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Abstract 

This paper is concerned with the on-board real-time position and rate prediction of the spacecraft centre-of-mass as 

input data to local orbital frame (LORF) determination for Low-Earth Orbit drag-free satellites. Study and 

simulation results are justified by Drag-Free and Attitude Control of the GOCE satellite (Gravity field and steady-

state Ocean Circulation Explorer), the LORF being the instantaneous reference for satellite attitude and scientific 

data. The paper focuses on modeling issues in view of disposing of an accurate orbit dynamics at lower frequencies, 

which is effective in reducing integration errors because of a narrow-band filter requested by the wide-band 

measurement errors. A further remedy in this sense is the addition of a second order disturbance dynamics leaving 

unexplained bounded noise components. Simulated results are presented with reference to the GOCE mission. 

©  2009 Elsevier Ltd. All right reserved. 

 

Keywords: Local orbital frame, prediction, drag free satellite, GPS.  

1 Acronyms 

CoM = Centre-of-Mass 

GOCE = Gravity field and steady-state Ocean Circulation Explorer  

GPS = Global Positioning System 
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LEO = Low-Earth Orbit 

LORF = Local Orbital Reference Frame 

LTI = Linear Time Invariant 

MBW = Measurement BandWidth 

PSD = Power Spectral Density 

RMS = Root Mean Square 

2 Nomenclature 

ad = perturbing accelerations 

kd  = unknown disturbance source driven by white noise 

0e  = Local Orbit Reference Frame orientation error vector 

f = Fourier frequency 

g  = local gravity acceleration vector 

L  = observer gain matrix  

∂P  = error dynamics  

r  = inertial position of the satellite CoM 

S  = Power Spectral Density 

U = Earth’s gravitational potential  

v  = velocity of the satellite CoM  

rv , vv  = GPS error vectors 

w  = white noise vector 

xk  = discrete-time state vector 

y  = vector of sampled measurements from GPS 

zk  = disturbance state vector 

αki  = orbit angular increment  

λh  = closed-loop eigenvalues  

μ = Earth gravitational constant 
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,σ σr v  = standard deviations of GPS position and velocity errors 

Ω∂  = perturbation term of the orbit rate  

Oω  = mean orbital angular rate  

 

3 Introduction 

 This paper is concerned with the on-board real-time estimation and prediction of the spacecraft centre-of-mass 

(CoM) position and rate as input data to local orbital frame (LORF) determination for LEO (Low-Earth Orbit) drag-

free satellites. Study and simulation results are justified by the Drag-Free and Attitude Control of the GOCE satellite 

(Gravity field and steady-state Ocean Circulation Explorer), the LORF being the instantaneous reference for satellite 

attitude and scientific data [3, 4, 5]. The GOCE satellite, launched in March 2009, will fly in a near-circular, sun-

synchronous orbit ( 96.5 °  inclination) at a mean geodetic height 250 kmh ≅ , with a mean orbital rate 

1.17 mrad/sOω ≅ . The aim is to explore the small-scale spatial components of the Earth gravity field to a resolution 

of about min 100 kmλ ≅  from the gravity gradient tensor measured by an extremely accurate on-board gravity 

gradiometer. The gradiometer consists of three orthogonal pairs of 3D ultra-fine accelerometers, each pair being 

located at the extreme of a stable 1 m arm centered on the spacecraft CoM. The range of the spatial wavelengths λ  

corresponding to the highest gradiometer sensitivity determines the mission Measurement Bandwidth (MBW) 

0.005 0.1 Hzf≤ ≤  through 

 ( ) 7760 m/sOf R hλ ω≅ + ≅ , (1) 

where f  denotes Fourier frequency and R  the Earth equatorial radius. Combination of the gradiometer differential 

accelerations might in principle recover the Earth gravity gradient by eliminating, as a common term, the drag 

acceleration affecting spacecrafts like GOCE , orbiting at a low Earth altitude. Actually, uncertainties in the 

gradiometer scale factors and cross-coupling among different axes impose the satellite to be drag-free and to be 

accurately aligned to the orbital frame, especially within the MBW.  

The drag-free control is in charge of keeping the spectral density of the residual CoM non-gravitational 

accelerations as well as of the angular accelerations below 225 nm/s / Hz  and 225 nrad/s / Hz , respectively. The 

control exploits the mean CoM and angular accelerations measured by six accelerometers of the gradiometer. The 
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angular drag-free control must be completed with the attitude control in charge of keeping the gradiometer aligned 

to the orbital frame, mainly because of the accelerometer low-frequency drift and bias. The latter would misalign the 

spacecraft attitude by a few radians in less than 10 minutes. The attitude control employs star tracker measurements. 

The LORF, being the reference frame to be tracked by the spacecraft body frame, must be estimated in real-time at 

an accuracy compatible with the attitude. Similar to acceleration, attitude requirements are stringent in the MBW, 

below 8 μrad/ Hz  in terms of spectral density, but they are rather relaxed in terms of peak attitude, that must 

remain below 0.4 mrad . The latter peak requirement allows attitude spectral components and LORF errors to 

significantly increase in the frequency BW below 1 mHz . 

 The LORF is defined as the orientation of the osculating instantaneous orbit with respect to an inertial frame like 

the Earth-centered Equatorial frame at some date, or with respect to a mean Earth-fixed circular orbit only 

determined by the spherical Earth gravity. In the latter case, the Euler angles of the LORF-to-mean-orbit 

transformation can be shown to be combination of the ratios between CoM position and rate perturbations with 

respect to the mean orbit radius and the absolute orbital speed. Direct LORF determination in the order of 

microradian would imply CoM position and rate measurement errors below 1 m  and 1 cm/s , respectively, at a 

sampling rate greater than 0.1 Hz. Although space-borne GPS receivers approach this limits at a sampling rate of 1 

Hz, position and rate measurements need be filtered to cope with non-stationary GPS errors and to extrapolate the 

measurements during sampling time as requested by control rates above 1 Hz. The objective is to dispose of a robust 

algorithm, free of measurement statistics, and tuned to quite conservative GPS errors as shown in Table 1.  

 

Table 1   

GPS timing and errors 

Parameter Unit Value 

Sampling time s 1 

Position error  m <30 (1σ) 

Rate error m/s 0.03 (1σ) 

Bias   negligible 

Delay  negligible 
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 On-board GPS data have been extensively used for several purposes: among them, real-time and a-posteriori 

orbit determination [7], attitude determination, relative positioning and time synchronization. A survey can be found 

in [2]. 

LORF estimation and prediction may be approached through Kalman filtering techniques, which require 

knowledge of noise statistics and accurate models of orbit dynamics and perturbations. The approach adopted here 

follows the Embedded Model technique [4]: it starts from an accurate model of the orbit (or controllable) dynamics 

including eccentricity and J2 gravity term, which is completed by a disturbance dynamics in charge of estimating 

model uncertainties and simplifications, neglected gravity anomalies and drag-free control residuals. Key steps are 

the selection of the disturbance dynamic order, of the size and location of the driving noise. The latter acts as the 

feedback channel where to update and stabilize the model state variables. The order is designed to match the spectral 

density of the higher-order gravity anomalies, in agreement with the Kaula’s rule [1]. The resulting discrete-time 

state equations, the Embedded Model, is then completed with the uncertain error dynamics, not be included in the 

algorithms, but to a-priori guarantee error stability in the tuning of feedback gains. Figure 1 shows the main 

components to be detailed in the paper. The Embedded Model and the error dynamics are treated in Section 5. 

When, at the current time, the disturbance driving noise is estimated (not predicted) by the plant measurements 

through the model error, i.e. the difference between measures and model output, the Embedded Model becomes a 

state observer. In other terms, state variables are improved (estimation) and predicted. Unknown discrepancies 

between estimated and ‘actual’ disturbance collect under ‘residuals’.  

 

+

+
−

 
Fig. 1. Block-diagram of the Embedded Model and errors in the form of a state observer. 
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4 Reference frames and Requirements 

 The inertial frame { }, , ,J J J JO= i j kR  centered in the Earth CoM O , is the equatorial frame at the date J2000. 

The LORF { }, , ,O O O OC= i j kR , centered in the spacecraft CoM C , is defined by the instantaneous orbit 

orientation, and specifically by the motion direction /v v  of the CoM, v  being the inertial velocity, and by the 

orbital angular momentum sm= ×h r v , sm  denoting the spacecraft mass and r  the CoM position (Fig 2). The 

LORF is the reference frame for science measurements and attitude control. The LORF axes are defined by 

  / , / ,O O O O O= = × × = ×i v v j r v r v k i j . (2) 

The axes from Oi  to Ok  are referred to as along-track, out-of-plane and radial, respectively.  

O

Jj
Ji

Jk

LEO sun-synchronous orbit

Ok
ki

Oj

v
Sun

Oi

 

Fig. 2. LEO sun-synchronous orbit and reference frames. 

The matrix [ ]O O O O=R i j k  accomplishes the LORF-to-inertial coordinate transformation, and defines the 

reference attitude to be tracked by the spacecraft. The orientation error Oe , caused by the on-line estimate ˆ
OR , can 

be defined as 
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ˆ ,  

0
0 ,   

0

O O O O O

Oz Oy Ox

O Oz Ox O Oy

Oy Ox Oz

I

e e e
e e e
e e e

Δ

Δ

= ≅ +

⎡ ⎤− ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦

R E R E E

E e
. (3) 

Assuming a near-circular circular orbit, Oe  can be shown to be related to inertial position and velocity 

estimation errors Δr  and Δv  through  

 1 / , ,  
/

O

O O O O O

O O

r R h v r
r

Δ
Δ Δ ω ω

Δ ω

− ⋅⎡ ⎤
⎢ ⎥≅ ⋅ − ⋅ = + =⎢ ⎥
⎢ ⎥⋅⎣ ⎦

r j
e r i v k

v j
, (4) 

where 3/ 1.2 mrad/sO rω μ= �  is the mean orbital rate, and ( ) 12 0.19 mHzO Of π ω−= ≅  the relevant 
frequency. 
 Assume now the LORF matrix to be directly measured from GPS measurements 

 
( ) ( ) ( )
( ) ( ) ( ) ,  

r j j r j

v j j v j j g

t t t

t t t t jT

= +

= + =

y r v

y v v
, (5) 

which are collected from GPS at a uniform sampling rate 1 / 1 Hzg gf T= = . Properties of GPS errors rv  and vv  

are not recalled here (see [7]), but they are assumed to be bounded by a discrete-time white and Gaussian noise, and 

their components to be statistically independent. Assume position and rate errors to be bounded as in Table 2, and 

denoted their standard deviations with rσ  and vσ , respectively. Then, replacing position and velocity errors in (4) 

with the GPS errors in (5), which corresponds to assume the equality 

 ( ) ( ) ( ) ( ),  j r j j v jt t t tΔ Δ= =r v v v ,  (6) 

 leads to the following white noise PSD components 

 
( ) ( )22

6.5
2 rad/ 8.5

Hz5.5/

0.5 0.5Hz

r
Ox

g
Oy r v O

Oz v O

g

S
T

S f
r

S

f f

σ
μσ σ ω

σ ω

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥≅ + ≤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦
≤ =

, (7) 
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 one for each LORF error component in (3). The acronym PSD means the root of the unilateral power spectral 

density, throughout.  

 Requirements to LORF estimation errors derive from the spacecraft attitude as the latter is defined by the body-

to-LORF transformation. LORF errors should be a fraction of the residual attitude as shown in Table 2, derived from 

the GOCE requirements. 

Table 2   

Bounds to LORF errors and attitude 

Variable Overall RMS 

[μrad] 

MBW PSD 

μrad/ Hz⎡ ⎤
⎣ ⎦  

LORF error 200 4.3 

Attitude 370 7.9 

 

The most stringent requirements in Table 2 occur in the MBW. The direct LORF measurement, being not 

compliant according to (7), justifies a real-time filter for recovering requirements with some margin. The filter will 

be designed in the form of a state observer around a stylized discrete-time dynamics called Embedded Model, as 

suggested in [4]. 

 

5 The Embedded Model 

First, orbit dynamics is derived in continuous-time. An alternative is to use local coordinates with respect to a 

circular orbit, which provides a version of Hill's equation; this way is not pursued here. The discrete-time model is 

derived for each inertial coordinate by exploiting their weak interactions due to a near-circular orbit and a near-

spherical gravity field. 

 

5.1  Orbit Dynamics 

Let us assume the LEO satellite is free-falling, i.e. a drag-free control cancels non-gravitational forces below a 

certain threshold. Then denote the residual non gravitational CoM acceleration, ideally held to zero, with a . The 
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inertial position [ ]TT x y z=r  is related to the Earth-fixed coordinates  through longitude λ , latitude θ  and 

radius r = r . Denote the Earth’s gravitational potential with ( ), ,U r λ θ ; the latter is usually expanded into 

complex spherical harmonics ( ),nmY θ λ  of degree n and order m, representing the combination of tesseral and zonal 

components of the geo-potential model, scaled by the complex spectrum nmK . By restricting the U  expansion  to 

spherical and 2nd order terms, and by confining higher order terms into the anomaly component Uδ , one obtains  

 ( )
2 2

2
3 1, 1
2 3

R zU r z J U
r r r
μ δ
⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= − − +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

, (8) 

where 3
2 1.08 10J −×�  accounts for the equatorial bulge, R  is the equatorial Earth radius, and the explicit terms in 

(8) are independent of the Earth’s rotation.  

The gravity acceleration U= ∇g , derived from (8), is written as follows 

 
2 2

2
3

3
5

2
J R zI I

r rr
μ Γ δ
⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= − − − +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

g r g , (9) 

where { }diag 1,1,3Γ = , { }diag 1,1,1I = , and the anomaly ( )δ g r  replaces Uδ . A further simplification comes by 

assuming a near-circular orbit as in GOCE. The explicit terms in (9) are expanded around the mean orbit radius 

r R h= +  with the care of preserving the perturbing terms of the same order of magnitude as 2J , and of confining 

residuals into ( )δ g r . That amounts to 1st order expanding the spherical term into 

 ( )( ) ( )2 2 21 3 1 / 1 3 cosT
O Orω ω ε θ− + − ≅ − +r r r r , (10) 

where 310ε −≤  is the orbit eccentricity and θ  the orbit anomaly; and to zero-th order expanding the flatness terms 

scaled by 2J . The final expression becomes  

 

( )( ) ( )( ) ( ) ( )
( ) ( ) ( )

( ) ( )

2

22
0 1

2 2
0 2 1 2

3 1 / /

15 3/ , /
2 2

O

T

t I t

r I z r I

J R r J R r

ω Ω δ

Ω γ Γ

γ Γ Γ

= − + ∂ +

∂ = − + −

= =

g r r r g r

r r r . (11) 
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Orbit dynamics can then be written as 

 
( ) ( )( ) ( ) ( )

( ) ( ) ( )

0
2

0

0 0
( ),  0

0 d
O

d

I
t t t

I I

t t t

ω Ω

δ

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
= +

rr r r
a

r vv v v

a a g

�
� , (12) 

having combined residual non-gravitational accelerations and gravity anomalies into da . CoM coordinates in (12) 

are each other connected through the weak perturbing term ( )Ω∂ r .  

 

5.2  Discrete-time Dynamics 

The Embedded Model according to [4] is consists of two interconnected parts: the controllable and the 

disturbance dynamics. Here we prefer avoiding the term ‘controllable’ and replacing it with ‘orbit’, since no orbit 

control is treated. The orbit being drag-free, the input to the controllable part is assumed being close to zero except 

for the gravity acceleration. The latter is partitioned into a position feedback to be part of the orbit dynamics, and 

into residual components modelled as an unknown disturbance driven by arbitrary signals, which may modeled as 

white noise vectors..  

Consider a time unit /g gT T n= , with 1gn ≥ , and assume 2 /O OT T π ω<< = , which implies (12) to be slowly 

varying during T , and the discrete-time version to become time-varying. The generic discrete time is denoted with 

it iT= . Formulation is restricted to a single generic CoM coordinate ,  1,2,3kr k = , and to its increment kv  [m], 

which components are collected into the state vector [ ]T
k k kr v=x . The orbit angular increment of the generic 

coordinate with ki kiTα ω= , kiω  being the time-varying angular rate, is written from (11) as follows  

 ( )( )( )2 2 2
ki O k iT I tα ω Ω= + ∂ r , (13) 

having denoted the k -th element of the diagonal matrix Ω∂  in (11) with kΩ∂ .The resulting discrete-time 

equation holds 
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( ) ( )( ) ( ) ( ) ( )

( ) ( )
( )( )

( )( )
( )1

0

1

1

1 ,  0

sinsincos
,  

sin cos cos

i

i

k k k k k k

ki iki
tki

kik k dkkit

ki ki ki ki i

i A i i i

t
A i a d

T t

ω ταα
α τ τω

α α α ω τ

+

+

+

+ = + =

⎡ ⎤−⎡ ⎤
⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥− −⎣ ⎦ ⎣ ⎦

∫

x r x d x x

r d
, (14) 

where dka  is a coordinate of da  in (12). 

By exploiting OT T<< , (14) can be further simplified in view of real-time computation by replacing 

trigonometric functions with polynomial expansions up to 2nd order terms in kiα , which yields 

 ( ) ( ) ( ) ( )1
2 2

1
2 2

1 / 2 1 / 6
1

1 / 2
τα α

τ τ
α α

+ +⎡ ⎤ ⎡ ⎤−− −⎡ ⎤ ⎡ ⎤
+ = +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

∫
i

i

tk k iki ki
dkt

k kki ki

r r t I
i i a d

v v T
. (15) 

Integration in (15) is solved 

 (i) by defining a disturbance increment ( )kd i , in length units [m], as follows 

 ( )1( ) i

i

t

k dkt
d i T a dτ τ+= ∫ ; (16) 

(ii) by dropping the direct effect of dka  on ( )( ) 1 ( )k k kv i r i r i= + − , as it corresponds to time integration of the 

unique disturbance source ( )kd i .  

The result is the discrete-time version of a time-varying oscillator having a very long period with respect to the 

time unit T , and being subject to an acceleration disturbance 

 
( ) ( ) ( ) ( )

( )
2 2

2 2

1

01 / 2 1 / 6
,  

11 / 2

k ck k c k

ki ki
ck c

ki ki

i A i i B d i

A i B
α α
α α

+ = +

⎡ ⎤− − ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥− − ⎣ ⎦⎣ ⎦

x x

. (17) 

The state matrix ( )ckA i  is slowly time-varying with the orbit angular increment kiα , and has eigenvalues slightly 

off the unit circle, but they will be stabilized by the state observer. The LORF observer (Section 6) is designed to 

have constant eigenvalues through time-varying feedback gains.  

5.2.1 Disturbance dynamics and noise design 

Disturbance dynamics is synthesized starting from the experimental PSD of the CoM disturbances [5, 6]. 



Acta Astronautica 66 (2010) 446 -- 454 

12 
 

1) Residual non-gravitational acceleration may be approximated as a wide-band noise within the MBW, 

and therefore is simply modelled as a white noise 0kw . Drifts due to accelerometers are instead 

included in the gravity anomaly dynamics as follows. 

2) Gravity anomalies and modelling errors in the spherical and J2 terms are modelled from the spectral 

density of the gravity anomalies reported in Fig. 3.  

3) At the end, the total disturbance kd  is decomposed into the sum of a white noise 0xw , and of two 

random drifts [ ]1 2
T
k k kz z=z , driven by a pair of white noises 1kw  and 2kw , which are collected 

together with 0kw  into kw . 

The resulting disturbance dynamics of a generic coordinate is 

 
( )
( 1) ( ) ( )

( ) ( ) ( )
k d k d k

k c k c k c k

i A i G i
i B d i H i G i
+ = +

= = +

z z w
d z w

, (18) 

and the relevant matrices hold 

 1 1 0 1 0 0 0 0 0 0
, , ,  

0 1 0 0 1 1 0 1 0 0d d c cA G H G⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. (19) 

The 2nd order dynamics (18)  agrees with the Kaula’s rule [1], since the latter approximates the amplitude 

,  1nK n >> , of the higher-degree spectrum of Uδ  in (8) as  

 ( ) 25 210 ,   2 1
n

n n nm
m n

K n K n K− −

=−

= + ∑� . (20) 

Replacing 2n−  in (20) with the Fourier frequency f  [Hz] as follows  

 
22

2

2
OO

f
n

f f
ω
π

− ⎛ ⎞⎛ ⎞
= = ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

, (21) 

implies the spectral density of the Earth’s gravity accelerations to roll off at -40 dB/decade just after the resonances 

at the 1st and 3rd orbit harmonics due to the J2 term, which is confirmed by Fig. 3. Spectral densities were obtained 

from the simulated time profiles of the gravity acceleration anomalies in J2000 coordinates. Experimental 

coefficients nmK  up to degree 36n =  and stochastic extrapolation up to 1 Hz were employed to the purpose. 
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Fig. 3. Simulated PSD of the gravity acceleration anomalies 

 
 
 
 

5.3  Embedded Model and Error Dynamics 

 The complete model of a single coordinate, obtained by  combining (17) and (18), is rewritten by dropping 

subscript k  and adding the subscript m , that stands for model: 

 

( )

( )

( ) [ ]

( 1) ( )

( )

,  ,  0
0

m m

m m

m
m

m

cc c

dd

i F i G i

i C i

GA i H
F G C I

GA

⎡ ⎤ ⎡ ⎤
+ = +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

x x
w

z z

x
y

z
. (22) 

Note ( )( )( )c c mA i A i= r  depends on the state itself through the perturbing term 2
iα  defined in (13), and the equation 

size holds 

 
dim 2,  dim 3

dim 2,  dim 2
y m w

c d

n n

n n

= = = =

= = = =

y w

x z
. (23) 
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Denote now the vector of the GPS measurements in (5) with ( )iy . It is related to the model output my  in (22) 

by the model error m= −e y y , which according to [4] is the composition of the open-loop error dynamics 

( ),...m∂P y , in fractional form, and of a residual noise v  including GPS measurement errors in (5). The model error 

relation is written as 

 ( ) ( ) ( )( ) ,...m mi i i= + ∂ +y y P y v . (24) 

 A state representation of ( )∂ ⋅P  can be derived from Eqs. (14), (22) and (24) upon definition of the state and 

disturbance errors  

 ( ) ( ) ( ) ( ) ( ) ( ),  x m di i i i i i= − = −e x x e a d . (25) 

Then taking the difference of (14) and (22) leads to the state equation of ( )∂ ⋅P  

 
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 ,x x m m d

x

i A i A i i

i i i

Δ+ = + +

= +

e r e r r y e

e e v
, (26) 

where ( )A r  is the state matrix in  (14) , and the input matrix ( ), mAΔ r r  may  be expanded as 

 ( ) ( ) ( ) ( )( )( ) ( )2
0 1, m c m i mA A A A i AΔ δ α δ= − = ∇ − +r r r r r r r r . (27) 

Expansion coefficients in (27) hold 

 
( ) ( )

( )( ) ( )

4
0 1

2 2 2 2

1 / 2 1 / 6
,  

1 1 / 2

3

i

T
i m O m

A A o

T r

δ δ α

α ω −

− −⎡ ⎤
= =⎢ ⎥− −⎣ ⎦

∇ − − −

r

r r r r r r�
, (28) 

having defined ( )1 mγ γ= + −r r r , with 0 1γ≤ ≤ , so as to preserve equality in. (27). Note that the error 

dynamics ( )∂ ⋅P , being driven by the model output my , modifies when the Embedded Model converts into a state 

observer, which is obtained by connecting the driving noise w  to the model error e  as in Fig. 1.  
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6 Noise Estimator and State Observer 

When the driving noise w  of the disturbance dynamics in (18) is estimated from the model error e  in (26), the 

Embedded Model converts into a state observer, which allows estimating and predicting in real-time orbital and 

disturbance state variables. 

6.1  State Prediction 

State prediction is strictly related to the noise design ending into (18). As in Kalman filtering, model error e  is 

the source for real-time estimating noise w , or better, some causal combination of past values. Unlike classical 

predictors where driving noise is acting on each state variable, noise channels in  (17) and (18) are preserved, which 

implies no driving noise directly perturbs the rate kv  as it is clear from (17). As explained in [5], such a constraint 

may require a dynamic noise estimator when  

 x c d w yn n n n n= + > × , (29) 

 which is not the present case, since both position and rate measurements are available. A static noise estimator 

applies and holds 

 ( ) ( ) ( ) ( )ˆ( ),  ( ) mi L i i i i i= = −w e e y y , (30) 

where 

 (i) bar and hat account for estimator inaccuracies to be treated below,  

(ii) the gain matrix ( )L i , sized 6 4w y xn n n× = > = , must be time-varying to force closed-loop dynamics (model 

and noise estimator) to be LTI. 

Since ( )L i  is oversized with respect to state size in (23), some entries can be set to zero, while respecting 

stability. Denote the entries of ( )L i  as follows 

 
0 0

1 1

2 2

( ) ( )
r v

r v

r v

l l
L i l l i

l l

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (31) 
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and compute the characteristic polynomial ( )P γ  of the state predictor 

 ( ) ( ) ( )
( ) ( ) ( )

ˆ ˆ
ˆ ˆ1 ( ) ( ),  ( )

ˆ ˆ
m m cc c c

m m
m m dd d

GA i G L i H
i i L i i i i

GG L i A
⎡ − ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤

+ = + =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

x x
y y x

z z
. (32) 

 Straightforward computation, upon definition of 1γ λ= − , λ  denoting a generic eigenvalue, yields 

 

( )

( )( ) ( )
( )

( )

4 3 2
3 2 1 0

2
3

2 2 2 2
2 1 0

2 2
1 1 1 2

2 2
0 2 2

1 / 4 / 2 / 2

1 / 4 / 2

/ 2 1 / 4

ov i

v i r i i ov i

i r v i v

v i i r

P c c c c

c l

c l l l

c l l l

c l l

γ γ γ γ γ

α

α α α α

α α

α α

= + + + +

= +

= + + − + +

= − + +

= + −

, (33) 

 where the polynomial coefficients, depending on the closed-loop eigenvalues ,  1, ,h xh nλ = …  are constant and 

possess a multiple of solutions. To find a unique solution, simplify (33) by setting 2 0iα = , which leads to four 

equalities 

 3 2 1 0

1 2 1 0 2

,  
,  

ov v r

v r r

c l c l l
c l l c l

+

+

� �
� �

. (34) 

Four alternative solutions of (34) exist, if useless coefficients are set to zero as in Table 3. 

Table 3 Noise estimator alternative 

Case 1vl  2vl  0rl  1rl   

0 0 0 X X Higher noise 

1 0 X X 0 Intermediate 

2 X 0 0 X Intermediate  

3 X X 0 0 Lower noise  

X stands for not zero 

 

Table 3 and (34) show that 

(i) in the case 3, the rate measurement alone is sufficient for estimating all noise components;  
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(ii) the position measurement is necessary for guaranteeing closed-loop stability, as the last equation in (34) 

evinces. 

Since position measurement is much noisier than rate as Table 1 shows, case 3 in Table 3 must be selected, as it 

agrees with the Kalman filtering guideline, proper of any measuring strategy, of reducing to a minimum any 

measurement noise passing through the noise-estimator feedback channels. A formal proof may be provided. 

 

6.2  Predictor-Corrector scheme 

 Actually, prediction equation (32) can only be implemented with ( ) 0L i =  because of the lower measurement 

rate 1 1
gT T− −< . This implies conversion to predictor-corrector scheme. Several schemes are possible. Denote with 

j gt jT=  the measurement times, such that ( ) ji jt t=  for ( ) gi j n j= . At each time jt  the prediction correction is 

invoked 

 ( ) ( )
( ) ( )( )ˆ

( ) ( )
ˆ

m m c

m m d

K j
j i j i j

K j
⎡ ⎤⎡ ⎤ ⎡ ⎤

= + ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x x
e

z z
, (35) 

 where variable gains depend on the predictor gain ( )( )L i j  through  

 
( )
( )

( )( ) ( )
1

( )
0

c c cc

dd d

A i j H GK j
L i j

GK j A

−
⎡ ⎤⎡ ⎤ ⎡ ⎤

= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

. (36) 

At each step i  the predictor (30) is invoked with ( ) 0L i =  and initial conditions 

 ( ) ( )ˆ ˆ( ) ( ),  ( ) ( )m m m mi j j i j j= =x x z z . (37) 

 Computing burden due to variable gains may be reduced either by decomposing the gain into steady and variable 

parts, or, more drastically, by reducing Eq. (22) to be LTI, which is obtained by treating the variable part of (13) as a 

known disturbance.  

 In the above scheme, asymptotic stability of the closed-loop state matrix in (32) is not sufficient to guarantee 

predictor-corrector stability, since, using notations in (22), the multi-step prediction matrix holds 
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 ( ) ( ) ( ) ( )( ) ,  0,..., 1h
h gF j F j F j GL j C h n= − = − . (38) 

 The drawback may be circumvented by rewriting (33) in terms of the characteristic polynomial of 

( ) ,  1h gF j h n= − . An alternative scheme, free of stability problems, is to implement (32) at each measurement time 

j gt jT=  and then interpolate during gT . 

 

6.3  Stability in presence of model uncertainty 

 According to (26), the neglected dynamics ( ),...m∂P y  repeats the 'true' dynamics in Eq. (14) less a forcing error 

depending on my , and due to approximate gravitational acceleration. Let us restrict to one-step predictor (32): 

though the predictor is forced through ( )L i  to be asymptotically stable, the same cannot be said for the orbit 

prediction error ˆ ˆx m= −e x x , which replaces xe  in the error equation (26). Decomposition of ˆ xe  into 

 ( ) ( ) ( ) ( )ˆ ˆx x m mi i i i= + −e e x x , (39) 

and combination of (26) with (32), converts the open-loop error dynamics (26) into  

 ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ, , ˆ1 ( )
ˆ ˆ 00

cx xc c m c m
m d

dz zd d

GA i G L i A H IA
i i i i L i i

GG L i A
Δ Δ⎡ ⎤− + ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤

+ = + + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦

e er r r r
y e v

e e
. (40) 

Stability of (40) is only affected by the structured uncertainty ( ), mAΔ r r , as it perturbs the stable predictor state 

matrix in (32): indeed, all forcing signals in (40) are bounded either because of predictor stability which is the case 

of ( ) ( )ˆ, m mA iΔ r r y , or by construction, in which is the case of disturbance residual ( )d ie , and of measurement 

noise ( )( )cG L i iv . Stability of (40) may be guaranteed by different methods (see for instance [8] and [9]). In [4] and 

[10] stability is afforded by showing that the error dynamics (40) is the output of the open-loop error dynamics ∂P  

in (24), but filtered by the state predictor sensitivity mS , and by guaranteeing the harmonic inequality 

 ( ) ( )
max maxmax 1,  0.5 /m gf f jf jf f Tη< ∂ ≤ < =S P , (41) 

where ⋅  is a suitable norm. Computation, omitted for brevity’s sake, and simplification lead to  

 ( ) ( )
max

2

2
min

max 1O
mf f

f
jf jf

f< ∂ < <S P , (42) 
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where minf  is the predictor BW, which can be explicitly related to noise estimator gains in (31). Inequality (42) is 

consistent with the BW upper bound imposed by the measurement errors as shown in Section 7. 

 

7  Simulated Results 

 Simulated results refer to GOCE mission during 42 hours (150 ks), that corresponds to about 30 orbits. Table 4 

shows the a-posteriori error statistics (RMS) for the different LORF axes: the total RMS is shown together with the 

MBW and higher frequency components. Being a real-time estimate, low frequency residuals dominates due to the 

relevant components of the measurement errors which are integrated during the filter time constant, a fact that 

harmonic analysis, not treated here, would predict. 

Table 4  

LORF error RMS [ ]μrad  

Axis Total (target) MBW  HF 

x 0.48 (200) 0.08 0.001 

y 4.0 (200) 0.8 0.03 

z 1.6 (200) 0.04 0.03 

 

 The total RMS in Table 4 is largely lower than target in Table 2, showing filter efficiency. Figure 4 shows the 

time history of the along-track error: the MBW component is much lower than the total error as expected, being 

progressively attenuated by the filter narrow BW. 
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Fig. 4. LORF along-track error (x axis) and MBW component (narrow strip). 

 
 Considerations stemming from Fig. 4 are confirmed by the error PSD in Fig. 5, which shows a wide margin 

with respect to the target bound. Out-of-plane and radial (lateral) components overlap, whereas the along-track 

error appears much lower. The reason is due to different residual non-gravitational acceleration, which should 

be ideally zeroin case of a drag-free control acting on each axis. The latter is the case of the along-track axis, 

where low-frequency drag-free residuals are only due to accelerometer bias and drift. On the  on the contrary, 

lateral non gravitational accelerations (see [5]) were not counteracted in the frequency region below the MBW 

for reasons of propellant saving. That implies radial and cross-track oscillations of the orbital motion, which 

have been deemed of no detriment to mission. Actually, having renounced to micro-propulsion [5], no lateral 

drag-free is performed on the GOCE satellite.  
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Fig. 5. LORF error PSD. 

Figure 5 shows the observer BW to approach 1 mHz, close to the mean orbit frequency Of , because of the GPS 

measurement errors. Only accurate orbit and disturbance dynamics can cope with such a narrow BW and the 

stability inequality (42). 

Figure 6 overlaps the pitch attitude with the corresponding LORF error; time unit is ks. Two mission phases are 

shown: in the former one, ending at about 80 ks, attitude is just measured by star trackers measurements, which are 

affected by large noise and bias; in the latter, data fusion between payload accelerometers and star trackers allows 

cancelling high frequency noise: bias of course remains. 
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Fig. 6. Residual attitude and LORF error. 

 



Acta Astronautica 66 (2010) 446 -- 454 

22 
 

 
 

8 Conclusion 

A state predictor for the real-time estimation of the local orbital frame of drag-free LEO satellites was presented. 

It is designed as a predictor-corrector around an Embedded Model of the orbit dynamics relying on accurate 

controllable (orbit) and disturbance dynamics. Simulated results are compatible to GOCE target bounds, showing 

margin. 
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