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The resistive transition of granular high-Tc superconductors, characterized by either weak �YBCO-like� or
strong �MgB2-like� links, occurs through a series of avalanche-type current-density rearrangements. These
rearrangements correspond to the creation of resistive layers, crossing the whole specimen approximately
orthogonal to the current-density direction, due to the simultaneous transition of a large number of weak links
or grains. The present work shows that exact solution of the Kirchhoff equations for strongly and weakly linked
networks of nonlinear resistors, with Josephson-junction characteristics, yield the subsequent formation of
resistive layers within the superconductive matrix as temperature increases. Furthermore, the voltage noise
observed at the transition is related to the resistive layer formation process. The noise intensity is estimated
from the superposition of voltage drop elementary events related to the subsequent resistive layers. At the end
of the transition, the layers mix up, the step amplitude decreases, and the resistance curve smooths. This results
in the suppression of noise, as experimentally found. Remarkably, a scaling law for the noise intensity with the
network size is argued. It allows us to extend the results to networks with arbitrary size and, thus, to real
specimens.

DOI: 10.1103/PhysRevB.79.134513 PACS number�s�: 74.40.�k, 74.78.Bz, 74.81.�g

I. INTRODUCTION

The superconductive-normal-state transition may occur
according to diverse mechanisms, depending on physical
conditions, material type, and structure. In type-II supercon-
ductors at temperature T�Tc, where Tc is the critical tem-
perature in the absence of magnetic field and current, the
transition occurs when fluxoids, injected by external mag-
netic fields or strong bias current densities, begin to move
causing energy losses and heating. This is relevant for the
development of high-field superconducting magnets.1–9 A
different transition mechanism may occur when temperature
is close to Tc at low current density. In this case, an interme-
diate state may be obtained, characterized by a mixture of
superconductive and normal domains. This situation was first
studied by Landau and Ginzburg10,11 in metals. Recently, it
has been considered to explain the excess noise in metallic or
high-Tc superconductor transition edge sensors �TES� used
as bolometers to detect electromagnetic radiation at the level
of single photons.12–14

The excess noise observed during a transition sheds light
on the microscopic processes underlying the transition
itself.15–18 In Ref. 18, the noise observed during the
superconductor-normal transition in granular MgB2 films has
been ascribed to the subsequent formation of resistive layers,
with grains in the normal or in the intermediate state, be-
tween equipotential superconducting domains. The excess
noise derives from the fact that each elementary event—the
formation of a layer—implies the simultaneous resistive
transition of several grains and, thus, gives rise to a voltage
pulse of rather high amplitude �avalanche noise�.

The present work is addressed to simulate the transition
events occurring at granular level responsible for the
avalanche-type noise in YBCO-like and MgB2-like
superconductors.18,19 The superconducting material is mod-
eled as a network of nonlinear resistors having Josephson-

junction current-voltage �I-V� characteristics with Gaussian
distribution of critical currents. The nonlinear resistors rep-
resent either weak links between grains �YBCO-like� or
grains with strong links �MgB2 like�. In the strong-link case,
a couple or triple of resistors is used to represent two or three
current components flowing through each grain, respectively,
for two-dimensional �2D� and three-dimensional �3D� net-
works. The solutions of the Kirchhoff equations for these
networks are found by an iterative routine described in Sec.
II. The main results of this analysis are the following:

�1� The resistive transition undergoes discrete steplike in-
crements both in weak- and strong-link materials. The steps
correspond to the creation of resistive layers constituted by
grains or weak links in the normal or in the intermediate
state. As temperature increases, grains or weak links in the
intermediate state gradually switch to the normal state. The
trailing edge of the resistive transition grows more smoothly
in MgB2-like than in YBCO-like networks. This fact is re-
lated to the higher correlation when the elementary transition
events occur in triplets rather than in independent nonlinear
resistors.

�2� The abrupt formation of resistive layers causes the
large voltage noise observed at the transition in these mate-
rials. At the end of the transition, the resistive layers mix up.
The resistance steps become smaller and the transition curve
smoother. This smoothing results in a noise suppression. A
scaling law for the noise intensity is proposed in order to
extend the results to larger networks, representing real mate-
rials. This effect was simply assumed in Ref. 18. Here it is
shown that the transition noise can be estimated once grain
size and critical current distribution are defined.

II. NETWORKS OF STRONG AND WEAK LINKS

Before describing the details of the simulations, we pro-
vide a description of the main physical parameters relevant
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to the electronic behavior of granular superconductors.20,21 In
particular, it is worthy to remind that the phase-transition
boundary of granular superconductors is set by the value of
the dimensionless tunneling conductance g:

g =
G

e2/�
, �1�

where G is the average tunneling conductance between adja-
cent grains and e2 /� is the quantum conductance.

Experiments show that samples with normal-state conduc-
tance greater than the quantum conductance �i.e., with g
�1� become superconducting at low temperature,22 regard-
less of the ratio of the Josephson J and the Coulomb Ec
energies, defined, respectively, as

J =
�

2
g� , �2�

with � as the superconductor gap, and

Ec =
e2

Cj
, �3�

with Cj as the grain capacitance. This phenomenon can be
accounted by the electron tunneling between grains, in addi-
tion to the Josephson coupling.23 The additional dissipative
tunneling channel results in a reduction in the Coulomb en-
ergy to

Ẽc =
�

2g
, �4�

known as the effective Coulomb energy of the grain. By
comparing Eqs. �2� and �4�, one can notice that for g�1, J is

always larger than Ẽc, implying a superconducting ground
state, regardless of the Coulomb energy Ec. For g�1, the
granular superconductor can then be modeled within the

mean-field BCS theory. Thus, its critical temperature is ap-
proximately given by the single grain BCS critical tempera-
ture 2�=3.53kTc. Conversely, for g�1, the phase-transition
boundary between insulating and superconducting states is
controlled by the ratio between J and Ec. In this condition,
by using a mean-field approach, the critical temperature is
given by Tc= �1 /4�z�g�, with z as the coordination number
of the lattice.20,21

The superconductor-normal transition in thin granular
films with g�1 can be modeled in terms of resistively
shunted Josephson junctions, whose state is controlled only
by the value of the normal resistance rather than by the Cou-
lomb and the Josephson energies.

The simulations presented in this work have been per-
formed in the regime g�1 to guarantee the onset of a super-
conductivity state at low temperature. In order to simulate
the superconductor-normal transition in granular materials,
two types of networks, shown in Figs. 1�a� and 1�b�, are
considered. The networks are constituted by nonlinear resis-
tors, with Josephson-junction characteristics, biased by a
constant current generator. The resistive transition is esti-
mated by solving a system of Kirchhoff equations, at varying
temperature, for each network.

The network of Fig. 1�a� refers to YBCO-like materials
characterized by weak links.24 In these materials, the transi-
tion occurs in two separated steps: first, at lower tempera-
tures for the weak links and, then, at higher temperatures for
the grains. The network of Fig. 1�a� is used to model the first
stage of the transition, which involves only the weak links,
while the grains remain superconductive.

The network of Fig. 1�b� refers to MgB2-like
materials,25–27 whose transition involves directly the grains.
Each triplet of resistors, outlined by the red circle, represents
a grain. Since the current density within the grain may have
any direction, the three resistors give a basis of three com-
ponents of the current density for each grain. The current

FIG. 1. �Color� �a� Scheme of a 3D network for granular superconductors with: �a� weak links �YBCO like� and �b� strong links, where
the transition involves directly the grains �MgB2 like�. The networks contains 48 grains. In �a�, the grains are assumed to remain in the
superconducting state during the transition and correspond to the nodes of the network. Each link between the grains is a nonlinear resistor
with the I-V characteristic represented in Fig. 2. In �b�, the I-V characteristic given in Fig. 2 concerns the whole grain, which is represented
by a triplet of orthogonal resistors �outlined by the red circle�. The electrical conductance of these resistors is determined from the I-V
characteristic of the grain by calculating the potential drop across the grain i as Vi= �� j=1

3 Vij
2 �1/2, where j identifies the three grains linked to

the grain i. Since the grain is assumed to be isotropic, the conductances of the three resistors are assumed equal. The first node �1� and the
last node �50� correspond to the electrodes.
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density sets the state �superconductive, intermediate, and
normal� of the grain according to its I-V characteristic. For
the sake of simplicity, all the grains are assumed to be iso-
tropic and with the same average size, therefore we disregard
the anisotropy effects.28–30 This assumption is not limitative
for what concerns the main aspects of the transition, allows
one to define a critical current Ic

i �T� characterizing the grain
i, according to a Gaussian distribution, and a normal state
resistance Ro equal for all the grains. In real specimens, small
changes in the grain stoichiometry influence the critical cur-
rent more than the normal-state resistivity. The spread of the
distribution of the critical currents and temperatures is re-
sponsible to the slope of transition curve.31 The normal-state
resistance Ro is achieved when the current Ii crossing the
grain or the weak link exceeds Ic

i �T�. The intermediate states
are characterized by current Ic

i �T� and voltage drop between
0 and Vc

i �T�. The I-V characteristic of each nonlinear resistor,
representing a grain or a weak link, is completely defined by
the quantities Ic

i �T� and R. The quantity Vc= Ic
i �T�R is directly

related to the Josephson time constant by

�J =
	o

2�

1

IcRis
�5�

for the intermediate states �0
v
Vc� and

�J =
	o

2�

1

IcRo
�6�

for the normal states �v�Vc�. These time constants define
the characteristic switching time during the transition, and
thus, are ultimately related to the behavior of noise. In Sec.
III, the resistive transitions has been addressed in networks
with �a� underdamped, �b� overdamped, and �c� general I-V
characteristics that are characterized by the Stewart-
McCumber parameter �c=�RC /�J, where �RC and �J are the
capacitance and Josephson time constant. �c�1 in case �a�,
�c�1 in case �b�, and �c�1 in case �c�. In particular, the
onset of hysteresis has been analyzed upon cooling the
granular system from the normal to the superconductive
state.

When the transition involves the grains �strong links�, the
current is given by Ii= �� j=1

3 Iij
2 �1/2, where Iij corresponds to

the current flowing from the grain i to its neighboring grains
j through each resistor of the triplet �see Fig. 1�b��. The I-V
characteristic is then used to find the value of the three re-
sistors by means of an iterative routine to solve the Kirchhoff
equations. The grains are assumed isotropic; thus the three
resistors representing the grain will have identical I-V char-
acteristics.

The simulations are carried on at constant bias current.
The transition is caused by the temperature increase, which
reduce the critical currents of the grains or weak links ac-
cording to the following linearized equation:

Ic
i �T� = Ico

i �1 −
T

Tc
� , �7�

where Ico
i is the low-temperature critical current, distributed

according to a Gaussian function with standard deviation
�Ico and mean value Ico.

The preliminary steps of the simulations are as follows:
�1� The list of all the No nodes of the network is created.
�2� The Gaussian distribution for the critical current Ico

i is
introduced. In MATLAB, the vector Ico

i is defined by Ico
i

= Ico�1+randn�N ,1��, where N is the number of junctions
�individual resistors� for the network �a� or the number of
grains �triplets of resistors� for the network �b�. The quantity
randn�N ,1� defines a set of N random numbers extracted
from a Gaussian distribution having mean value 0 and vari-
ance 1.

Then the iterative calculations are implemented as fol-
lows:

�i� The vector Wo of the tentative potential values is de-
fined for all the No nodes.

�ii� For the network of Fig. 1�a�, by using the I-V charac-
teristics, a conductance value Gij for each resistor between
the nodes i and j is calculated.

�iii� Else, for the network of Fig. 1�b�, the conductance
values, common to the three resistors representing each grain
i, are calculated from the I-V characteristics by using the
voltage drop

Vi = 	�
j=1

3

Vij
2
1/2

. �8�

Once the Gij are known, the entries of the conductance
matrix G�� are as follows:

Gij = − Gij�i, j = contiguous� , �9a�

Gij = 0�i, j = not contiguous� , �9b�

Gii = �
kVi

Gik, �9c�

where Gik are the conductances of the resistors connected to
the node i.

Then, a new vector of node potentials W1 is evaluated by
solving the equation

G�� · W1 = Iinj �10�

with respect to W1. Iinj is a vector of dimension No, whose
elements are zero except the first one equal to the bias cur-
rent Ib. It represents the external current injected into node 1
of the network. The last node is grounded.

Then, the new set of potentials W1 allows us to evaluate a
new set of Gij and a new conductance matrix G= . From Eq.
�10� an updated vector W2 is then obtained. The iteration is
repeated until the quantity �= �Wn−Wn−1� / �Wn� becomes
smaller than a value �min chosen to exit from the loop. In the
present work, the simulations have been performed by vary-
ing �min in the range 10−7
�min
10−11 to check that the
value of �min did not appreciably change the final solution.
The total network resistance R is then given by Wn�1� / Ib for
each value of T /Tc, where Wn�1� is the potential drop at the
contact ends.

The potential drops at the ends of each resistor for case
�a� and across the grain for case �b� are compared to the
values of the potential in the corresponding I-V characteris-
tics. Therefore, it is possible to distinguish weak links or
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grains being, respectively, in the superconducting, normal, or
intermediate state. Before discussing the simulations results,
it is worthy to point further to the different behavior of the
two networks by introducing the intragrain conductance gintr.
For standard granular system, the condition g�gintr holds.

The intragrain conductance of the weak-link network
shown in Fig. 1�a� is much greater than 1 �gintr�1�. The
intragrain region is indeed assumed to remain in the super-
conducting state since the transition occurs only at the weak
links.

Conversely for the strong-link network of Fig. 1�b� the
condition g�gintr holds, corresponding to homogenously
disordered granular system. This condition is consistent with
the electronic properties of MgB2-like superconductors.25

The intragrain conductance gintr is related to the single grain
Thouless energy ETh and to the interlevel spacing � through

gintr = ETh/� . �11�

When the energy ETh exceeds the mean level spacing �,
gintr�1. The Thouless energy is defined by ETh=Do /a2, with
Do and a as the diffusion coefficient and the radius of the
grain, respectively. The interlevel spacing is defined as �
=1 / ��V�, with � and V as the density of states at the Fermi
energy and the volume of the grain, respectively. The intra-
grain conductance strongly depends on the dirtiness of ma-
terial and the radius of grain. These aspects are indeed rel-
evant for MgB2-like materials whose critical temperature is
strongly dependent on material quality, atomic radii, and cell
size.26,27

III. RESULTS

Here, the successive stages of the resistive transition are
simulated in granular superconducting materials either with
strong or with weak links. The superconducting material is
represented as a network of nonlinear resistors having resis-
tively and capacitively shunted Josephson-junction
characteristics.32–34 We report the results of different simula-
tions, carried on with 2D and 3D networks, both for grain
and weak-link transition. In the simulations, the transition
occurs by increasing the temperature, in proximity of the
critical temperature Tc, starting from the superconductive
state.

A. Resistive layers in strong- and weak-link networks

Figures 3 and 4 refer to the resistive transition of a two-
dimensional 30�30 network representing a granular super-
conducting film of 900 grains characterized by strong links
�MgB2 type�. Figures 5 and 6 refer to a two-dimensional
30�30 network representing a superconducting film of 900
grains characterized by weak links �YBCO type�.

The quantities R and T are expressed as reduced quanti-
ties, namely, R /Ro and T /Tc. The relevant energy values and
the parameters used for the simulations are reported in Table
I, in Table II, and/or in Figs. 1–10.

In Fig. 4, at the beginning of the transition, the network
resistance is zero since all the grains are in the superconduc-
tive state. By effect of the temperature increase, a layer of
grains either in the normal resistive �blue� or in the interme-
diate �green� state, crossing the whole film, is generated �Fig.
3�a��. This layer must separate two equipotential supercon-

TABLE I. Relevant energy scales. The value of the capacitance used for the calculation of the Coulomb
energy are 2.7�10−7
Cj 
2.7�10−3 pF.

YBCO

MgB2

� bands � bands

Superconductive gap ��� �meV� 10–20 1.2–3.7 6.4–7.2

Critical temperature �Tc� �K� 65.8–131.5 7.9–24.3 42.1–47.4

Ambegaokar-Baratoff product �Vc=�� / �2e�� �mV� 15.7–31.4 1.9–5.8 10.1–11.3

Coulomb energy �Ec� �meV� 100–0.01 100–0.01 100–0.01

Effective Coulomb energy �Ẽc� ��eV� 3.0–5.0 0.03–0.09 0.16–0.18

Josephson coupling energy �J� �eV� 63.3–126.6 76.0–234.2 405.2–455.8

TABLE II. Simulation parameters.

YBCO MgB2

Min Max Min Max

Low-temperature critical current �Ico� �mA� 1.0 10 1.0 10

Normal state resistance �Ro� ��� 0.1 3.0 0.1 1.0

Critical voltage �Vc=RoIco� �mV� 0.1 10 0.1 10

Dimensionless tunneling conductance �g� 1.3�105 4.3�103 1.3�105 1.3�104

Critical temperature �Tc� �K� 65.8 131.5 11.8 44.7
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ductive regions, and thus, the potential drop must be constant
along the layer. Since the grains have different critical cur-
rents, the layer starts to form when the sum of critical cur-
rents of its grain equals the bias current. The grain �or the
weak link� with the lowest critical current becomes resistive
and set the voltage drop of the other grains in the layer. As
temperature increases and the grain critical current decreases,

FIG. 2. I-V characteristics used for the simulation of the transi-
tion in the grain or weak-link networks. The resistance is assumed
to be negligible �10−10 �� when I
 Ic

i �T�, while for I� Ic
i �T� the

normal-state resistance is assumed to be Ro, equal for all the grains
or links. The intermediate states occur for voltage drops between 0
and Vc

i �T�=RoIc
i �T� and current I= Ic

i �T�. The critical current Ic
i �T� is

distributed according to a Gaussian distribution function for the
different grains. The transition from the superconductive to the in-
termediate state is set by the value of Ic. The transition from the
intermediate to the normal states is determined by the product Vc

=RIc. Therefore the Gaussian distribution of the Ic is enough to
ensure the randomness of the product Vc=RIc for all the grains.
Furthermore, the quantity Vc is directly related to the Josephson
time constant �J given by Eqs. �5� and �6� that define the elementary
switching time of the transition and, thus, are ultimately related to
the behavior of noise.
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FIG. 3. �Color� Different stages of the superconductor-normal transition in a two-dimensional MgB2-like network with 30�30 grains.
Red dots represent the superconductive grains, blue dots represent the resistive grains, and green dots represent grains in the intermediate
state. In �a�, the first resistive layer �a strip in 2D� is formed, which corresponds to the first step in the R vs T curve of Fig. 4. In �b�, at
slightly higher temperature the appearance of the second layer is shown, corresponding to the second step in Fig. 4�a� etc. �c� The formation
of more layers is shown. In �d�, the situation at the transition end is shown. The layers mix up and the resistance steps become smoother, as
shown in Fig. 4�b�. The parameters used in the simulation are the following: Tc=39 K, Ro=0.32 �, Ib=1 mA, and Ico=1.7 mA.

FIG. 4. �Color online� Resistive transition of the two-
dimensional network of 30�30 superconducting grains shown in
Fig. 3. �a� and �b� represent a zoom of the curve in two temperature
intervals at the beginning and near the end of the transition. It may
be noticed that the values of T /Tc in correspondence of the steps in
�a� correspond also to the layers represented in Figs. 3�a�–3�c�.
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more and more grains in the intermediate state gradually
switch to the resistive states and the resistance of the layer
increases.

As shown in Fig. 3, a resistive layer contains at least one
resistive �blue� dot and many intermediate �green� dots. Su-
perconductive �red� dots are excluded since they would con-
stitute a short. The formation of a resistive layer corresponds

to a step in the R vs T curve, as it can be seen by comparing
Figs. 3 and 4. Upon further increase in the temperature, other
layers are created until the whole film undergoes the transi-
tion to the normal state.

At the beginning of the transition the layers are well sepa-
rated and have a thickness of approximately one grain. Cor-
respondingly, the resistance steps shown in Fig. 4 obey, as a
good approximation, to a scaling law �R /Ro=1 /30 in the
present case�. At the transition end, there is an intricacy of
different layers and the resistance increases smoothly with
the temperature.

Figures 5 and 6 correspond to granular superconductors
characterized by weak links �YBCO like�. The simulation
refers to the resistive transition of the weak links. The grains
represented by the nodes of the network remain in the super-
conductive state. Also in this case the transition occurs
through the formation of resistive layers corresponding to
resistance steps in the R vs T curve.

Figures 7 and 8 report simulations carried on 10�10
�10 3D networks representing superconductor films of 1000
grains, respectively, with strong and weak links. The pres-
ence of about 10 steps is expected from the scaling law hold-
ing before the mixing up of the layers �R /Ro=1 /10�.

B. Hysteresis effects

So far, we have been concerned with the superconductive-
resistive transition as the temperature increase with the main
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FIG. 5. �Color� Different stages of the superconductor-normal transition in a two-dimensional YBCO-like network with 30�30 grains.
Red lines represent weak links in the superconducting state, blue lines represent resistive weak links, while green lines represent weak links
in the intermediate state. �a� shows the formation of the first resistive layer �a strip in 2D� and corresponds to the first step in the R vs T curve
of Fig. 6�a�. �b� and �c� show the situation at a temperature immediately following the appearance of the second and third layer and
corresponds to the second and third step in Fig. 6�a� etc. �d� shows the transition end, where the layers become mixed up and the resistance
steps become smaller, as shown in Fig. 6�b�. The parameters used in the calculations are the following: Tc=65 K, Ro=0.32 �, Ib

=1 mA, and Ico=2.1 mA.

FIG. 6. �Color online� Same as Fig. 4 but for the network of
weak links shown in Fig. 5.
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aim to investigate the successive formation of layers. Here,
we investigate what the algorithm can predict when the tem-
perature is lowered and the superconductive final state is
achieved starting from the normal one, thus addressing the
hysteresis onset. For this purpose, it is necessary to distin-
guish the I-V characteristics of resistively shunted �a� under-
damped, �b� overdamped, and �c� generalized Josephson
junctions �shown, respectively, Figs. 9�a�–9�c��.32–34 Curve
I-V �a� is hysteretic, curve �b� shows no hysteresis, while
curve �c� exhibits partial hysteresis.

We have routinely solved the Kirchhoff equations of the
strong- and weak-link networks by using the underdamped,
overdamped, and generalized I-V characteristics and imple-
menting a heating-cooling cycle around the critical tempera-
ture Tc. For all the three cases, �i� the conductance is G
=1010S at I
 Ic

i �T�, �ii� the normal-state conductance Go
=1 /Ro at I� Ic

i �T� has been varied in the range reported in
Table II, and �iii� G and Go are much greater than the quan-
tum conductance �i.e., g�1 always�.

�a� For the underdamped I-V characteristics, the interme-
diate states are characterized by voltage drop in the range

0
V
Vc
i �T� and current equal to I= Ic

i �T�. The intermediate
states correspond to the coexistence of superconducting and
normal domains. Upon current �voltage� decrease starting
from the normal state, the behavior is always normal resis-
tive, implying that the system reaches the superconductive
ground state without exploring intermediate states.

�b� For the overdamped I-V characteristics, the intermedi-
ate states are characterized by voltage drop in the range 0

V
2Vc

i �T� and current in the range Ic
i �T�
 I
 Ic

i �2Vc
i �T��,

as described by the function

V = IR�1 − � Ic

I
�2

, �12�

instead of a constant value. The behavior of the overdamped
Josephson junction is the same upon increasing and decreas-
ing the current �voltage�.

Figure 9�c� corresponds to the general case, the I-V curve
is partly hysteretic. Upon heating, the intermediate states are
characterized by a voltage drop in the range 0
V
2Vc

i �T�
and current equal to Ic

i �T�. Conversely, upon cooling the in-
termediate states are described by function �12�.

Figure 10 shows the resistive transition during a heating-
cooling cycle in the case of a two-dimensional network with

FIG. 7. �Color online� Resistive transition of a three-
dimensional network of 10�10�10 grains. The parameters used in
this simulation are Ro=0.32 � and Ico=1.7 mA. Again each step
should correspond to the creation of a layer of grains either in the
normal or in the intermediate state through the network cross
section.

FIG. 8. �Color online� Same as Fig. 7 but for weak links with
the parameters Ro=0.32 � and Ico=1.7 mA.

(a) (b) (c)(a) (b) (c)

FIG. 9. Josephson-junction I-V characteristics for grains or weak links in case of �a� underdamped, �b� overdamped, and �c� generalized.
Imin
i depends on the Stewart-McCumber parameter �c and ranges from Ic

i and 0 for �c�0, where �c=�RC /�J, where �RC and �J are the
capacitance and Josephson time constant, respectively. �c�1 in case �a�, �c�1 in case �b�, and �c�1 in case �c�.
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weak links. In particular, Fig. 10�a� refers to a network with
underdamped weak links, where the maximum hysteresis ef-
fect can be observed. Figure 10�b� refers to a network with
overdamped weak links, and no hysteresis is observed. Fig-
ure 10�c� refers to a network of weak links with generalized
Josephson-junction characteristic, where the amount of hys-
teresis is an average of the previous two cases.

C. Avalanche noise at the transition

The described results show that by increasing the tem-
perature from the superconductive state, subsequent resistive
layers are formed until the whole specimen becomes normal.
These layers are abruptly formed across the networks and
correspond to steplike resistance increments in the R vs T
curves. Each resistance step involves the simultaneous tran-
sition of all the grains in a layer and corresponds to a voltage
pulse at the end of the network, when a constant bias current
Ib is applied. The number of these pulses during the transi-
tion is of the order of the number of grains or weak links
along the current direction. The large transition noise is due
to the random superposition of these voltage pulses.

For a given value of the normal-state resistance, the step
resistance and the step voltage amplitude are inversely pro-
portional to the number of steps. In real specimens with huge
number of grains, the resistance steps cannot be resolved by
static measurements of the transition curve. Conversely, the
noise is a measure of the transition dynamics at granular
level. The noise amplitude depends on the number and am-
plitude of discrete voltage steps and thus permits to justify
the step-transition model. Assuming a Poisson distribution of
the pulses, the power spectrum ���� of the noise is given by
�Campbell theorem�

���� = ��Sv����2, �13�

where � represents the average number of pulses per unit
time and �Sv����2 represents the average square modulus of
the Fourier transform of each pulse.

Real materials correspond to very large networks, whose
number of nodes is obtained by dividing the specimen di-
mensions by the average grain size. The amplitude of the

voltage pulses is inversely proportional to the number of
steps, while � is directly proportional to the number of steps
along the transition curve. Since, in the low-frequency limit
��→0�, �Sv�0��2 is proportional to the square amplitude of
the voltage pulse, it turns out that the noise amplitude is
inversely proportional to the number of steps. This shows
that, for a given value of the network resistance, the voltage
noise amplitude in the limit of low frequency is inversely
proportional the number of grains along the direction of the
flowing current. This, in other words, means that supercon-
ductors with smaller grains are characterized by a lower in-
tensity of the transition noise.

IV. DISCUSSION AND CONCLUSIONS

The results reported above show several interesting as-
pects of the transition process in granular superconductors
with weak and strong links. One aspect that can explain the
large noise observed during the resistive transition of poly-
crystalline high-Tc superconductors �HTS� is that the transi-
tion is not a continuous dynamical process. The transition of
a large number of grains simultaneously occurs to form a
resistive layer, approximately with the thickness of a single
grain and orthogonal to the bias current density. This permits
to evaluate the amplitude of the resistance steps generated by
the layer formation in real specimens on the basis of the
average grain size and specimen dimensions. Moreover, a
scaling law, deduced from the Campbell theorem, permits to
deduce the relation between the layer formation and the tran-
sition noise at low frequencies. The present approach gives
exact numerical solutions for the transition. In addition it
allows us to evidence the decrease in noise detected toward
the transition end. By representing the superconducting film
as a network of nonlinear resistors, it is possible to evaluate
how the noisiness decreases toward the end of the resistive
transition according to the variance of the distribution of the
grain or of the weak-link critical currents. This is a crucial
issue for the development of superconductor based
sensors.35–37 The steepness of the R vs T curve gives higher
photon detection signals �photoresponse� at the expenses of
an increase in noise. Moreover, the resistance steps, corre-

(b)(a) (c)(a) (b) (c)

FIG. 10. Resistive transition of the two-dimensional network of 30�30 superconducting weak links when temperature increases and
decreases. The degree of disorder is 0.1 like the simulations. The external current I is kept constant at 1 mA. The Kirchhoff equation iteration
is implemented with �a� underdamped Josephson junctions ��c�1�, �b� overdamped Josephson junctions ��c�1�, and general Josephson
junctions ��c�1�. One can note, respectively, �a� hysteresis, �b� no hysteresis, and partial hysteresis upon cooling the material from the
normal to the superconductive state.
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sponding to each layer formation, are visibly more squared
and sharp for weak-link transition than for strong-link tran-
sition. This fact may be related to the slope of the relative
voltage noise spectra reported in Refs. 18 and 19. The power
spectra are 1 / f3 and 1 / f2 sloped in the range between few
Hz and 1 kHz, respectively, for MgB2 and YBCO. Since the
power spectrum of a random staircase signal �i.e., a sequence
of Poisson distributed exponential pulses, whose time decay
tends to �� is exactly 1 / f2 sloped �i.e., a Lorentzian function
whose cut-off frequency tends to 0�, the rounding of the
pulse trailing edge produces a steeper decay of the power
spectrum, which tends to the 1 / f3 slope. As a conclusion, it

may be stated that the representation of granular supercon-
ductors as a network of nonlinear resistors with resistively
shunted Josephson-junction characteristics add clues to the
dynamics of the transition process. The assumption made in
previous papers on the origin of the large transition noise in
YBCO-like and MgB2-like materials is confirmed by the
findings of the present work.
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