussian–like test function that is used to determine the
probability that a given observed session has been generated
by the protocol. Given an observed traffic session, the value of
the test function for protocol j is computed after the session
has been transformed into a vector in a dj-dimensional space,
x = (x1, x2, ...xdj

). Here xi represents the feature values
extracted from the i− th observed packet, excluding all those
packets that do not carry application–level payload. The test
value for protocol j is then computed as follows:

fj(x) =
s∑

n=1

αn N (x|ySV n, σ) (1)

where the number s of Gaussian terms N , their weights αn
and centers ySV n (i.e., the Support Vectors) and the standard
deviation σ, common to all terms, are determined during the
training phase by analyzing a reasonable (on the order of
hundreds) number of sessions generated by this protocol.

As dj depends on the protocol, the classification of an
observed session should be delayed until all the test functions
can be computed, i.e., when at least NSVM = max(dj),
(1 ≤ j ≤ p) packets carrying payload have been observed,
where this value is determined in the training phase and it
is usually on the order of four/five packets. In this case the
classifier computes the decision function for each of the p
protocols and assigns the observed session to the protocol
whose value fj(x) is largest, provided that it is above a
threshold calculated during the training phase. In case all
the test values are below the corresponding thresholds, the
observed session is declared unknown.

IV. MODELING THE CLASSIFIERS

This Section presents a model of the classifiers under exam-
ination, which is based on the operations that are performed
by each classifier when a packet has to be examined.

A. General behavior of traffic classifiers

Traditional traffic classifiers operate on sessions, i.e. a bi-
directional ordered sequence of packets exchanged between
two hosts and identified by the 5-tuple: end-point IP addresses,
transport-layer ports and transport protocol.

Each traffic classification algorithm can be divided into a
slow path and a fast path. The slow path identifies the portion
of the classifier that handles packets belonging to unknown

2Some protocols (e.g., FTP or SIP) define a control connection that is also
used to negotiate the network parameters of a following data transfer, which
will occur in a TCP/IP separate session. We usually refer to the latters as
“correlated sessions”.



sessions and uses an algorithm that is specific of each classifier
(e.g. regular expression matching for DPI). The slow path
relies on the result of the previous step to associate following
packets (belonging to same session) to the correct protocol
and it is equivalent in all the classifiers.

When a new session is classified, a new entry is created in a
data structure commonly named Session Table, which contains
the 5-tuple, the application-level protocol, and a timestamp
keeping the time of the last packet (belonging to that session)
as seen by the classifier. The fast path has mainly to update
the timestamp associated to the current flow in the session
table, which is used to delete inactive sessions from the above
table in case the session termination cannot be detected. This
is rather common especially in case of UDP flows; in this
case, a timeout of 10 minutes [23] is usually considered.

B. General cost model

In order to determine the computational cost of each clas-
sifier, we modelled each algorithm through decision blocks
(diamond-shaped in Figures 1 and 2), which are supposed to
be executed at no cost3, and processing blocks (rectangular
blocks) executed at a cost ci. The overall result is presented
in Figures 1 (DPI classifier) and 2 (SVM classifier).

The worst case cost cmax experienced by a packet entering
the classifier is represented by the cost of executing the entire
slow path4, which is determined once the costs of all the
composing blocks are known. In a general scenario, however,
the probability that all packets enter the slow path is very low
and therefore the average cost is a better indication of the
actual cost of each algorithm. In this respect, we introduce a
technique to determine the average cost per packet of each
classifier on a given network trace in order to compare their
computational efficiency on a particular traffic mix.

Given a packet at decision block j we first estimate the
transition probabilities towards the two out–paths, respectively
σj,i the probability of a transition to block i and 1 − σj,i to
the other. The transition probability σj,i is important because
it can be used to determine exactly which and how a path
(and each block within it) is executed. Since a packet can get
to block i through different paths (paths are all the possible
traversal of the graph from the beginning to the ending node),
the global probability to execute block i will be the sum of
the probabilities to reach the given block on all the possible
paths Q that include both nodes j and i:

pi =
Q∑
w=1

∏
j=1;j,i∈Qw

σj,i (2)

Given these hypothesis and being N the number of processing
blocks in each model, we define the average cost per packet

3Although this is formally incorrect, experimental measurements confirm
that the cost of the operations carried out in decision blocks is negligible
compared to the one of processing blocks. Further refinements of the model
are left to future work.

4The slow path is represented by the blocks that are aligned strictly below
the starting block.

c as:

c =
N∑
i=1

pi · ci (3)

Both pi and ci cannot be determined analytically as they
depend on other parameters: for instance different traffic mixes
can lead to very different values of pi. The computational
cost ci is even more difficult to capture because it depends
on some pre–calculated constants (e.g., the number of the
protocols we want to classify, the number of support vectors)
or on some data available only at run-time (e.g., the size of
the incoming packet, the number of packets already examined
in the session). All these parameters will be presented in
Section V and their values will be derived in Section VI based
on the observation of real traffic dynamics and by choosing
the appropriate running configuration for our classifiers.

The choice of building a model and then measuring its
parameters instead of measuring directly the performance of
each algorithm is due to two factors. First, this allows to
decompose the algorithms in their main functions, making
easier the comparison and finding the common parts. Second,
since the cost of the algorithms heavily depends on the traffic
mix (as shown in Section VI-D), the model provides a better
way to extend these results to different traffic traces either by
re-measuring the characterizing parameters, or by simulating
the results achievable with different values.

C. Modelling of the processing blocks

This Section presents an high-level view of the functions
performed by each block. Since some of the processing blocks
presented below change their cost depending on parameters
that are known only at run-time, in this simple model we
characterize their behavior with the worst-case processing cost.
This simplification has been evaluated experimentally and we
verified that the difference between the actual cost and the one
used for modelling is negligible.

The SessionID Extraction block (DPI, SVM) extracts the
SessionID parameters (i.e., IP addresses, transport-level pro-
tocol, port numbers) to be used for session lookup. This block
and the following are always executed when a new packet
enters in the system (i.e., pi = 1).

The Session lookup block (DPI, SVM) checks if the session
the packet belongs to is already present in the Session Table;
in this case it updates also the timestamp associated to the
current session.

The Correlated Session block (DPI) analyzes the session-
level payload and looks for data that may lead to the identifi-
cation of a correlated session. This block is executed only in
case the application-level protocol may originate correlated
sessions (e.g., SIP or FTP). In case the information about
a correlated session is found (e.g., the PORT or the PASV
commands of an FTP control session), it inserts the 5-tuple of
the new correlated session in the Session Table.

The Pattern matching block (DPI) implements the pattern
matching algorithm that looks for the presence of a signature
in the application payload. If a signature matches, the Session



Figure 1. Model of the DPI classifier.

Update block adds the new entry to the Session Table. This
block is executed on all the packets belonging to the current
session until a match is found or the session terminates.

The SVM decision block (SVM) implements the SVM
algorithm that returns the application-layer protocol according
to the values of the features extracted from the first packets
of the session. The features the classifier uses are the size
and the direction (from the originator to the called party or
vice versa) of the first payloads transmitted in a session. This
block evaluates p times Equation 15 and determines the correct
protocol (if any) by selecting the function that returned the
highest mark. This block is executed once per session when
enough packets (NSVM ) carrying application-level payload
have been seen. After emitting its verdict, SVM does not
inspect any following packet even if the protocol is unknown.

The Session Update block (DPI, SVM) has different be-
haviors in the two classifiers. The SVM classifier uses this
block to store the classification verdict for a session or, in
case the number of packets transmitted for a session is still not
sufficient (i.e., less than NSVM ), it is used to store the values
of the current observed features. Instead, the DPI classifier
executes this block only when the Pattern Matching block
returns a positive match, in which case it stores the outcome
of the classification in the Session Table.

D. Cost of the DPI classifier

The model of the DPI classifier includes 5 processing blocks
organized as shown in Figure 1. Its cost can be expressed by

5It is worthy remembering that p represents the number of protocols that
the classifier has been trained on.

Figure 2. Model of the SVM-based classifier.

the following Equation:

cDPI = cread + clookup + ppmatch · cpmatch + pupdate · cupdate + pcorr · ccorr (4)

The most expensive portion of the formula is represented
by cpmatch that returns the cost of the pattern matching block. Its
contribution is mitigated by the weight ppmatch that represents the
probability that a packet belonging to a unclassified flow is fed
into the classifier. Briefly, the average classification cost per
packet is inversely proportional to the length of the sessions
(because the term ppmatch tends to zero). Vice versa, the cost will
increase in presence of unclassifiable sessions (e.g. encrypted
sessions, which are not identifiable by a DPI classifier) because
in that case the ppmatch value will become closer to 1.

E. Cost of the statistical classifier
The model of the SVM classifier includes 4 processing

blocks organized as shown in Figure 2. Its cost can be
expressed by the following Equation:

cSTAT = cread + clookup + pSVM · cSVM + pupdate · cupdate (5)

The SVM Decision block is executed once per session,
when the classifier receives enough packets for identifying
the application protocol. As for the DPI case, the cost of this
classifier decreases when the average session length is high.
Note that for short sessions (i.e., sessions that have less than
NSVM packets with application-level payload) the classifier
never executes the SVM decision block.

V. IMPLEMENTATION OF THE CLASSIFIERS

This Section presents the implementation of our classifiers
and derives the cost of each block, which depends on the
characteristics of the model and the inputs provided.



The SessionID Extraction block has been implemented us-
ing the code generated by the NetVM framework [19], which
includes a Just-In-Time compiler that generates a protocol
parser in native assembly code for the x86 architecture.

The Session Lookup and Session Update blocks have been
implemented using the Hash map container of C++ Extended
STL library [18]. This guarantees a O(1) complexity in the
average usage, supposing that the hash function distributes
entries uniformly over the hash table. Under these assumptions
(which will be verified in Section VI through direct measure-
ments), the cost will be constant.

The implementation of the Correlated Sessions block
strictly depends on the header format of the protocols we are
considering. Since this block currently operates on text-based
protocol such as SIP and FTP, we implemented the C++ code
that locates the fields related to session correlation through
appropriate regular expressions. Due to the small number of
executions of this block and the limited difference in terms of
processing costs with respect to different protocols, we decided
to model the complexity of this block as O(1), corresponding
to the worst–case execution cost.

The most important block for the DPI classifier is the Pat-
tern matching one. We chose Deterministic Finite Automata
(DFA) because their cost has a linear dependence on the
number of input characters (which is bounded by the MTU
size in case of a PBFS classifier) and it does not depend
on the number of regular expressions. Its drawback is that
the automaton that represents the set of regular expressions
may require large amount of memory, depending on the
characteristics of the regular expressions.

As shown in Figure 3, the memory occupied by the DFA
increases linearly when the input patterns contains only (i)
anchored regexp (i.e., begins with the ‘ˆ’ sign), that identifies
the regular expressions whose pattern must be found at the
beginning of the payload (first region on the left). The slope
increases when we add also (ii) not anchored regexp not
containing the Kleen closure (i.e. the ‘*’ wildcard), in which
the regular expression can be found in any point of the input
data (second region). Finally, the memory tends to explode
when we add the second (iii) not anchored regexp containing
Kleen closure, due to the possible ambiguities in the input
pattern that force the addition of a large number of states for
matching all the possible cases. It is worthy noting that the
number of states explodes when at least two expressions of
type (iii) are merged together.

Althoug DFA state explosion has been widely investigated
and several solutions exist (e.g., [20]–[22]) we opted for the
simpler DFA after an analysis of our classification patterns,
which were based on the regular expressions defined in the
NetBee library [17]. Among these patterns, only two were
of type (iii), the first encapsulated in TCP while the other in
UDP. Since we created two different DFAs for TCP and UDP-
based protocols, we did not experience any memory explosion
and the total amount of memory used was about 3MBytes,
roughly split in half between TCP and UDP, which is a
reasonable value even for embedded implementations. While
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Figure 3. DFA memory occupation.

leaving further analysis in terms of memory requirements
for future work, this result confirms that our implementation
of the DPI algorithm is viable, considering that the pattern
matching block represents the larger contributor to the memory
requirements of the DPI.

The code for pattern matching has been generated using
Flex, a well known tool for generating lexical scanners, which
was able to create pure DFAs (without any state compression)
through the appropriate configuration. As stated by the theory,
the cost of this block is linearly proportional to the number
of the input characters read by the automata, according to the
following Equation:

cpmatch = k · S + u (6)

where S is the number of input characters, k is a linear
coefficient and u is a costant offset due to the initialization
of the DFA.

The SVM decision block computes Equation 1 for each
protocol j, which consists in a sum of dj-dimensional Gaus-
sians, each one centered in one of the sj Support Vectors.
The computational complexity of this block depends on the
parameters of the protocol models: the dimension dj (i.e, the
number of features), the number of Support Vectors sj (i.e.,
the number of Gaussians) and the overall number of protocols
under examination p. The values for dj and sj are specific of
the j-th protocol and are determined in the training phase.

To optimize the computational cost of the SVM test func-
tions, we decided to use a basic property of the multivariate
Gaussian joint density function that allows to factorize it as
a product of marginal densities. Given this premise, we pre-
computed only one marginal function for each protocol and
stored it in memory: this was possible as we have the same
standard deviation along all dimensions. During classification,
we multiply the dj values of each marginal of the sj Gaussians
and sum the sj achieved values. Therefore, for each session x
we execute the steps we show in Figure 4.

We associate the coefficients (a, b, c) to the operations in
Figure 4, which determine the computational cost for each



1: for j = 1 : p
2: for i = 1 : sj

3: for k = 1 : dj

4: a: read the value of the k-th
5: marginal of the i Gaussian
6: and multiply for previous
7: end
8: b: sum to values of the other
9: Guassians in the point x
10: end
11: c: find the max of the computed values
12: (i.e. the candidate protocol) that is
13: above the corresponding threshold
14: end

Figure 4. Sequence of steps to express of the verdict in the SVM classifier.

Table I
TRACES USED IN OUR EXPERIMENTS.

Data set Date and Duration Volume Packets
UNIBS April 2 and 4, 2008 36.6 + 35.7 GB 265M

5 + 6 hours 96.8% + 98.3% TCP 94.3% TCP
POLITO Dec. 20, 2007 419 GB 579M

12 hours 94.7 % TCP 92.3% TCP

dimension and for each Support Vector of the j-th protocol.
Using these coefficients we derive the computational cost for
the execution of this block as:

cSVM =
p∑
j=1

[(a · dj + b) · sj + c] . (7)

We compute the decision function value for each of the p
protocols in the point x in which the current session is located,
therefore the complexity of the block depends linearly on the
number of protocols under examination (i.e., on the number
of functions to be evaluated).

VI. EXPERIMENTAL ANALYSIS

This Section is dedicated to the experimental analysis of
our classifiers, which is based on a set of real traces used to
derive the parameters of our model. The overall result will
be an indication on the performance of the algorithms under
evaluation in a real deployment scenario.

A. Traffic traces

This paper exploits two traffic traces (whose main charac-
teristics are shown in Table I) that were collected through
the well-known tcpdump tool at the border routers of our
Universities, and are hence called UNIBS and POLITO data
sets. Due to the necessity to inspect the payload (for DPI),
we were unable to use public traces which maintain only a
portion of the application-level data for privacy reasons.

Traces, which include only TCP and UDP traffic, have
different traffic characteristics: while the POLITO data set
resembles traditional enterprise traffic (e.g., P2P applications
are limited), the UNIBS data set contains a large portion of
peer-to-peer traffic that is known to stress DPI classifiers due
to the use of hiding techniques.

After inspecting the traces, we decided to train the SVM
classifier to analyze only protocols responsible for the largest
share of traffic, primarily due to the necessity to have enough

Table II
PROTOCOLS ANALYZED BY THE SVM CLASSIFIER.

UNIBS (tcp) UNIBS (udp) POLITO (tcp) POLITO (udp)
bittorrent bittorrent bittorrent bittorrent
edonkey dns edonkey dns
http, msn edonkey http, msn edonkey

pop3, smtp skype pop3, smtp skype
ssl imap, smb

ssl, ssh

Table III
EXECUTION PROBABILITIES pi AND TRANSITION PROBABILITIES σj .

Execution freq. UNIBS-tcp UNIBS-udp POLITO-tcp POLITO-udp
SVM
pSVM 0.003 0.004 0.007 0.027
pupdate 0.030 0.196 0.054 0.310

σsession exists 0.99 0.90 0.98 0.86
σsession classified 0.94 0.89 0.81 0.79
σpayload 0.61 0.00 0.79 0.00
σfeatures 0.13 0.04 0.19 0.15

DPI
ppmatch 0.067 0.100 0.056 0.200
pcorr 17e-5 10e-5 41e-5 66e-6
pupdate 0.004 0.070 0.011 0.072
σsession 0.88 0.90 0.84 0.80
σcorr lookup 19e-5 11e-5 48e-5 82e-6
σpayload 0.44 0.00 0.65 0.00
σmatch 0.06 0.70 0.20 0.36
σcorr match 26e-5 90e-7 73e-5 23e-7

sessions for the training, while the DPI classifier was able to
recognize 48 different protocols. The training phase was done
using the first portion of each trace and used a DPI classifier
(in addition to manual inspection) to derive the application
protocol associated to each session and to build the SVM data.
Table II lists the protocols selected in our experiments: all of
them included at least 1000 sessions in the training data set.

B. Execution probability of each block

The execution probability pi can be easily derived from
the transition probability σj through Equation 2. As shown
in Table III, transition probabilities are fairly different in the
two traces due to the different traffic mix (e.g., the duration
of the sessions, the number of packets without application-
level payload, etc.). Particularly, the UNIBS data set is more
challenging for the DPI classifier since a fair amount of traffic
is encrypted and hence never classified, forcing several packets
to pass through the slow path anyway.

C. Computational time of each block

In this Section we evaluate the computational cost of each
basic block. Since the execution time of these blocks is rather
small, we counted clock ticks through the RDTSC assembly
instruction available on Pentium-compatible processors.

Measurements were done by profiling the worst-case exe-
cution path of each block, evaluated with real traffic. Mea-
surements were repeated 1M times and the average cost was
derived by discarding the top and bottom 10% results. In order



Table IV
COST OF EACH BASIC BLOCK IN CLOCK TICKS.

Block name UNIBS-tcp UNIBS-udp POLITO-tcp POLITO-udp
Sess. ID Extractor 78 78 78 78
Sess. Lookup/Upd. 49 49 49 49

Correl. Sessions 1850 1850 1850 1850
SVM Decision 26865 24176 42915 20979
Pattern Match 13308 1219 9051 2988

to mitigate the effects of context switching and cache filling,
measurements were executed with no other jobs running
on the machine apart from essentials system daemons. The
measurement platform was an Intel Dual Xeon 5160 at 3GHz,
4GB RAM and Ubuntu 8.04 32bit; the code under examination
was compiled with GCC v4.2.4 with -O3 optimization level
and always executed on the first core.

The SessionID Extractor block returned an average value of
78 clock ticks for parsing a single packet up to the transport
layer using our traffic traces.

Since both Session Lookup and Session Update are im-
plemented with the same piece of code, these blocks have
equal costs. Particularly, the cost has been simulated by
implementing a table up to 5M valid entries (although we
never exceeded 100K entries in our traces) and measuring the
ticks required to search and update a single random entry.
Results confirm that in practical cases this implementation
does not depend on the number of entries present in the
hash table, although in theory the worst–case depends on the
necessity to handle collisions on the same key. This means
that the hash function is well balanced and the hash table is
filled uniformly. The worst-case measured cost associated to
these blocks is 49 ticks.

The Correlated Sessions block has been evaluated by mea-
suring the cost of extracting the information about correlated
sessions in case of SIP and FTP (control) packets; although
their cost is slightly different, we took the worst-case cost
which is 1850 ticks.

The real distribution of the cost of the Pattern Matching
block is shown in Figure 5 (with respect to the POLITO traffic
trace) and the upper bound is described by Equation 6 with
parameters k = 12.5 and u = 472.7 (derived experimentally).
In fact, the actual cost is often smaller than the value predicted
by this function because of the large number of regular
expressions with the ‘ˆ’ anchor, which interrupt the exploration
of the DFA as soon as an accepting state is reached, thus
terminating the processing before the end of payload. The
worst–case cost for the pattern matching is 18650 ticks; values
in Table IV are referred to the cost in presence of the average
packet size, as derived from our traffic traces.

The cost of the SVM Decision Block depends on the output
of the training phase: given a protocol j we have a number
of Support Vectors sj and packets to evaluate dj , that are de-
termined from the characteristics of the training observations.
In order to derive the numbers presented in Table IV, we had
to to estimate the coefficients (a, b, c) present in Equation 7.
These coefficients are independent from the traces used and

Figure 5. Linear least squares fitting of the measures of the computational
costs of the pattern matching as function of the payload size S.

allow us to obtain the cost cSVM once sj , dj , p have been
determined in the training phase. In order to determine the
value of these three coefficients, we executed a sequence of
measures of the complexity cSVM with different values of sj ,
dj , p and obtained a set of linear functions of cSVM in one of
the parameters. Finally, we estimated the linear least squares
fitting of the achieved measurements and we obtained values
a = 4.3, b = 14.5 and c = 8.0 for the three coefficients.

Table IV summarizes the cost of each block with the run-
time parameters defined in our systems.

D. Overall computational time estimation

Using the Equations derived in Section IV, the transition
probabilities and the costs of the processing blocks measured
in this Section, we calculate the cost for classifying TCP
and UDP traffic with both classifiers; results are shown in
Figure 6. The worst case represents the cost of the slow path,
the best case refers to the fast path, while the average line
represents the total cost of processing our traces over the
number of packets. Results show that the average cost of the
two classifiers is similar, and the same holds for worst and
best cases.

Particularly, the DPI classifier performs worse on the
UNIBS trace in the average case because of the large percent-
age of (often encrypted) P2P traffic over TCP, which forces the
DPI classifier to analyze all packets of these sessions because
no matching signatures are found. However, even in this case
the cost of the DPI performances are comparable to SVM.
The computational complexity of the SVM-based classifier is
larger for the POLITO data set than UNIBS, mostly due to
the different number of protocols we use for the two data
sets (10 vs. 7 TCP-based protocols, plus 4 UDP-based ones
in both traces); however, the average case is comparable to
the cost of the DPI classifier (although higher than in UNIBS
traces). It is worty noting that these results are biased toward
SVM because of the different number of protocols supported



Figure 6. Overall computational time estimation for each packet estimated
for the two traffic traces.

by SVM (respectively 11 and 14) compared to DPI (48), as
shown in Section VI-A. Since the processing cost of SVM
is directly proportional to the number of protocols, increasing
this number in SVM could lead to different results that may
privilege the DPI.

As expected, the best case is the same for both classifiers,
while no much difference exists between TCP and UDP traffic.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented a preliminary analysis of the
computational complexity of a DPI-based classifier. The DPI
approach exhibits costs that are comparable to the ones of
an SVM-based classifier: depending on the traffic trace’s
composition (in terms of the types of protocols that are
present), the DPI classifier can be as much computationally
complex as the SVM-based one in the average, or can show a
complexity that goes as high as five times the one of the SVM
classifier (especially in case SVM recognizes a limited number
of protocols). In all cases, the differences are not as dramatic
as we previously thought, and warrant a reconsideration of
the type of usage that DPI techniques should have in traffic
classification.

Although interesting, our results are still preliminary, and
further work is required to generalize them. First of all, we
are working to include memory costs in the analysis, study-
ing how the trade-off between computational and memory
costs can affect the comparison between statistical and DPI
classifiers. Second, we are extending our analysis to other
statistical classifiers, such as the ones based on Naı̈ve-Bayes
approaches [7] and Gaussian Mixture Models [8]. Third,
although the two approaches compared in this paper show
similar overall accuracy [2], [14], further work is needed
to correlate precisely complexity and accuracy. Finally, the
analysis must be extended to other traffic traces and other
scenarios before the validity of our results can be generalized.
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