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We investigate when it is possible to introduce surface physical parameters characterizing the
nematic/substrate interface. The analysis is performed by solving the problem assuming that the
presence of the surface introduces a spatial variation, mainly localized close to the limiting surfaces,
of the bulk properties of the nematic �delocalized model�. The results of the calculation are
compared to the prediction of a model in which the presence of the surface is taken into account by
means of new physical parameters, localized to the surface �localized model�. We show that if the
viscous dissipative effects or the surface alignment effects are considered, the two models predict
the same relaxation times and the same threshold for the Freedericksz transition is obtained. From
these results we deduce that the localized models are equivalent to the delocalized ones. A
continuum description of the interfacial layer of nematic liquid crystals in contact with solid surface
in terms of surface properties is then correct, which makes the solution of this kind of problems
simpler. Also a softening of the elastic constants near the surfaces can be represented by a localized
surface energy term. © 2009 American Institute of Physics. �DOI: 10.1063/1.3126657�

I. INTRODUCTION

Nematic liquid crystals are anisotropic liquids formed by
molecules with anisotropic shapes such as rodlike or disklike
molecules. The intermolecular forces responsible for the
nematic order tend to orient the symmetry axes of the mol-
ecules along a common direction n. In the continuum de-
scription, a nematic liquid crystal is characterized by a vol-
ume �bulk� energy density connected to the elastic properties
of the medium and to the anisotropic interaction of the me-
dium with the external fields, commonly electric, and mag-
netic fields. The bulk contribution to the free energy density
is well known, and it is characterized by the elastic con-
stants, introduced by Oseen and Frank, and by the anisotropy
of the bulk values of the dielectric and diamagnetic
constants.1 The actual nematic orientation, in the case in
which the limiting surfaces imposes the nematic orientation,
is obtained by means of a variational calculation.2,3 This case
corresponds to the strong anchoring situation. Very often, the
interaction of the nematic liquid crystal with the aligning
layer is comparable with the volume deformation energy of
the nematic liquid crystal. This case, which is important for
technological applications, is known as weak anchoring case.
In this situation, the surface orientation of the nematic direc-
tor depends on the bulk deformation imposed by means of
external field. In the dynamical situation, dissipative effects
related to the presence of the limiting surfaces are expected.
To describe the aligning effect of the substrate on the nem-
atic liquid crystal the concepts of anchoring energy strength
and of easy axis have been introduced, by assuming that the
surface potential due to the substrate is short range.4 A simi-

lar procedure has been used for the surface viscosity, intro-
duced to take into account the dissipative effects related to
the presence of the limiting surfaces.5 A simple inspection of
the problem under consideration indicates that the surface
properties are related to properties of the bulk, but confined
to surface layers whose thicknesses are negligible compared
to the thickness of the sample. The surface parameters as-
sumed to describe the physics of the interface are, actually,
integrals of the bulk properties in the surface layers. How-
ever, as it is well known, the use of localized properties
usually simplifies the mathematics of the problem, but in
some cases can give rise to absurd results. The aim of our
paper is to investigate when it is possible to introduce sur-
face parameters to describe interface effects, and when it
gives rise to ill-posed problems.

In our analysis we consider the case in which the bulk
viscosity changes close to the limiting surfaces. We will
solve first the thin boundary layer case, which we denote the
“delocalized model,”6,7 and then the “localized” case in
which the surface viscosity is considered as a property of the
geometrical surface. The same type of analysis is performed
for the surface potential, responsible for the anchoring en-
ergy, and for the spatial variation of the elastic constant. The
introduction of surface viscosity means that system is al-
lowed to spend a finite time to adjust to rapid changes of the
surface torque. In that way we might avoid some mathemati-
cal difficulties that occur when the surface viscosity is as-
sumed to be exactly zero, which would imply an infinitely
fast adjustment of the surface conditions to a change in
torque. The same mathematical difficulties might occur in
problems related to the heat conduction with generalized
boundary conditions, known as Robin’s boundarya�Electronic mail: giovanni.barbero@polito.it.
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conditions,8 and also the introduction of the corresponding
term might allow a soft relaxation in the case of rapidly
changing conditions. We show, furthermore, that the intro-
duction of the localized surface energy is a useful concept
that does not give rise to any mathematical problem, and
allows a simple description of the influence of a limiting
surface on the nematic liquid crystals. Also a softening of the
elastic constants near the surfaces might be represented by a
localized surface energy term.

II. SURFACE VISCOSITY

A. Delocalized model for the surface viscosity

We consider a sample in the shape of a slab of thickness
d. The Cartesian reference frame used for the description has
the z-axis perpendicular to the limiting surfaces, located at
z= �d /2. We indicate by k the elastic constant of the liquid
crystal, in the one-constant approximation, and assume that
the rotational viscosity of the nematic liquid crystal, �, is
position dependent �=��z�. The surface treatment of the
limiting surfaces is assumed to be such to induce homeotro-
pic alignment, with identical anchoring energies on the two
limiting surfaces.4 The angle formed by n with the z-axis is
indicated by �. In the bulk, ��z� takes the value �b, coincid-
ing with the bulk rotational viscosity of the liquid crystal.
Close to the border, the dissipation phenomenon could be
associated to a different value of the viscosity, and ��z� may
differ from �b.6,7 We assume that the nematic orientation
induced by the surface treatment is affected by an external
field. We are interested in the relaxation of the initial defor-
mation, described by the function ��z�, when the external
field is removed. In our framework �=��z , t�, such that
��z ,0�=��z�. The bulk differential equation stating that the
elastic torque is balanced by the viscous torque is as
follows:9,10

k
�2�

�z2 = ��z�
��

�t
, �1�

that has to be solved with the boundary conditions

�k� ��

�z
�

z=�d/2
+ w���d/2,t� = 0. �2�

Equation �2� is valid in the case where the anchoring energy
is sufficiently strong, in such a manner that the tilt angle at
the surface is small, and sin�2��−d /2���2��−d /2�.4 In the
bulk ��z� can be arbitrary large. We set ��z�=�bg�z�, where
g�z� is a dimensionless function describing the z-variation of
the viscosity, introduce the diffusion time defined by �diff

=�bd2 / �4k�, and use the reduced coordinates �=2z /d and �
= t /�diff, in terms of which Eq. �1� and the boundary condi-
tion �2� read

�2�

��2 = g���
��

��
, �3�

and

�� ��

��
�

�=�1
+ u���1� = 0, �4�

where u=d / �2L� and L=k /w is the extrapolation length. In
the following we consider the particular case where

g�z� = 1 +
�s − �b

�b

cosh�z/��
cosh�d/�2���

. �5�

In Eq. �5� � is a mesoscopic length, indicating the penetra-
tion of the surface forces responsible for the surface viscos-
ity. The function g�z� defined by means of Eq. �5� represents
the mathematical description of a typical property of the me-
dium localized on the mesoscopic length scale �. Similar
choice will be used in the following to model the surface
forces or the spatial variation of the elastic constant. The
same type of analysis presented in our paper could be done
by considering a piecewise continuous function. However, in
this case, it should be necessary to impose the continuity of
the torques at the interfaces separating the layers where the
physical properties have different values, and to solve differ-
ent bulk equations in the different layers. In order to avoid
these type of problems we mimic the presence of the limiting
surfaces by means of the continuous function g�z� introduced
in Eq. �5�, describing the surface variation of a physical
properties close to the geometrical surface.

In our analysis the function g�z� will be written in terms
of the reduced coordinate � as

g��� = 1 + h cosh�p�� , �6�

where h=q /cosh p, q= ��s−�b� /�b, and p=d / �2��. The pa-
rameter p is very large with respect to 1 since the penetration
length � of the surface forces is mesoscopic. To solve Eq. �3�
with the boundary condition �4� we proceed in the standard
manner.11 We set ��� ,��=Z���T��� and rewrite Eq. �3� in the
form

1

Z

d2Z

d�2 = g���
1

T

dT

d�
, �7�

from which it follows that

1

g���� 1

Z

d2Z

d�2	 =
1

T

dT

d�
= − a2, �8�

where a is a separation constant. Since we are analyzing a
relaxation toward �=0, we assume a real. From Eq. �8� it
follows that

T��� = A exp�− a2�� , �9�

and that Z��� is solution of the ordinary differential equation

d2Z

d�2 + a2g���Z��� = 0, �10�

where g��� is defined in Eq. �6�. Equation �10� has to be
solved with the boundary condition related to Eq. �4� that are

��dZ

d�
�

�=�1
+ uZ��1� = 0. �11�

The solution set is spanned by functions of the type
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Z��;a� = M�− 4�a/p�2, 2h�a/p�2, i
p�

2
� . �12�

In Eq. �12� M is an odd or even Mathieu function, in a
notation where the arguments agree with those used in MATH-

EMATICA. We are interested in obtaining numerical solutions
to the differential equation, since that would make possible
to compare with experimental data. MATHEMATICA �version
6� is, in principle, able to return numerical values for this
function, but is unstable in the range of parameters that we
have tested. With p=3000, q=2000, the parameter h be-
comes 5.23�10−1300, representing the surface layer contri-
bution to the viscosity in the middle of the sample. The so-
lution is sensitive to the precise value of this parameter.
However, the differential equation as such is quite robust and
can be solved in a numerical stable way. Since the homog-
enous differential equation and the boundary conditions are
symmetric under an inversion of the � axis, we should be
able to write the solution as a sum of even and odd functions.
By substituting the function Z�� ;a�=Ca	�� ,a� into the
boundary conditions, we get that a solution different from the
trivial one is possible only when a is a solution of the equa-
tion


D�a� =
d	

d�
+ u	��;a� = 0, �13�

at �=1. To obtain the even solutions we specify 	=1 and
d	 /d�=0 for �=0, and to obtain the odd ones we might
specify 	=0 and d	 /d�=1 for �=0. We have concentrated
on looking at the even solutions, since the odd should behave
similarly. We have then a “shooting problem” where the pa-
rameter a should be chosen in such a way that the boundary
condition �11� is satisfied at �=1. The boundary condition for
�=−1 will then be fulfilled automatically. In Fig. 1 we show
the graphical solution of Eq. �13� for a few values of the
parameters h, p, and u. Equation �13� has an infinite number
of solutions, which we indicate by an. Since the equations of

the problem under consideration are linear, the solution we
are looking for is

���,�� = 

n=0

�

Cn	��;an�exp�− an
2�� . �14�

The coefficients Cn are determined by imposing the initial
condition ��� ,�=0�=����.

There are some questions that remain to be answered.
What happens if we have prepared the initial condition ����
in such a way that Eq. �4� does not seem to be fulfilled at t
=0? That should be the most common case if we have not
paid special attention to balance the initial function and its
derivative, if we assume a continuous derivative in the whole
closed interval −1���1. We could also arrive at such a
situation if there had been a rapid change in the boundary
conditions. The most easy and common answer is that such
an initial condition is not allowed, e.g., if we try to solve the
differential equation Eq. �3� by the NDSOLVE command in
MATHEMATICA, using Eq. �4� as boundary condition, we will
obtain a warning: “Warning: Boundary and initial conditions
are inconsistent,” and the solution we obtain will be one
where one of the conditions is ignored.12 We will here pursue
another approach. We observe that the conclusion here about
inconsistency is based on the assumption of continuity of the
derivative d� /d� at the border, and note that we might in-
terpret Eq. �4� in a different way. The equation is not a re-
quirement to put on the initial condition, restricting the num-
ber set of allowed initial conditions. Equation �4� instead
tells us that there is an infinitely fast decay mode, which
forces the � derivative of ��� ,�� at the border to take the
value prescribed by Eq. �4� when we take the limit �→0
from the positive side. If we let this value be solely set by the
boundary condition, we will remove the inconsistency. One
way to achieve this is to subtract from the initial condition
the sum of the functions D−1��+1�exp�−��+1� /�0� and
D1��−1�exp���−1� /�0�, where �0 is a mesoscopic length,
choosing the constants D−1 and D1 in such a way that the
boundary conditions Eq. �4� are fulfilled for a continuous
derivative. In the limit of �0→0, the function ���� is not
changed, but the end point derivatives are modified. This is
also a way to force NDSOLVE to return adequate solutions. We
should thus modify Eq. �14� for �=0 to read

���� = 

n=0

�

Cn	��;an� + D1 lim
�0→0

��� + 1�exp�− �� + 1�/�0�

+ �� − 1�exp��� − 1�/�0�� . �15�

B. Localized model for the surface viscosity

In the pioneering work of Derzhanskii and Petrov5 the
surface viscosity was assumed to be a surface property, not
penetrating into the bulk, as discussed in Sec. II A. The same
idea was used more recently to investigate the role of a sur-
face dissipative layer on the dynamics relaxation of an im-
posed deformation in nematic cells by Refs. 13–19. Accord-
ing to the proposal of Ref. 5 the temporal evolution we are
considering is described by the diffusion equation in the
bulk, related to the bulk rotational viscosity �b,

FIG. 1. �Color online� The eigenvalues defining the relaxation times for a
nematic liquid crystal cell are the solutions of the characteristic equation

�a�=0. The continuous curve 
C�a� corresponds to the case where the
surface viscosity is localized to the surface, and across the sample the bulk
rotational viscosity of the nematic is position independent, as proposed in
Ref. 5. The dotted and dashed curves 
D�a� correspond to the case in which
the surface viscosity is taken into account by means of a spatial variation of
the bulk viscosity near the limiting surface, as proposed in Ref. 7. The
curves are drawn for p=30 �dotted-dashed�, p=300 �dotted�, and p=3000
�dashed� with u=d / �2L�=20, p=d / �2��, and q= ��s−�b� /�b=2p /3, where
L is the extrapolation length and � is the penetration of the surface forces
responsible for the new dissipation phenomenon close to the surface.
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k
�2�

�z2 = �b
��

�t
, �16�

that has to be solved with the boundary conditions,

�k� ��

�z
�

z=�d/2
+ w���d/2,t� + � ��

�t
�

z=�d/2
= 0, �17�

where  is a parameter describing the dissipation phenomena
taking place at the surface. An equation of type �16� with the
boundary conditions �17� was recently discussed by Favini
et al.8 Virga and co-workers6,7 argued that this approach to
the surface viscosity is not correct because the presence of
the time derivative, of the same order, of the tilt angle at the
surface and in the bulk can give rise to problems of compat-
ibility. We argue below that there is no compatibility problem
in this case since the relevant equation does not need to be
valid for the initial condition. As it will be shown in this
section, Eq. �16� with the boundary condition �17� gives rise
to the similar relaxation times that it is possible to deduce by
means of the approach described in Sec. II A. From this re-
sult we conclude that the use of the concept of localized
surface viscosity allows a simple description of the dynami-
cal relaxation of deformations in nematic cells when the dis-
torting fields are modified. Furthermore, it can be success-
fully used to interpret experimental data, where only the
relaxation times are experimentally accessible. Parameter 
can be related to �s and �b introduced above in the following
manner. Let us assume that the sample is unbounded, and
use, for the moment, a z-axis having the origin on the sur-
face. The parameter  has to take into account the spatial
variation of the viscosity due to the presence of the surface.
We set

 = 
0

�

���z� − �b�dz . �18�

By assuming, in analogy with Eq. �6� for our half-space
approximation, ��z�=�b+ ��s−�b�exp�−z /�� and using
Eq. �18� we obtain

 = ��s − �b�� . �19�

This result shows that in the limit of �→0, �s−�b→�, as
expected. To solve the problem in the present case of local-
ized surface viscosity, we introduce again the reduced coor-
dinates � and �, and rewrite Eqs. �16� and �17� in the form

�2�

��2 =
��

��
, �20�

and

�� ��

��
�

�=�1
+ u���1,�� + v� ��

��
�

�=�1
= 0. �21�

In the boundary conditions �21� we have introduced the pa-
rameter v=2 / ��bd�=q / p, if the relation defining  and the
definitions of p and q introduced above are taken into ac-
count.

From Eqs. �20� and �21�, and assuming that Eq. �20� also
should be valid at the boundary, we get that the initial defor-
mation ��z� has to satisfy the compatibility condition

��d�

d�
�

�=�1
+ u���1� + v�d2�

d�2 �
�=�1

= 0, �22�

that, in general, cannot be satisfied for the presence of the
last term.20 This looks like a Wentzell boundary condition.8

However, this boundary condition is not the primary one. It
is just a derived condition, not valid under all circumstances,
and we cannot in general assume that Eq. �20� is valid at the
initial time t=0, e.g., in an applied field we will have an
additional electric field term, and if the electric field vanishes
in a discontinuous way at t=0, Eq. �20� and consequently
also Eq. �22� will be invalid just at that moment. Further, to
obtain incompatibility here we have to require continuity of
the second order derivative of the initial function ���� at the
boundary. Instead, we should expect this second order de-
rivative to be discontinuous when there is a discontinuity in
the applied field. The value of the second order derivative
will not influence the time evolution and is not needed when
solving the differential equation. In contrast to the delocal-
ized case, we might thus in the localized case allow a con-
tinuous first order derivative of ���� in the closed interval
−1���1.

By proceeding as in the previous case we obtain for �
�0,

���,�;a� = Ca cos�a��exp�− a2�� . �23�

By substituting Eq. �23� into the boundary condition �21� we
get that a solution different from the trivial one exists only if
a is solution of the equation


C�a� = a sin a − �u − a2v�cos a = 0. �24�

This equation has an infinite number of solutions, am. When
these have been determined, the eigenfunctions of the prob-
lem are given by Eq. �23�. The solution of the problem, for
the linearity of the equations, is

���,�� = 

m=0

�

Cm cos�am��exp�− am
2 �� . �25�

As in the previous case the coefficients of the linear combi-
nation Cm are deduced by the initial boundary condition

���,� = 0+� = ���� , �26�

where the equality does not need to be valid for the second
derivatives at the ends of the � interval.

Our aim is to show that the description of the dynamical
evolution of the nematic profile given by means of the use of
the concept of surface viscosity and in terms of the delocal-
ized model for the viscosity, are in good agreement.

In Fig. 1 we show the graphical solution of Eq. �24� and
we compare the solutions with the ones relevant to Eq. �13�,
concerning the case where the surface viscosity is delocal-
ized. As it is evident from the quoted figure, the eigenvalues
are practically coinciding in the case of large q and p, where
the use of a localized surface viscosity  is meaningful. As it
is evident form the analysis reported above, the use of the
localized surface viscosity  simplifies the calculation by
reducing the number of constants required, and allows
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capturing the most important points of the physical phenom-
enon, without introducing problems of compatibility. More
detailed surface studies, such as for instance total internal
reflection, might of course require a more detailed model.

We might compare the eigenfunctions 	�� ;am� in the
delocalized case to the eigenfunctions cos�am�� in the local-
ized case to understand how they differ. Let us keep v
=q / p constant, and check with different values of p. With
p=30, 300, 3000, and � and v=2 /3 there is no visible dif-
ference in a graph of the first eigenfunction �corresponding
to m=0�. However, if we look at the derivative with respect
to �, we see small spikes in the boundary regions near �

= �1, sharper for higher values of p, but vanishing in the
localized case p=�. The derivative in the spike varies from
one finite value inside the boundary layer to another, some-
what higher, finite value at the border. The second eigenfunc-
tions �m=1� behaves similarly, with the difference that the
case p=30 deviates visibly from the rest. A graph of the
derivative of the second eigenfunctions is illustrative for the
spike behavior, see Fig. 2.

C. Orthogonality of the set of eigenfunctions
for the problem of the surface viscosity

In the case where the surface viscosity is described by
means of a delocalized model, the fundamental equation of
the problem is Eq. �3�, which has to be solved with the
boundary condition �4�. Using the separation of variables, we
get that the spatial part of the solution we are looking for
satisfies Eq. �10� with the boundary condition �11�. This is
the classical problem of Sturm–Liouville.21 A standard cal-
culation shows that the eigenfunctions of the problem are
orthogonal with respect to the weight function g��� in the
interval −1���1. Let us now consider two eigenfunctions,
Zn and Zm, associated to the eigenvalues an and am, respec-
tively, which are solutions of the differential equations

d2Zn

d�2 + an
2g���Zn = 0,

�27�
d2Zm

d�2 + am
2 g���Zm = 0.

Multiplying the first equation by Zm and the second by Zn

and subtracting the second from the first we get

Zm
d2Zn

d�2 − Zn
d2Zm

d�2 + �an
2 − am

2 �g���ZnZm = 0, �28�

that can be rewritten as

d

d�
�Zm

dZn

d�
− Zn

dZm

d�
� + �an

2 − am
2 �g���ZnZm = 0. �29�

By integrating Eq. �29� over � on the interval −1���1, we
obtain

�Zm
dZn

d�
− Zn

dZm

d�
�

−1

1

+ �an
2 − am

2 �
−1

1

g���Zn���Zm���d� = 0.

�30�

A simple calculation, taking into account the properties of
symmetry of the eigenfunctions and the boundary condition
�11�, shows that

�Zm
dZn

d�
− Zn

dZm

d�
�

−1

1

= 0. �31�

Consequently,

�an
2 − am

2 �
−1

1

g���Zn���Zm���d� = 0. �32�

Since we assumed n�m, from Eq. �32� we get


−1

1

g���Zn���Zm���d� = 0, �33�

i.e., the eigenfunctions Zn��� form a set of orthogonal func-
tions, with respect to the weight function g���. In the special
case where �s=�b, and hence g���=1, that corresponds to
the case in which the bulk viscosity is position independent,
from Eq. �33� it follows that


−1

1

Zn���Zm���d� = 0. �34�

In the general case, we might associate a scalar product to
our delocalized model

�f1, f2� = 
−1

1

g���f1���f2���d� . �35�

This can only be considered as a scalar product if we asso-
ciate it with a linear space of equivalence classes, where two
functions are equivalent when the corresponding norm of the
difference in the two functions are zero. Thus the initial con-
dition ���� and the modification where we have modified the
end derivatives will be contained in the same equivalence
class. In our even case we might add one dimension to our
linear space and modify the scalar product to put these func-

FIG. 2. �Color online� The eigenfunctions for the delocalized case for high
values of p are very similar to those in the localized case, and to see visible
difference one should look at the derivative. Here the derivative of the
second eigenfunction is shown for the cases p=30 �dotted-dashed�, 300
�dotted�, 3000 �dashed�, and � �localized case, continuous curve� and v
=q / p=2 /3. The spike behavior in the boundary region with enhanced vis-
cosity is typical for the derivatives of the eigenfunctions in the delocalized
case, but the spikes vary in size.
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tions in separate equivalence classes. If we want to do that,
we could add the following term to the scalar product �35�,

�� � f1

��
�

�=1
+ uf1�1��

· �� � f2

��
�

�=1
+ uf2�1�� + �− � � f1

��
�

�=−1
+ uf1�− 1��

· �− � � f2

��
�

�=−1
+ uf2�− 1�� . �36�

Let us consider now the case in which the surface viscosity is
a localized surface quantity. In this framework the funda-
mental equation of the problem is Eq. �20� that has to be
solved with the boundary conditions �21�. By operating as in
the previous case by means of the separation of the variables,
we get for the bulk equation

d2Z

d�2 + a2Z = 0, �37�

and for the boundary condition

−
dZ

d�
+ �u − va2�Z = 0, �38�

respectively. The present problem is a Sturm–Liouville prob-
lem with boundary conditions depending quadratically on the
eigenvalue.22,23 Let us consider, as in the previous case de-
voted to the delocalized surface viscosity, two eigenfunc-
tions, Zn and Zm, associated to the eigenvalues an and am.
Operating as before we get

�Zm
dZn

d�
− Zn

dZm

d�
�

−1

1

+ �an
2 − am

2 �
−1

1

Zn���Zm���d� = 0,

�39�

where now, taking into account Eq. �38�,

�Zm
dZn

d�
− Zn

dZm

d�
�

−1

1

= 2v�an
2 − am

2 �Zn�1�Zm�1� . �40�

It follows that in the present case instead of Eq. �32� we have

�an
2 − am

2 ��2vZn�1�Zm�1� + 
−1

1

Zn���Zm���d�	 = 0, �41�

from which we have, in the considered case of n�m,

2vZn�1�Zm�1� + 
−1

1

Zn���Zm���d� = 0. �42�

In this case the eigenfunctions are no longer orthogonal for
v�0 with respect to the weight function 1. However, they
are orthogonal with respect to the weight function

G��� = 1 + v���� + 1� + ��� − 1�� , �43�

where � is Dirac’s function. We observe that the function
g defined by Eq. �6� can be written as g���=1
+vp�cosh�p�� /cosh p� that in the limit of �→0, which
implies p→�, reduces to Eq. �43�.

By taking into account that Zn���=cos�an�� and Zm���
=cos�am�� from Eq. �42� we obtain

v +
an tan an − am tan am

an
2 − am

2 = 0. �44�

This relation is, obviously, verified by our eigenvalue
Eq. �24�. In fact, from Eq. �24� written for the eigenvalues
relevant to the integers n and m we have

an sin an − �u − an
2v�cos an = 0,

�45�
am sin am − �u − am

2 v�cos am = 0,

from which, with simple calculations, we reobtain Eq. �43�.
To show that by means of the series expansion �25� we

can satisfy the initial boundary condition ��� ,0�=����, let
us consider the particular case where the initial distortion is
induced by an electric field, E, at an angle �E with respect to
the z-axis on a liquid crystal with positive dielectric aniso-
tropy �a=�� −��, where � and � refer to the nematic direc-
tor. We assume, for simplicity, that �E is small, in such a
manner that sin �E��E. In this framework, the initial pro-
file ���� is solution of the bulk differential equation

d2�

d�2 + E2����� − �E� = 0, �46�

where E= �� /2��E /E0�, and E0= �� /d��k /�a is the critical
field for the Freedericksz transition.1 For the static solution,
independent of the viscosity distribution, the tilt angle ����
has to satisfy the boundary condition

−
d�

d�
+ u� = 0, �47�

at �=−1. The solution of Eq. �46� with the boundary condi-
tion �47� is

���� = �E�1 − u
cosh�E��

E sinh E + u cosh E	 . �48�

We might also compare the convergence rate of the delocal-
ized and localized case by looking at the difference between
the initial profile ���� and the approximation to order N. By
taking the scalar product of this difference with itself, using
the relevant scalar product with weight function g��� or G���,
we see that in this case the expansion in terms of the eigen-
functions for the localized case gives much better conver-
gence, see Fig. 3. The reason for this better convergence is
the absence of spikes in the boundary layer in the localized

FIG. 3. �Color online� The quadratic deviation of the expansion of the initial
condition as a function of the number of terms in the delocalized case for
p=30 �dotted-dashed�, 300 �dotted�, 3000 �dashed� and in the localized case
p=� �continuous curve�, measured by the relevant scalar product for each
case.
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case, spikes do not have any correspondence in our initial
condition that was chosen as the static solution in an applied
field. Thus, if we have no special information about the
thickness of the viscous surface layer, we might simplify the
calculations by doing calculations along the localized
scheme, and thereby we are reducing the experimental
parameters connected to the surface viscosity layer from two
�� and �s� to one ��. The differential equations also become
simpler to solve since we transform infinite fast decay modes
at the boundary for the delocalized case into finite speed
decay modes in the localized case, in practice allowing a
wider range of initial-value and boundary condition combi-
nations.

The problem discussed above relevant to the localized
surface viscosity is known in the theory of differential equa-
tions as boundary problem with dynamic boundary
conditions.8,24–26 Our recipe for the solution of the problem
related to the compatibility condition for the initial value can
be used also for the analysis of evolution equations with
boundary condition involving the spatial derivative in the
boundary conditions.

III. ANCHORING ENERGY

A. Delocalized anchoring energy

Let us consider a nematic cell in the shape of a slab, as
the one discussed in Sec. II A. We assume that the liquid
crystal sample is oriented in the planar geometry by the sub-
strate surfaces. The surface forces, responsible for the align-
ment are short range, with respect to the thickness of the
sample. The relevant anisotropic energy is assumed to be of
the type

fs = − 1
2U�z�cos2 � , �49�

where � is the angle formed by the nematic director with the
x-axis, parallel to the limiting surface �the angle � used in
the previous sections is �=� /2−��. The potential energy
U�z� is supposed to be localized close to the limiting sur-
faces, over a surface layer of thickness ��d.27 In analogy
with the delocalized viscosity, the potential energy U�z� is
assumed to be of the form

U�z� = U0
cosh�z/��

cosh�d/�2���
, �50�

where U0 and � are related to the surface interaction, and
hence depend on the substrate surface and on the liquid
crystal.28 Expression �49� is a generalization of the surface
energy proposed by Rapini and Papoular.4 Our aim now is to
evaluate the threshold field for the transition of Freedericksz.
In the one-constant approximation the bulk energy density
for our sample, in the presence of an external field perpen-
dicular to the limiting surfaces, is

f��,
d�

dz
� =

1

2
k�d�

dz
�2

−
1

2
�aE2 sin2 � −

1

2
U�z�cos2 � ,

�51�

where �a is the dielectric anisotropy of the liquid crystal,
assumed positive in the following. The total energy, per unit
surface, is

F = 
−d/2

d/2

f��,
d�

dz
�dz . �52�

The actual � profile is the one minimizing F given by
Eq. �52�. Simple calculations give3 for the bulk equation

k
d2�

dz2 +
1

2
�aE2�1 −

U�z�
�aE2	sin�2�� = 0, �53�

and

d�

dz
= 0, �54�

at z= �d /2. The boundary condition �54� is the transversal-
ity condition for the functional �52�. To evaluate the thresh-
old field, we limit our analysis to the case of small �, where
Eq. �53� can be linearized. Using the reduced coordinated �
=2z /d we rewrite Eq. �53� in the form

d2�

d�2 + E2�1 − � cosh�p���� = 0, �55�

where

p =
d

2�
, E =

�

2

E

E0
, � =

c

E2 , c =
U0d2

4k cosh p
, �56�

and E0= �� /d��k /�a is the critical field introduced in Sec.
II C. As in the previous case of the surface viscosity  and
�s, the localized anchoring energy, in the Rapini–Papoular’s
model, is related to U�z� by the condition

w = 
0

�

U�z�dz , �57�

in the half-space case. In the exponential approximation from
Eq. �50� we get w=U0�. Taking into account this result,
parameter c introduced in Eq. �56� can be rewritten as c
=up /cosh p, where u=d / �2L�, as before. The symmetric so-
lution of Eq. �55� is the real part of Mathieu’s function even
in �, as discussed above. The eigenvalues are the solutions of

�D�E� = �d	��;E�
d�

	
�=−1

= 0, �58�

obtained by the transversality condition �54�. We are inter-
ested in the smallest solution of Eq. �58� since it is defining
the threshold field.

B. Localized anchoring energy

In the case in which the surface potential is so localized
that the concept of anchoring energy can be used, the bulk
energy density of the sample is
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f0��,
d�

dz
� =

1

2
k�d�

dz
�2

−
1

2
�aE2 sin2 � , �59�

instead of the one given by Eq. �51�, and the total energy per
unit surface, is

F0 = 
−d/2

d/2

f0��,
d�

dz
�dz +

1

2
w cos2 ��− d/2�

+
1

2
w cos2 ��d/2� , �60�

where the last two terms are due to the localized surface
energy, in the Rapini–Papoular approximation. By minimiz-
ing F0 we get that in the present case � is solution of the
differential equation

d2�

d�2 + E2� = 0, �61�

and has to satisfy the boundary condition

−
d�

d�
+ u� = 0, �62�

at �=−1. Equations �61� and �62� are valid in the limit of
small deformations, where ��1, and are written using the
reduced coordinate �=2z /d, and dimensionless quantities
u=d / �2L� and E= �� /2��E /E0�, as before. Solution of
Eq. �61�, even in �, is ����=B cos�E��. The threshold voltage
is deduced by means of the boundary condition Eq. �62�.
Simple calculations give for the eigenvalues equation

�C�E� = − E sin E + u cos E = 0, �63�

which coincides with Rapini–Papoular’s equation.
In Fig. 4 we show the graphical solution of Eq. �58�

relevant to the delocalized surface potential �broken lines�
and of Eq. �63� valid in the case of localized anchoring en-
ergy �continuous line�. As it is evident from the quoted fig-
ure, the solutions defining the critical field coincide in the
limit of large p. This indicate that the analysis of the problem
can be performed by means of the concept of localized sur-
face energy, or by means of the more realistic description in
which the surface potential is described by means of a bulk

energy density, localized close to the limiting surfaces. With
the two descriptions, the critical field is the same for reason-
able value of the penetration length of the surface forces.

Note that the introduction of the localized anchoring en-
ergy is rather natural, and follows, in the half-space approxi-
mation, from the following calculation:

Fs = 
0

�

fsdz = −
1

2


0

�

U�z�cos2 �dz

= −
1

2�0

�

U�z�dz	cos2 ��z��

= −
1

2
w cos2 ��z�� , �64�

where we have used the theorem of the average, and indi-
cated by z� a point in the range 0�z���. Since � is very
small with respect to d, we assume that ��z�����0�, and in
this manner the localized anchoring energy follows directly.

IV. SURFACE ELASTIC CONSTANT

A. Localizing a delocalized elastic constant

The elastic properties of nematic liquid crystals are re-
lated to the intermolecular interaction responsible for the
nematic phase. As it is well known, the presence of a limiting
surface reduces the symmetry of the nematic phase, and elas-
tic constants forbidden in the bulk can appear.29 Furthermore,
also the usual elastic constants of Frank have numerical val-
ues different from the bulk ones because the interaction vol-
ume of the nematic molecules in the surface layer is incom-
plete. In this section we want to investigate the effect of the
position dependence of the usual elastic constant on the di-
rector profile. We consider again a cell in the shape of a slab,
and use the same Cartesian reference frame used in Sec. II A.
We assume that the surface interactions are short range, and
very strong, in such a manner that the anchoring on the lim-
iting surfaces can be considered strong. The easy axes are
supposed forming an angle with the z axis −�0 and �0 at the
surfaces, i.e., at z=−d /2 and z=d /2, respectively. In this
framework the bulk energy density is

f =
1

2
k�z��d�

dz
�2

, �65�

where k=k�z� describes the position dependence of the elas-
tic constant of Frank, in the one-constant approximation. The
spatial variation of k is localized to two surface layers of
thickness �, close to the limiting surfaces. The total energy
per unit surface, F, is obtained by integrating f given by
Eq. �65� over the thickness of the sample. By minimizing F,
standard calculations give for the relevant Euler–Lagrange
equation the expression

k�z�
d�

dz
= � , �66�

where � is an integration constant. From Eq. �66� we get

FIG. 4. �Color online� Threshold field for the Freedericksz instability on
planar aligned nematic liquid crystal with positive dielectric anisotropy. The
broken curves correspond to the case where the surface potential is assumed
delocalized. The continuous curve corresponds to the case where the surface
energy is considered localized to the surface. The curves are drawn for u
=20 and p=30 �dotted-dashed�, 300 �dotted�, 3000 �dashed� and � �local-
ized case, continuous curve�. As it is evident, the two models define the
same threshold field for high p, coinciding with the first eigenvalue of the
problem.
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� = 2
�0

L�− d/2,d/2�
, �67�

where

L�m,n� = 
m

n dz

k�z�
�68�

depends on the spatial variation of the elastic constant. By
integrating once more Eq. �66� we obtain for the tilt angle
the expression

��z� = − �0�1 − 2
L�− d/2,z�

L�− d/2,d/2�	 . �69�

Usually, the surface elastic constant is smaller than the one in
the bulk, kb, because the interaction volume, per surface mol-
ecule, is half of the one for a bulk molecule. This means that
k�z��kb, and hence L�−d /2,d /2��d /kb. From this obser-
vation it follows that the bulk derivative of the tilt angle,
defined as �d� /dz�0 is

�d�

dz
�

0
=

2�0

kbL�− d/2,d/2�
� 2

�0

d
�70�

that corresponds to the bulk derivative of the tilt angle in the
case of strong anchoring and position independent elastic
constant. This reduction of the spatial derivative of � is
equivalent to a finite anchoring energy, responsible for an
extrapolation length L such that3

�d�

dz
�

0
= 2

�0

d + 2L
. �71�

From this we obtain for the extrapolation length of the weak
anchoring energy associated to the spatial variation of the
elastic constant

L =
kb

weq
=

d

2� 1

d


−d/2

d/2 kb

k�z�
dz − 1	 , �72�

which is a well known result.30 It is thus in the case k�z�
�kb possible to replace a softness of the elastic constants
near the surfaces with an elastic energy term, which at the
upper surface will be

Fs = 1
2weq���d/2,t� − �0�2, �73�

with

weq =
2

L�− d/2,d/2� − �d/kb�
. �74�

If the elastic constants increase instead of decrease near the
surface, the extrapolation length approach can be used, also
providing a reduction of the number of parameters.

Let us consider the case in which

k��� = kb�1 + b
cosh�p��
cosh p

	 , �75�

where �=2z /d, b= �ks−kb� /kb, and p=d / �2��, with � a me-
soscopic length defining the surface thickness in which the
spatial variation of the elastic constant is localized. Simple
calculations allow the evaluation of L�−d /2,d /2� and of

L�−d /2,z� in terms of elementary functions. The tilt angle
���� is shown in Fig. 5 for two sets of the parameters p
and b.

V. CONCLUSION

We have investigated when the introduction of surface
properties of nematic liquid crystals, related to the presence
of a limiting surface, is useful. We have considered the case
in which the physical properties of the nematic liquid crystal
are delocalized, and the delocalization is related to the
change in physical properties close to the limiting surfaces.
The case in which the bulk properties differ from the surface
properties just at the surface has been also considered. We
have shown that the relaxation times can be correctly calcu-
lated by assuming that the presence of the surface causes a
surface viscosity. The utility of the anchoring energy, due to
the presence of a surface potential describing the short range
interaction of the liquid crystal with the substrate, has been
discussed by considering the transition of Freedericksz. The
effect of a spatial variation of the elastic constant on the
anchoring energy has also been discussed, and the equivalent
surface energy connected to it has been evaluated.
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