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Abstract—Early P2P-TV systems have already attracted mil-
lions of users, and many new commercial solutions are entering
this market. Little information is however available about how
these systems work. In this paper we present large scale sets
of experiments to compare three of the most successful P2P-TV
systems, namely PPLive, SopCast and TVAnts.

Our goal is to assess what level of “network awareness” has
been embedded in the applications, i.e., what parameters mainly
drive the peer selection and data exchange. By using a general
framework that can be extended to other systems and metrics,we
show that all applications largely base their choices on thepeer
bandwidth, i.e., they prefer high-bandwidth users, which is rather
intuitive. Moreover, TVAnts and PPLive exhibits also a preference
to exchange data among peers in the same Autonomous System
the peer belongs to.

However, no evidence about preference versus peers in the
same subnet or that are closer to the considered peer emerges.
We believe that next-generation P2P live streaming applications
definitively need to improve the level of network-awareness, so to
better localize the traffic in the network and thus increase their
network-friendliness as well.

I. I NTRODUCTION AND MOTIVATIONS

P2P-TV systems are candidates for becoming the next
Internet killer applications as testified by the growing success
of commercial systems such as PPLive [1], SopCast [2] and
TVants [3], which have already attracted an audience up to
several millions of users and drawn the attention of Telecom
operators and Service providers.

However, little information is available about the internal
algorithms and protocols used by these applications, whichare
proprietary and closed. Therefore, the very same potentialities
of P2P-TV systems constitute a worry for network carriers
since the traffic they generate may grow without control,
causing a degradation of the quality of service perceived
by Internet users or even the network collapse (beside the
consequent failure of the P2P-TV service itself). This has
motivated further research [4], [5], [6], [7], [8], [9], [10],
[11], [12], aimed at understanding these systems through
on-field measurements. Most work, though, focuses on the
study of a single P2P-TV system [4], [5], [6], [7], [8], [9],
[10]. For instance, active crawling methodologies are usedto
investigate PPLive [4], CoolStreaming [5] and UUSee [6].
The downside of this approach is that it relies on heavy
reverse engineering, hardly extendable to characterize all the
possible P2P-TV applications. Other works instead focus on

very specific aspects of P2P streaming systems: e.g., node
degree of popular versus unpopular channels [7] and node
stability [8], while quality of service is of concern in [9],[10].

While all the above are valuable works, the risk is that obser-
vation gathered from a single system cannot be generalized.
However, to date, very few measurement studies exist that
compare different systems [11], [12], which are closer to our
work. Considering PPLive and SopCast, [11] limitedly focuses
on the temporal evolution of different metrics (e.g., like trans-
mitted/received bytes, number of parents and children, etc).
Authors in [12] instead compare PPLive, PPStream, SopCast
and TVAnts, by means of flow-level scatter plots of mean
packet size versus flow duration and data rate of the top-10
contributors versus the overall download rate.

Therefore, despite the above works pose a first important
milestone, a more systematical analysis is needed to provide
a deeper understanding of the impact that a large deployment
of general P2P-TV services may have on the Internet. This is
precisely one of the goals of the recently funded Project called
“Network-Aware P2P-TV Application over Wise Networks”
(NAPA-WINE) [13]. In this paper, we aim at providing an
assessment of level of “network awareness” embedded in the
currently deployed systems; that is the capacity of the P2P
application to discovery some properties of the underlying
network and to exploit them to optimize its decisions. To
determine if a P2P-TV application is “network-aware” is
equivalent to answer the questions: does it randomly select
peers? Or does it preferentially look for high-bandwidth peers?
Is the traffic confined within the same Autonomous System
the peer belongs to? Does it preferentially download traffic
from nearby nodes? Hence we defined a methodology, and
focusing on SopCast, PPLive and TVants, we inferred their
level of network awareness from the characteristics of the
traffic they generate. We believe our work to be novel in two
main aspects. The first is the aim, as we focus on a systematic
exploration of the metrics, if any, that drive the P2P steaming
in different systems. A second important difference lies on
the scale of the testbed, which in our case involves more
than 40 vantage points scattered across European countries
and it is representative of very different network setups.
Finally, the presented results underline the current need for the
development of new and network friendly P2P-TV systems, an
interesting topic deserving future research.



TABLE I
SUMMARY OF THE HOSTS, SITES, COUNTRIES(CC),AUTONOMOUS

SYSTEMS(AS) AND ACCESS TYPES OF THE PEERS INVOLVED IN THE

EXPERIMENTS.

Host Site CC AS Access Nat FW
1-4 BME HU AS1 high-bw - -

5 ASx DSL 6/0.512 - -
1-9 PoliTO IT AS2 high-bw - -
10 ASx DSL 4/0.384 - -

11-12 ASx DSL 8/0.384 Y -
1-4 MT HU AS3 high-bw - -
1-3 FFT FR AS5 high-bw - -
1-4 ENST FR AS4 high-bw - Y

5 ASx DSL 22/1.8 Y -
1-5 UniTN IT AS2 high-bw - -
6-7 high-bw Y -

8 ASx DSL 2.5/0.384 Y Y
1-8 WUT PL AS6 high-bw - -

9 ASx CATV 6/0.512 - -

II. EXPERIMENTAL SETUP

The results of this paper are based on a large testbed
we setup, whose main features are summarized in Tab. I.
Partners took part in the experiments by running P2P-TV
clients on PCs connected either to the institution LAN, or
to home networks having cable/DSL access. In more detail,
the setup involved a total of 44 peers, including 37 PCs from
7 different industrial/academic sites, and 7 home PCs. Probes
are distributed over four countries, and connected to 6 different
Autonomous Systems, while home PCs are connected to 7
other ASs and ISPs. Therefore, the setup is representative of
a significant number of different network environments.

We considered three different applications, namely PPLive,
SopCast and TVAnts and we performed several 1-hour long
experiments during April 2008, where partners watched the
same channel at the same time and collected packet-level
traces. Since P2P-TV application are mostly popular in Asian
countries, we tuned each application to CCTV-1 channel
during China peak hours [4]. In all cases, the nominal stream
rate was 384kbps, Windows Media 9 Encoder was used, and
the video quality perceived by partners was not remarkably
different across systems. Results reported in this paper refer
to more than 120 hours of experiments, corresponding to more
than 140.000.000 collected packets. Collected traces are also
made available to the research community from the NAPA-
WINE website upon request.

A short summary of the experiments is given in Tab. II,
which reports the mean and maximum values, as seen by
NAPA-WINE peers, of i) the stream rates (in upload and
download directions), ii) the number of peers and iii) the
number ofcontributing peers for the different applications.
By contributing peers, we denote peers with whom some
video segment has been exchanged, either in upload (TX) or
in download (RX), and that are identified according to the
heuristic in [14], which we verified to give accurate and
conservative results. Asignificant heterogeneityacross systems
emerges from the data: for instance, despite the received
stream rate is similar across systems (PPLive one being larger
in reason of a larger signaling overhead tied to the number
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Fig. 1. Geographical breakdown of the number of peers, transmitted and
received bytes.

of peers contacted), the number of contributing peers varies
widely from an average of 58 peers in the TVAnts and 391 for
PPLive. Also, notice that PPLive potentially uses a significant
amount of peers’ resources, as the average (maximum) upload
rate reaches about 3 Mbps (12 Mbps) for peers in our testbed.

To complete a brief overview of the experiments, Figure 1
shows the geographical distribution of the number of contacted
peers (#) and the amount of received (RX) and transmitted
(TX) bytes. The labels on the bars refer to China (CN) and the
four countries in which experiments were performed, with the
rest of the Countries labeled “*”. Percentages are expressed
over the total number of observed peers, which amounts to
4057 for SopCast, 550 for TVAnts, and 181729 for PPLive. As
expected, China is the predominant country, though it is easy
to gather that a non negligible fraction of the data is exchanged
within European countries: this hints to the existence of a bias
in the peer selection, which we will dig more rigorously in the
following section.

III. PEER SELECTION: METHODOLOGY AND ANALYSIS

As previously stated, our aim is to develop a rigorous frame-
work to unveil the “network-awareness” exhibited by P2P-
TV applications, i.e., which network parameters current P2P-
TV systems take into account when distributing the stream.
Among all the possible properties that can be used, we have
to pick those wich: (a) can be measured quite simply from
the application’s point of view, (b) can be drawn off-line from
packet traces. For example, an application can not discover
path costs unless this information is given by the AS; on the
contrary, it is straightforward to actively measureRTT between
two end-points but it is very hard to infer it passively. Taking
into account these requirements, as network properties, we
consider:

• BW: the peer access capacity
• AS: the Autonomous System a peer is located in
• CC: the Country a peer belongs to
• NET: the subnetwork a peer belongs to



TABLE II
SUMMARY OF EXPERIMENTS: MEAN AND MAXIMUM VALUES OF STREAM RATES , OVERALL NUMBER OF PEERS AND NUMBER OF CONTRIBUTING PEERS

FOR THE DIFFERENT APPLICATIONS

Stream RX [kbps] Stream TX [kbps] All peers Contrib. RX Contrib. TX
App. Mean Max Mean Max Mean Max Mean Max Mean Max
PPLive 552 934 3384 11818 23101 39797 391 841 1025 2570
SopCast 449 542 293 1070 776 1233 139 229 152 243
TVAnts 419 478 464 1001 229 270 58 90 75 118

• HOP: the distance measured in hop number between two
peers

In the following, we propose a general framework to highlight
the possible preferences.

A. Framework Definition

Let p ∈ W denote a peer that belongs to the NAPA-
WINE probe setW . Let P(p) denote set of peersp exchange
data with: with respect to our previous terminology, in the
following we will in other words restrain our attention to the
set of “contributors”. Considering contributing peers, let U(p)
denote the subset of peers whichp is uploading video content,
andD(p) the subset whichp is downloading from.U(p)∩D(p)
represents the set of peers that are both downloading/uploading
video from/top.

Let e ∈ P(p) be an arbitrary peer that exchanges traffic with
p. Denote byB(p, e) the amount of bytes transmitted fromp
to e, so thatB(e, p) represents the amount of bytes received
by p from e.

Consider now a generic network parameterX(·), and denote
by X(p, e) ∈ X the observed value ofX(·) for peer pair(p, e).
X is the support of metricX(·). We partitionP(p) into two
classes based onX(p, e), such that one class should intuitively
be preferred from the P2P application (e.g., high-bandwidth
vs low-bandwidth peers). More formally, we partition the
supportX into two disjoint sets: a preferred setXP and its
complementXP , such thatXP ∪XP = X andXP ∩XP = ∅.

For ease of notation, let1P (p, e) be an identity function
which is equal to 1 whetherX(p, e) ∈ XP and 0 otherwise;
similarly, 1

P
(p, e) = 1− 1P (p, e). Without loss of generality,

let us focus on the upload traffic of a NAPA-WINE probe
p ∈ W , and further define1:

PeerU|P (p) =
∑

e∈U(p)

1P (p, e) (1)

ByteU|P (p) =
∑

e∈U(p)

1P (p, e) · B(p, e) (2)

Peer
U|P (p) =

∑

e∈U(p)

(1 − 1P (p, e)) (3)

Byte
U|P (p) =

∑

e∈U(p)

(1 − 1P (p, e)) · B(p, e) (4)

The functionPeerU|P (p) states the number of peers of which
p is a contributor and which belongs to the preferential parti-
tion XP . Similarly,ByteU|P (p) represents the total amount of

1SubscriptU or D denotes the upload and download traffic respectively.

bytes uploaded from peerp to peers in its preferential partition
XP . Conversely,Peer

U|P (p) and Byte
U|P (p) represent the

number of peers and bytes to whichp is uploading despite
they belong to the non-preferential partitionXP . Considering
now the whole set of NAPA-WINE probes, we define the total
amount of peers and bytes as:

PeerU|P =
∑

p∈W

PeerU|P (p) (5)

ByteU|P =
∑

p∈W

ByteU|P (p) (6)

Similar definition holds forPeerU|P andByteU|P ; notice that
a peere may be counted more than once, e.g., if it exchanges
traffic with more than one NAPA-WINE peer.

Finally, we define the peer and byte preference as:

PU = 100
PeerU|P

PeerU|P + PeerU|P

(7)

BU = 100
ByteU|P

ByteU|P + ByteU|P

(8)

Intuitively, PU expresses the chance that the peer selection
mechanism favors the discovery and data exchange among
peers belonging to the preferred partitionXP . Similarly, BU

quantifies the chance that any given byte is uploaded to peers
belonging to theXP class. Clearly, the greaterPU andBU are,
the greater the bias with respect to the preferential partition of
metric X is. The advantage of using these simple metrics is
that they allow adirect and compactcomparison of different
network properties and P2P systems, since they are neither
sensitive to the unit of measure nor to the actual magnitudo
of the X metric.

Downlink metricsPD and BD can be defined by simply
consideringe ∈ D(p) in the previous derivation.

B. Preferential Partitions

As preferential classes, we consider the following:

• BW: 1P (e, p) = 1 ⇔ BW (e, p) >
10Mbps ⇔ min IPG(e, b) < 1 ms,
i.e., peere is a high-bandwidth peer, as it can be
inferred from the minimum inter packet-gap (IPG);

• AS: 1P (p, e) = 1 ⇔ AS(p) = AS(e), i.e., both peers
are located in the same Autonomous System;

• CC: 1P (p, e) = 1 ⇔ CC(p) = CC(e), i.e., both peers
are located in the same Country;

• NET: 1P (e, p) = 1 ⇔ HOP (e, p) = 0, i.e., peers
belongs to the same subnet;



• HOP: 1P (p, e) = 1 ⇔ HOP (e, p) < median[HOP ],
i.e., the number of hops betweene andp is smaller than
the median distance.

While for most properties the preferential set choice is
straightforward, the BW and HOP cases require additional
discussion. Considering HOP metric first, the hop count
HOP (e, p) has been evaluated as 128 minus the TTL of
received packets, since 128 is the default TTL considering
Windows O.S. As threshold to define two classes, we use
the median of the distance distribution as threshold. Since
the actual HOP median ranges from 18 to 20 depending on
the application, we use a fixed threshold of 19 hops for all
applications. This means that, approximately 50% of the peers
falls in the preferential class, which includes the shorterpaths.

Considering BW, we infer whether a peere has an high-
bandwidth path top considering the minimum inter packet-gap
(IPG) of the packet it sends top. Since we are considering
contributor traffic, a significant number of video chunks are
sent by the transmitter. Being a chunk built of several packets,
the source transmit them in a burst, so that they are sent as
a train of packets. They can be then considered as several
“packet-pairs”, that can be used to infer the bottleneck capac-
ity. By measuring the minimum IPG, it is possible to easily
classify a peer as a high- or low-bandwidth peer, using 1 ms
threshold, which corresponds to the transmission time of a
1250 bytes packet over a 10 Mbps link. Evidence of this is
available in [14].

C. Preliminary Analysis and Issues

Given the black box approach based on passive mea-
surement, several issues could undermine the significance
of the results unless carefully dealt with. The first issue is
that the NAPA-WINE probesself-induce a biasduring the
experiments. Recall that among NAPA-WINE peers there
are several high-bandwidth peers, located in Europe only,
that belongs to the same LAN within single institutions.
This possibly represents an uncommon population subset. To
overcome this limitation, we have to properly handle the self-
induced bias by conditioning the observation set accordingly.
A quantification of the self-induced bias is given in Tab. III.
It reports the percentage of peers and bytes exchanged among
NAPA-WINE peers, considering contributors only, or all peers.
A first important remark holds: NAPA-WINE peers clearly
prefer to exchange data among them. For example, considering
contributors in the PPLive experiment, NAPA-WINE peers
contribute to more than 3.5% of exchanged data, even if they
represent only 1% of the contacted peers. Similarly, they are
10% and 30% of observed peers considering SopCast and
TVAnts respectively, but they contribute to 18% and 56%
of exchanged bytes. We stress that by considering the set of
peers other than NAPA-WINE, it will be possible to highlight
and quantify which properties of the NAPA-WINE peers
causes such a strong bias. Thus, to solve the issue concerning
the self-induced bias, we explicitly filter the contributorset
P ′(p) = P(p) \ W in the above formulation, over which to
evaluateP ′

D, P ′
U , B′

D, B′
U accordingly. Intuitively, restricting

Contributors All-peers
App Peer% Bytes% Peer% Bytes%
PPLive 0.95 3.54 0.10 3.33
SopCast 10.25 17.71 4.60 19.45
TVAnts 29.82 56.31 15.56 56.06

TABLE III
NAPA-WINE SELF-INDUCED BIAS

the observation toP ′ is equivalent to consider peers not
involved in the experiment, i.e., to get rid of NAPA-WINE
probe bias. For example, we expect that a preference versus a
metric noticed in the full contributor set should be noticeable
also in the set deprived of NAPA-WINE probes. In case the
bias is still evident, then the preference wasnot artificially
self-induced by NAPA-WINE peers.

Another issue concerns the fact that it exist acorrelation
between the considered metrics: for example, peers within the
same subnetwork (NET=1) traverse zero hop (HOP=0) paths
and belong to the same Autonomous System (AS) and Country
(CC) as well. It may be therefore difficult to properly isolate
the impact of each metric. At the same time, this correlation
is likely to hold for the NAPA-WINE probes mainly, since
they forms “clouds” of high-bandwidth PCs within the same
LAN, CC, and AS. Considering the setP ′, it will be possible
to identify which metric is having the highest impact, being
the correlation smaller.

Finally, the directionality of the network property under
consideration must be carefully handled. Indeed, we only
dispose of information available at single vantage points in the
network, collected at either the information source or sink. In
particular, considering HOP metric, we can only directly mea-
sureHOP (e, p), but notHOP (p, e) which can be in general
different from HOP (e, p) due to Internet path asymmetry.
However, we point out that the adoption of a coarse-granularity
set should minimize the directionality issue. Indeed, it islikely
that HOP (e, p) ∈ HOPP => HOP (p, e) ∈ HOPP as
well, i.e., it is unlikely that the reverse pathHOP (p, e) is
short when the direct pathHOP (e, p) is long. Similarly,
access bandwidth BW of a non NAPA-WINE peere can
be inferred only considering the uplink direction of peere,
thus only provided thate is one ofp’s contributors. However,
in our experiments, theU(p) and D(p) sets are typically
disjoint, which significantly limits the set of peers of which
we are able to assess the access capacity: therefore, in order to
gather conservative results, in the following we will limitedly
consider the downlink direction for the BW metric.

IV. EXPERIMENTAL RESULTS

Empirical evaluation of PPLive, SopCast and TVAnts
network-awareness is reported in Tab. IV. Specifically, we
report, for both upload (U ) and download (D) directions,
the peer-wise (P ) and byte-wise (B) preference metrics for
each of the different network properties early considered.
Tab. IV details results considering to the whole contributor



Download Upload
Non-Napa All Contributors Non-Napa All Contributors

Net App B′

D
% P ′

D
% BD % PD % B′

U
% P ′

U
% BU % PU %

BW PPLive 95.9 85.9 95.6 86.1 - - - -
SopCast 98.2 83.3 98.5 85.3 - - - -
TVAnts 96.5 83.2 98.2 89.6 - - - -

AS PPLive 6.5 0.6 12.8 1.3 0.8 0.2 1.8 0.5
SopCast 0.6 0.7 3.5 3.9 1.7 0.7 6.4 3.9
TVAnts 7.3 3.3 32.0 13.5 11.6 1.8 30.1 9.6

CC PPLive 6.5 0.6 13.1 1.4 1.1 0.3 2.1 0.6
SopCast 0.6 0.8 4.0 4.4 1.7 0.8 7.2 4.4
TVAnts 7.6 4.0 37.9 16.3 14.3 3.1 37.7 12.5

NET PPLive - - 9.9 0.8 - - 1.4 0.3
SopCast - - 2.0 2.6 - - 3.5 2.6
TVAnts - - 18.1 6.7 - - 18.1 5.4

HOP PPLive 42.2 41.1 51.4 42.4 30.4 40.4 31.7 41.0
SopCast 29.0 40.7 37.9 48.0 45.9 43.0 56.9 49.8
TVAnts 62.1 55.0 81.1 71.9 57.8 53.0 78.9 67.2

TABLE IV
NEWORK AWARENESS ASPEERWISE ANDBYTEWISE BIAS

set (PU , PD, BU , BD) or to the contributor set excluding the
NAPA-WINE probes (P ′

U , P ′
D, B′

U , B′
D).

A. BW Awareness

As previously stated, in this case we are able to confidently
infer the access capacity of peers only provided that they are
uploading video content to a NAPA-WINE peer: therefore,
we are forced to limitedly consider the downlink directions.
From Tab. IV it can be clearly seen that, for all applications,
a very strong preference for high-bandwidth peers is shown.
Indeed, high-bandwidth peers represent 83% – 86% of the
contributors, from which 96% – 98% of the traffic is received.
This clearly shows that all applications are i) very efficient
in pinpointing high-bandwidth peers, that ii) are then prefer-
entially exploited to download the stream. The NAPA-WINE
peers add little bias, so that percentages do not change much
by excluding them from the statistics.

Not surprisingly, we can conclude that BW-awareness is
definitively embedded in all P2P-TV applications.

B. AS and Country Awareness

We turn our attention to location awareness by considering
the AS and CC metrics. Considering download direction, it
can be seen that SopCast is unaware of AS location. Indeed,
PD is almost equal toBD, which suggests that peers in the
same AS are not preferentially selected to download data
from. On the contrary, both PPLive and TVAnts show higher
AS-awareness. Considering non-NAPA-WINE contributors, a
PPLive peer downloads fromP ′

D=0.6% of peersB′
D=6.5%

of traffic, i.e., there is a byte preference 10 times larger than
a peer preference. The same factor holds including NAPA-
WINE peers (which then do not bias the results). Similarly
for TVAnts, in whichB′

D=7.6% of the bytes are downloaded
from P ′

D=3.3% of the non-NAPA-WINE contributors, i.e.,
a B′

D/P ′
D ratio equal to 2. Recalling that the total number

of peers observed in the TVAnts experiment is two order
of magnitude smaller than the one involved in the PPLive

experiment, we can conclude that TVAnts is also much more
efficient in discovering peers within the same AS (13.5% on
average) than PPLive (1.3% on average).

Looking at the downloaded traffic with respect to the
Country geolocation of peers, we observe that almost the same
percentages are observed as in the AS preference case. Since
two peers in the same AS are also located within the same
Country, we can state that no country preference is shown,
i.e., the CC preference is due to the AS preference. Finally,
considering the upload directions, similar conclusions can be
drawn.

To better explore the issue related to peer locality, Figure2
shows the average amount of traffic transferred from a high
bandwidth NAPA-WINE peer belonging to AS-i to a high
bandwidth NAPA-WINE peer within AS-j, for all the AS
pairs. The intra-AS traffic is enlightened in black.

At a first look, only the PPLive-Popular experiment clearly
suggests that the system favors intra-AS traffic over inter AS-
traffic. However, we notice that most of the intra-AS traffic is
in this case local traffic (hop count equal to zero). To a better
look, also TVAnts presents some bias in favor intra-AS traffic.
Indeed, the ratio between the average amount traffic exchanged
among intra-AS peers (reported in black) versus inter-AS peers
(reported in gray)R is equal to 1.93, i.e., about twice the traffic
is exchanged among peers within the same AS compared to
peers in other ASs. Moreover the contribution provided by
non local traffic is significant in this case. Neither SopCast
nor PPLive show such bias, beingR = 0.2 and R = 0.98
respectively.

Thus, we conclude that both SopCast and PPLive do not
tend to favor traffic exchange within the same AS (excluding
the traffic exchanged among peers in the same SubNet). How-
ever, intra high-bandwidth NAPA-WINE traffic is significant.
This strong bias exhibited by intra high-bandwidth NAPA-
WINE peers confirms that both applications tend to only favor
downloading traffic from high-bandwidth peers.

In conclusion it turns out that for all the systems, the



Fig. 2. Average amount of exchanged data among the ASs involved in the experiments.

peer upload bandwidth seems to be the dominant metric that
drives the selection of the peers from which downloading.
However PPLive and especially TVAnts exploits also some
form of locality while in SopCast the choices seem completely
independent on the peers location.

C. NET Awareness

We now evaluate the potential preference to exchange traffic
with peers in the same subnet (NET). The set of peers in
the same subnet includes only NAPA-WINE peers, so that
P ′ = ∅. Results show that also in this case, PPLive and
TVAnts only exhibit NET awareness, for both upload and
download directions. Indeed, about 10% and 18% of the bytes
are received from about 1% and 7% of hosts which are in
the same subnet respectively. Conversely, SopCast does not
show any evidence of subnet awareness. However, the NET
preference can be also enforced by the AS preference. Looking
at the ratio betweenP overB for the AS and NET preferences,
we observe that they are very similar, which underlines that
the NET preference is due to the AS preference and thus is
not explicitly enforced.

D. HOP Awareness

Finally, we investigate the IP distance preference. In this
case, no particular evidence of preference toward shorter paths
is underlined. Indeed, looking at the non-NAPA-WINE peers,
almost no difference emerges comparingP ′ and B′. Only

TVAnts shows a small preference to download from closer
nodes. Considering the complete setP , the self-induced bias of
NAPA-WINE peers shows up, artificially highlighting a HOP
preference, which is instead due to BW and AS preference.
We can conclude that no HOP awareness emerges.

V. CONCLUSIONS

In this paper we have proposed a methodology to highlight
which metric is exploited by P2P-TV applications to opti-
mize the video delivery. Considering three popular P2P-TV
applications, namely PPLive, SopCastand TVAnts, we have
shown that a clear preference to exploit high-bandwidth peers
emerges in all analyzed systems. Additionally, TVAnts and
PPLive prefer to exchange data among peers in the same
Autonomous System. However, no evidence of preference
versus peers in the same subnet, or having a shorter path,
emerges from any of the system under observation.

Results therefore suggests that future P2P-TV applications
could improve the level of “network-awareness”, by better
localizing the traffic the network has to carry, seeking shorter
paths, exploiting topology knowledge, etc.
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