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ABSTRACT 

 
This paper describes the improvements introduced in the 
Loquendo–Politecnico di Torino (LPT) speaker recognition system 
submitted to the NIST SRE08 evaluation campaign.  This system, 
which was among the best participants in this evaluation, combines 
the results of three core acoustic systems, two based on Gaussian 
Mixture Models (GMMs), and one on Phonetic GMMs. 
We discuss the results of the experiments performed for the 10sec-
10sec condition and for the core condition, including the 
challenging tasks involving a target speaker and an interviewer.  
The error rate reduction of our SRE08 system compared to the 
SRE06 system ranges from 25% of the telephone-interview 
condition to 57% of the interview-interview condition. On the test 
with telephone and microphone conversations, the improvements 
range from 9% to 32%. 
 

Index Terms—Speaker Recognition, Speaker Segmentation, 
Intersession Feature Compensation, Eigenvoices 
 

1. INTRODUCTION 
 
The National Institute of Standards and Technology (NIST) 
organizes periodically Speaker Recognition Evaluations (SRE) 
with the goal of encouraging the research and the development of 
advanced technologies in the field of text independent speaker 
recognition [1]. The 2008 evaluation, like the previous ones, 
focused on the speaker detection task, where the goal is to decide 
whether a target speaker is speaking in a segment of conversational 
speech. The performance of a system is assessed using the 
Detection Cost Function (DCF) [1] and Detection Error Tradeoff 
(DET) curves [2]. 

SRE08 includes 6 training conditions and 4 testing conditions 
for a total of 13 different test configurations, with different 
amounts of speech (ranging from 10sec. to 8 conversations), 2/4 
wire recordings and microphone data. A new, challenging, 
condition was introduced for this evaluation, based on 
conversational segments involving a target speaker and an 
interviewer, collected through different microphone channels. A 
complete description of the data, tasks and rules of SRE08 can be 
found in the evaluation plan available in [1].  

We had three main goals for this evaluation: considering the 
very good results obtained in the previous evaluation, we tried to 
improve our system for the most difficult conditions, i.e. the short 
durations and the mismatched conditions, in particular the new 
trials based on interview data. 

In this paper we present only the results of the experiments 
performed for the core and for the 10sec-10sec conditions, but we 

submitted results for all the conditions proposed by NIST [1]. In 
particular, we submitted the results for the summed channel test 
condition obtained by using the diarization technique presented in 
[3], and we performed the test of unsupervised adaptation for the 
most difficult 10sec-10sec condition. To evaluate the technology 
improvement in the last two years, we also ran our SRE06 
mothballed system on the SRE08 core condition. 

One of the most important factor for the success of our system 
in this evaluation was the use of eigenvoice models [4][5] . 
 

2. SYSTEM OVERVIEW 
 

The system is based on the combination of recognizers based on 
three acoustic models: two Gaussian Mixture Models (GMMs), 
and a model based on Phonetic GMMs, which share the procedures 
for speaker modeling and for score normalization. 
2.1. Acoustic features 
The acoustic features that have been used for all the core systems 
are the standard MFCC cepstral parameters. In particular we will 
refer to these settings: 
GMM-25: 12 cepstral (c1-c12) + 13 delta (∆c0-∆c12) 
GMM-43: 18 cepstral (c1-c18) + 19 delta (∆c0-∆c18) + 6 double 
delta (∆∆c0-∆∆c5) 
PGMM-36: 18 cepstral (c1-c18) + 18 delta (∆c1- ∆c18)  
Feature warping to a Gaussian distribution is performed on a 3 sec 
sliding window excluding silence frames [6]. 
2.2. Phonetic System 
The phonetic GMM (PGMM) system used for SRE08 has the same 
architecture as used in SRE06 and described in [7], but uses 
different features and models. The system, decodes the speaker 
utterance, both in enrollment and in verification, producing 
phonetic labeled segments. The decoder is a hybrid HMM-ANN 
model trained to recognize 11 language independent phone classes 
[8]. The UBM [9] and the voiceprints for the PGMM, thus, consist 
of a set of phonetic GMMs, one per phone class. The number of 
(diagonal covariance) Gaussians per mixture per phone class is 
128, for a total of 1408 Gaussians. Gender dependent UBMs have 
been trained using the SRE04 and SRE05 data. 

The PGMM system uses the PGMM-36 features. 
We use the Phonetic decoder also as a voice activity detector 

(VAD), by discarding the speech intervals recognized as silence. 
2.3. GMM Systems 
Five GMM systems have been trained for this evaluation: 
• GMM-25-512 characterized by a small set of mixtures (512) 

and features (GMM-25).  
• GMM-43-1024 characterized by 1024 Gaussian mixtures and 

GMM43 features. 



• GMM-43-2048 with the same features of the GMM-43-1024 
models, but it uses 2048 Gaussian mixtures. 

• GMM-25-512-V has the same features and number of 
Gaussians of the GMM-25-512 models, but uses a different 
VAD and estimates the eigenvoice matrix V according to [5].  

• GMM-25-1024-V Same as GMM-25-512-V, but using 1024 
Gaussians. 
 

3. TRAINING PROCEDURE 
 

Our training procedure differs from the Joint Factor Analysis 
approach [10] because the models are created by means of three 
sequential steps without iteration: intersession feature 
compensation in the domain of the features [8], speaker modeling 
by means of eigenvoices [5], and possibly final relevance MAP 
adaptation [9]. 
3.1. Intersession feature compensation 
The adaptation of the feature vector at frame t of a speaker 
utterance is obtained by subtracting from the observation feature a 
weighted sum of the intersession compensation offset values 
according to: 

ˆ( ) ( ) ( ) m m
m

t t tγ= − ⋅ ⋅∑o o U x   (1) 

where γ m is the Gaussian posterior probability, and Um⋅x is the 
intersession compensation offset related to the m-th Gaussian of 
the UBM model. 

The low rank matrix U, defining the intersession variability 
subspace, has been trained on the SRE04 and SRE05 data. It is 
estimated off-line according to the following steps. For each 
utterance of the same speaker collected from different sessions, a 
GMM supervector is estimated by relevance MAP adaptation of 
the UBM model. Then, the set of the differences among the 
supervectors of the same speaker is collected for all the available 
speakers [11]. Finally, the matrix U is obtained performing 
Principal Component Analysis (PCA) using as features the 
difference supervectors by means of an EM training algorithm 
[12].  

Three versions of gender dependent U matrices have been 
estimated for this evaluation:  
• Ut   trained with supervectors estimated on telephone data,   
• Ut+m including also microphone data 
• Ut+m+i including also interview data 

The number of the eigenvectors in Ut and in Ut+m was set to 60 
and 50 respectively based on the results obtained on development 
data. Matrix Ut+m+i was obtained by appending the 20 most 
significant eigenvectors estimated on the interview development 
data provided by NIST for this evaluation to the first 30 
eigenvectors of Ut+m.  

A key point for the success of our system in this evaluation has 
been the use of feature domain intersession compensation even for 
the interview data, exploiting the small development set provided 
by NIST as explained in Section 5.1.3.  

Feature compensation is applied both in enrollment and in 
recognition using the γm(t) statistics computed on the UBM model. 
3.2. Speaker model 
The speaker models are trained using intersession compensated 
features by means of eigen-speaker MAP modeling: 
 

+ ⋅s = UBM V y    (2) 
where the columns of matrix V are the so called eigenvoices [5], 
and y is a vector including the speaker factors. The γ (t) statistics 
for the estimation of y are computed again on the UBM model, but 
using the intersession compensated features. 

Matrix V has been trained using the speaker models estimated 
by relevance MAP on the suite of data of the NIST SRE 
evaluations of the years 1999, 2000, 2003, and 2005. We used also 
1029 female and 828 male speaker models randomly selected 
among the speakers having at least 3 utterances in the Fisher 
English Training Speech Part 1 and Part 2. Overall, the number of 
speakers models contributing to train matrix V were 2079 female 
and 1634 male respectively. In these experiments we used 300 
eigenvectors. 

No use has been done of the SRE06 data for training. This 
database was reserved as development data for testing our models. 

Finally, relevance MAP adaptation is performed using the γ (t) 
statistics computed on the speaker model s (relevance = 16): 

′ = +s s D z    (3) 
 

4. SCORE NORMALIZATION 
 

The raw score are speaker-normalized by means of ZT-norm [13]. 
The ZT-norm parameters for each speaker model have been 
evaluated using a subset of speaker samples included in the SRE04 
and SRE05 databases.  

Separate statistics have been collected for the female and male 
speakers, using  audio samples of 1252 female and 1103 male 
speakers for the one conversation telephone and microphone 
conditions. We refer to these data as extended normalization set 
with respect to the previously used normalization set including 80 
female and 80 male speakers only. For the normalization of the 
interview conditions, the impostor speakers were selected among 
the microphone channel audio files. ZT-norm is performed in this 
case against 204 and 180 female and male models respectively. 
 

5. EXPERIMENTAL RESULTS 
 

Since there was a possible non null intersection between the 
speakers in the SRE06 and SRE08 datasets, the data of SRE06 
have been used only as development set for testing the quality of 
our models.  
5.1. Development experiments 
We report the results referring to GMM systems to illustrate the 
improvements obtained using different models. 
5.1.1. 1conv4w conditions 
Table 1 is divided in two parts referring to the telephone-telephone 
and telephone-microphone all trial conditions respectively. The 
color of the rows in the Table indicates GMMs with the same 
number of Gaussians and features. 

The first row of the table shows the baseline performance of 
our GMM system evaluated in 2006. The models were 512 
Gaussians, gender-independent GMMs, using 25 channel 
compensated MFCC features [7]. The next three rows show the 
improvements obtained jointly using gender dependent modeling, 
speaker factors modeling plus relevance MAP adaptation, and the 
extended normalization set. The labels UnTM in the Table refer to 
the use of an intersession compensation matrix Ut+m including n 
eigenvectors. 

 



Table 1. SRE06 development tests using different models 
 

 
SRE2006 1conv4w-4w 
target/impostor trials: 

3552/47689 

SR2006 1conv4w-mic 
target/impostor trials: 

2566/21540 

Model EER % MinDCF EER % MinDCF 

GMM SRE06 5.88 0.278 6.42 0.270 

GMM-25-512 
MAP U40TM 5.57 0.278 4.72 0.198 

V300+D16 5.23 0.264 3.73 0.179 
ExtNorm 5.01 0.257 3.43 0.149 

GMM-43-1024 
MAP U60TM 5.66 0.272 4.68 0.217 

V300+D16 4.62 0.243 4.48 0.216 
ExtNorm 4.59 0.239 3.67 0.191 
U60Tel 4.28 0.221   

 
Increasing the number of Gaussian and parameters, a similar 

behavior is obtained, as shown in the successive three rows. 
For the GMM-43-1024 models, speaker factor modeling is 

more effective compared to GMM-25-512, whereas  the  extended 
normalization set produces reduced benefits. The use of a 
condition dependent intersession compensation matrix is beneficial 
as shown by the results in the last row of Table 1. The relative 
error reduction of the latter model compared to the baseline is 
greater than 20% for the SRE2006 1conv4w-1conv4w condition. 

Similar results have been obtained on the microphone test 
condition, shown on the right side of Table 1. In this condition, 
however, the benefit of speaker factor modeling is more evident 
for 512 Gaussian GMMs. The best configuration allows a 45% 
relative error reduction with respect to our baseline SRE06 system. 
 

5.1.2. 10sec-10sec condition 
For the 10sec-10sec test condition, pure eigenvoice models have 
been trained excluding the final relevance MAP adaptation step. 
Table 2 shows the performance improvements obtained increasing 
the model complexity in term of number of Gaussians, parameters 
and of eigenchannels. Surprisingly, even for the 10sec-10sec test 
condition, bigger models do better than smaller ones. The relative 
error reduction is 28% for the EER and 15% for the MinDCF. 
5.1.3. Interview condition 
For the challenging task of the interview condition, we tried to 
exploit at our best the small development set made available by 
NIST including 3 female and 3 male speakers, 6 sessions per 
speaker and 9 channels per session, for a total of 324 audio files. 

A critical aspect dealing with interview data is Voice Activity 
Detection. NIST supplied the data for testing the interview 
conditions together with the corresponding automatic VAD 
markers and ASR transcriptions, performed on the best channel for 
the interviewee. Although this information cannot be estimated in 
real conditions, we decided to use it for the evaluation, assuming 
that the selection of the interviewee voice was more reliable than 
the one obtained using our own VAD working on the actual rather 
than on the interviewee channel. 

We used two VAD procedures. For VAD on the development 
set, we detected the interviewee speech comparing the energy 
levels of the interviewer and interviewee near field microphones. 
In evaluation we adopted a more complex procedure taking into 
account the concordance of the VAD markers and ASR 
transcriptions supplied by NIST. 

Table 2. Model comparison using the SRE06 10sec-10sec 
development tests 

 

Model GMM 
SRE06 

GMM-
25-512 
V300 

U40TM 

GMM-
25-1024 

V300 
U40TM 

GMM-
43-1024 

V300 
U60TM 

GMM-
43-2048 

V300 
U60TM 

EER % 24.24 21.32 19.63 18.02 17.39 
MinDCF 0.884 0.801 0.772 0.757 0.748 

 

In particular, we rely on the joint information of the VAD and 
ASR transcriptions whenever they agree for more than a given 
percentage of the frames in the audio file. This percentage is 40% 
for the short interview condition. Otherwise, we use the 
information given by one of the two decoders, privileging VAD 
over ASR, whenever it is able to cover alone more than 40% of the 
file frames. This percentage reduces to 30% for the long interview 
condition. If no useful information can be obtained from the two 
decoders, the speaker model is estimated using all the frames in the 
file, assuming that the duration of the intervals of the interviewer 
voice is negligible compared with the target speaker voice. 

In all cases the VAD information was further filtered by the 
Loquendo ASR decoder. 

We defined also a development test set for the interview test 
condition by splitting the audio files into chunks of 3 minutes 
according to the short evaluation condition. These chunks were 
used as segments for training and testing. Moreover, they play an 
important role for training the interview compensation matrix. In 
particular, we estimated a supervector for each chunk, and then we 
computed its difference with respect to the corresponding chunk 
supervector estimated on the “clean” condition of the same session 
(the interviewee near microphone, channel 2). Since the speaker 
and the phonetic content of parallel chunks are the same, the 
compensation is focused on channel and microphone differences. 
As usual, the compensation matrix Ui was trained using EM-PCA 
algorithm for computing 20 eigenvectors, which were appended to 
the first 30 eigenvectors of matrix Ut+m trained using the telephone 
and microphone data. 

To avoid overlapping of the data used for training the Ui matrix 
with the ones used for testing the chunk models, the tests were 
performed using the female Ui matrix for recognizing male 
segments, and viceversa. 

The interview tests were gender dependent, with uniform cross 
channel test distribution, and we avoided same session tests. Table 
3 shows the results obtained using different models and VAD 
approaches on the 3 male speaker interview development tests 
(7200 target and 17280 impostor chunk tests). The GMM system 
evaluated is the one best performing on the SRE2006 1conv4w-
1convmic test condition, GMM-25-512. In the first three columns 
different compensated feature are compared, starting from the ones 
obtained using the Ut+m estimated without interview data. The 
second result has been obtained using the interview data for 
estimating matrix Ut+m+i. Label MF in the third column refers to 
models obtained using a matrix Ut+m+i trained on all the interview 
development data, pooling together male and female speakers. 
This matrix is the one used in the evaluation. 

All these tests were performed using the energy based VAD 
approach for the development set. Since this approach would be 
unfeasible in the actual evaluation, the “concordance” approach 
previously described has been used. The last two columns of Table 
3 compare the results obtained without and with the contribution of 
the VAD and ASR information provided by NIST. 



Table 3. Interview development tests: results using different 
models and VAD procedures 

 
Model: 
GMM-
25-512 
V300 

U40TM U30TM 
+ U20I 

U30TM 
+U20I  

MF 

U30TM  
+ U20I  

MF 

U30TM 
 + U20I  

MF 

VAD Energy based LoqASR Nist vad/asr 
+LoqASR 

EER % 7.25 6.48 6.31 8.57 7.15 

MinDCF 0.363 0.332 0.318 0.400 0.338 

 
Table 4. Results on the SRE08 core condition tests (all trials) 

 

Condition Short2Int 
Short3Int 

Short2Int 
Short3Tel 

Short2Tel 
Short3Tel 

Short2Tel 
Short3Mic 

ERR % 3.02 4.98 6.46 5.16 
ActDCF 0.169 0.233 0.358 0.226 
MinDCF 0.169 0.219 0.357 0.216 

MinDCF 06 0.395 0.399 0.391 0.319 
 

Comparing columns 2 and 4 it is also worth noting that, even 
exploiting the NIST VAD and ASR, the obtained performance is 
10%  worse  than using a better (but unfeasible) VAD procedure to 
detect the interviewee speech. This highlights the importance of 
the diarization task for the interview condition, which remains a 
challenging problem. 
 
5.2. SRE08 Tests 
Based on the results obtained by our systems on the SRE 2006 
development data, several combinations of the core systems have 
been used for this evaluation: 
• Telephone-telephone conditions 

Phonetic GMMs, GMM1024-43 and GMM512-25V. 
All models were trained using their 60 eighenchannel Ut. 
The exception is the 10sec test conditions, where the 
GMM1024-25V replaces the GMM512-25V and the 
GMM2048-43 replaces the GMM1024-43. 

• Telephone-microphone conditions  
Phonetic GMMs, GMM512-25 and GMM512-25V  
All models where trained using their 50 eigenchannel Ut+m 

• Interview conditions  
Phonetic GMMs, GMM512-25 and GMM512-25V. 
All models where trained using their 50 eigenchannel Ut+m+i 

The combination of the systems is obtained by linear fusion 
with prior-weighted Logistic Regression objective. The estimation 
of the combination parameters was done on the most similar 
conditions of the SRE 2006 using the FOCAL tool [14] .  

Since we lack development data for the interview conditions, 
the weights combination is borrowed by the most similar 
conditions, substituting the microphone to the interview condition.  

Table 4 shows the results on the SRE08 core tests all trials. The 
minDCF reduction of the SRE08 system compared to the SRE06 
system ranges from 25% of the telephone-interview condition to 
57% of the interview-interview condition. On the telephone and 
microphone conditions, the improvements range from 9% to 32%. 
The deviation of the actual DCFs from the minDCF is small. 
Table 5 shows the results obtained on the SRE08 10sec-10sec 
condition.  EER, minimum   and  actual  DCF  are  shown  for   the  

Table 5. Results on the SRE08 10sec-10sec condition 
 

System Unadapted Unsupervised adaptation 
ERR % 15.81 15.56 
ActDCF 0.741 0.726 
MinDCF 0.731 0.724 

 
unadapted   and   unsupervised-adapted  models (see evaluation 
plan in [1]),  where   a   small improvement can be observed for 
the latter. 

6. CONCLUSIONS 
 

The experience gained in this evaluation suggests that, for all 
conditions it was important to use a large training set, gender 
dependent models, and speaker factor modeling. Moreover it was 
beneficial to use a large number of speakers for score 
normalization, and different, condition-dependent, matrices for 
intersession compensation. 

In particular, the impact of speaker factors was relevant for the 
short duration and mismatched conditions. For the latter, also 
important was to estimate the U matrices with more data, and 
tuning the complexity of the models in terms of number of 
Gaussians and features. A key factor for the success of our system 
on the interview conditions was the use of the development data 
for channel compensation. 
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