A geometric proof of the Karpelevich-Mostow’s Theorem

Antonio J. Di Scala and Carlos Olmos

Abstract

In this paper we give a geometric proof of the Karpelevich’s theorem that asserts that a semisimple Lie subgroup of isometries, of a symmetric space of non compact type, has a totally geodesic orbit. In fact, this is equivalent to a well-known result of Mostow about existence of compatible Cartan decompositions.

1. Introduction.

In this paper we address the problem of giving a geometric proof of the following theorem of Karpelevich.

Theorem 1.1. (Karpelevich [7]) Let M be a Riemannian symmetric space of non positive curvature without flat factor. Then any connected and semisimple subgroup $G \subset \text{Iso}(M)$ has a totally geodesic orbit $G.p \subset M$.

It is well-known that Karpelevich’s theorem is equivalent to the following algebraic theorem.

Theorem 1.2. (Mostow [8, Theorem 6]) Let \mathfrak{g}' be a real semisimple Lie algebra of non compact type and let $\mathfrak{g} \subset \mathfrak{g}'$ be a semisimple Lie subalgebra. Let $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ be a Cartan decomposition for \mathfrak{g}. Then there exists a Cartan decomposition $\mathfrak{g}' = \mathfrak{k}' \oplus \mathfrak{p}'$ for \mathfrak{g}' such that $\mathfrak{k} \subset \mathfrak{k}'$ and $\mathfrak{p} \subset \mathfrak{p}'$.

The proof of the above theorems is very algebraic in nature and uses delicate arguments related to automorphisms of semisimple Lie algebras.

For the real hyperbolic spaces, i.e. when $\mathfrak{g}' = \mathfrak{so}(n,1)$, there are two geometric proofs of Karpelevich’s theorem [4], [2]. The proof in [4] is based on the study of minimal orbits of isometries subgroups, i.e. orbits with zero mean curvature. The approach in [2] is based on hyperbolic dynamics. It is interesting to note that both proofs are strongly based on the fact that the boundary at infinity of real hyperbolic spaces has a simple structure.

2000 Mathematics Subject Classification 53C35 (primary), 53C30, 53C40, 53C42 (secondary).

Research supported by Programa Raices, Subsidio Cesar Milstein, Republica Argentina.
The only non-trivial algebraic tool that we will use is the existence of a Cartan decomposition of a non compact semisimple Lie algebra. But this can also be proved geometrically as was explained by S.K. Donaldson in [5].

Here is a brief explanation of our proof of Theorem 1.1. We first show that a simple subgroup \(G \subset \text{Iso}(M) \) has a minimal orbit \(G.p \subset M \). Then, by using a standard totally geodesic embedding \(M \hookrightarrow P \), where \(P = \text{SL}(n, \mathbb{R})/\text{SO}(n) \), we will show that \(G.p \) is, actually, a totally geodesic submanifold of \(M \).

2. Preliminaries.

The results in this section are well known and are included to orient the non-specialist reader.

The equivalence between Theorems 1.1 and 1.2 is a consequence of the following Elie Cartan’s famous and remarkable theorem.

Theorem 2.1. (Elie Cartan) Let \(M \) be a Riemannian symmetric space of non positive curvature without flat factor. Then the Lie group \(\text{Iso}(M) \) is semisimple of non compact type. Conversely, if \(\mathfrak{g} \) is a semisimple Lie algebra of non compact type then there exist a Riemannian symmetric space \(M \) of non positive curvature without flat factor such that \(\mathfrak{g} \) is the Lie algebra of \(\text{Iso}(M) \).

The difficult part of the proof of the above theorem is the second part. Namely, the construction of the Cartan decomposition \(\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p} \), where \(\mathfrak{k} \) is maximal compact subalgebra of \(\mathfrak{g} \) and the Killing form \(B \) of \(\mathfrak{g} \) is positive definite on \(\mathfrak{p} \). The standard and well-known proof of the existence of a Cartan decomposition is long and via the classification theory of complex semisimple Lie algebras, i.e. the existence of a real compact form (see e.g. [6]). There is also a direct and geometric proof of the existence of a Cartan decomposition [5].

On the other hand, when \(\mathfrak{g} = \text{Lie}(\text{Iso}(M)) \), where \(M \) is a Riemannian symmetric space of non positive curvature without flat factor, a Cartan decomposition of \(\mathfrak{g} \) can be constructed geometrically. Namely, \(\mathfrak{g} = \text{Lie}(\text{Iso}(M)) = \mathfrak{k} \oplus \mathfrak{p} \) where \(\mathfrak{k} \) is the Lie algebra of the isotropy group \(K_p \subset \text{Iso}(M) \) and \(\mathfrak{p} := \{ X \in \text{Lie}(\text{Iso}(M)) : (\nabla X)_p = 0 \} \).

It is well-known that the Riemannian symmetric spaces \(P = \text{SL}(n, \mathbb{R})/\text{SO}(n) \) are the universal Riemannian symmetric space of non positive curvature. Namely, any Riemannian symmetric space of non compact type \(M = G/K \) can be totally geodesically embedded in some \(P \) (up to rescaling the metric in the irreducible De Rham factors). A proof of this fact follows from the following well-known result (c.f. Theorem 1 in [5]).

Proposition 2.2. Let \(\mathfrak{g} \subset \mathfrak{sl}(n, \mathbb{R}) \) be a semisimple Lie subalgebra and let \(\mathfrak{g} = \mathfrak{t} \oplus \mathfrak{p} \) be a Cartan decomposition. Then there exists a Cartan decomposition \(\mathfrak{sl}(n, \mathbb{R}) = \mathfrak{a} \oplus \mathfrak{s} \) such that \(\mathfrak{t} \subset \mathfrak{a} \) and \(\mathfrak{p} \subset \mathfrak{s} \). Thus, if \(G \subset \text{SL}(n) \) is semisimple, \(G \) has a totally geodesic orbit in \(P = \text{SL}(n)/\text{SO}(n) \). Indeed, any Riemannian symmetric space of non positive curvature \(M \), without flat factor, can be totally geodesically embedded in some \(P = \text{SL}(n)/\text{SO}(n) \).

Proof. Notice that any Cartan decomposition of \(\mathfrak{sl}(n, \mathbb{R}) \) is given by the anti-symmetric \(\mathfrak{a} \) and symmetric matrices \(\mathfrak{s} \) w.r.t. a positive definite inner product on \(\mathbb{R}^n \). Since \(\mathfrak{g}^\ast := \mathfrak{t} \oplus i\mathfrak{p} \) is a compact Lie subalgebra of \(\mathfrak{sl}(n, \mathbb{C}) \), there exists a positive definite Hermitian form \((\cdot | \cdot) \) of \(\mathbb{C}^n \).
invariant by g^*. By defining $(\ , \) := \text{Real}(\ | \)$ it follows that $\mathfrak{k} \subset \mathfrak{A}$ and $\mathfrak{p} \subset \mathfrak{S}$. □

Let $S_\infty(M)$ be the sphere or boundary at infinity of M, i.e. $S_\infty(M)$ is the set of equivalence classes of asymptotic geodesics rays (see [5] or [3, Chapter II.8] for details).

Here is another corollary of the existence of the totally geodesic embedding $M \hookrightarrow \mathcal{P}$.

Corollary 2.3. Let M be a Riemannian symmetric space of non positive curvature without flat factor. Then a connected and semisimple Lie subgroup $G \subset \text{Iso}(M)$ of non compact type has no fixed points in $S_\infty(M)$.

This corollary is false see Corrigendum in http://arxiv.org/abs/1104.0892

We include the following proposition.

Proposition 2.4. Let M be a Riemannian symmetric space of non positive curvature without flat factor. Let $S = \mathbb{R}^N \times M$ be a symmetric space of non positive curvature with flat factor \mathbb{R}^N. If $G \subset \text{Iso}(S)$ is a connected non compact simple Lie group then $G \subset \text{Iso}(M)$.

Proof. Let \mathfrak{g} be the Lie algebra of G. Then the projection $\pi : \mathfrak{g} \twoheadrightarrow \text{Lie}(\text{Iso}(\mathbb{R}^N))$ is injective or trivial i.e. $\pi \equiv 0$. If π is injective then a further composition with the projection to $\text{so}(N)$ gives that \mathfrak{g} must carry a bi-invariant metric. So, \mathfrak{g} can not be simple and non compact. □

Let G be a semisimple Lie group and let $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ be a Cartan decomposition. A subspace $T \subset \mathfrak{p}$ is called a Lie triple system if $[T, [T, T]] \subset T$. It is well-known that there is a 1-1 correspondence between Lie triple systems T of \mathfrak{p} and totally geodesic submanifolds through the base point $[K] \in G/K$ (see [6]).

3. Minimal and totally geodesic orbits.

We will need the following proposition (see Lemma 3.1. in [4] or Proposition 5.5. in [1]).

Proposition 3.1. Let M be a Riemannian symmetric space of non positive curvature without flat factor and let $G \subset \text{Iso}(M)$ be a connected group of isometries. Assume that G has a totally geodesic orbit $G.p$. Then any other minimal orbit $G.q$ is also a totally geodesic submanifold of M. Moreover, if G is semisimple then the union of totally geodesic G-orbits T_G is a totally geodesic submanifold of M which is a Riemannian product $T_G = (G.p) \times A$ where A is a totally geodesic submanifold of M.

Proof. Let $G.p$ be the totally geodesic orbit and let $G.q \neq \{q\}$ be another orbit. Let γ be a geodesic in M that minimizes the distance between q and $G.p$ (such geodesic do exists since totally geodesic submanifolds of M are closed and embedded). Eventually by changing the base point p by another in the orbit we may assume that $\gamma(0) = p$ and $\gamma(1) = q$. A simple computation using the Killing equation shows that $\dot{\gamma}(t)$ is perpendicular to $T_{\gamma(t)}(G.\gamma(t))$, for all t.

Let X be a Killing field in the Lie algebra of G such that $X.q \neq 0$ and let ϕ_s^X be the one-parameter group of isometries generated by X. Define $h : I \times \mathbb{R} \to M$ by $h_s(t) := \phi_s^X \cdot \gamma(t)$. Note that $X.h_s(t) = \frac{\partial h}{\partial s}$ and that, for a fixed s, $h_s(t)$ is a geodesic.
Let $A_{\gamma}(t)$ be the shape operator, in the direction of $\dot{\gamma}(t)$ of the orbit $G\cdot\gamma(t)$. Define $f(t) := -(A_{\gamma}(t)(X,\gamma(t)), X,\gamma(t)) = \langle \frac{D}{D\tau}\partial_{\tau}, X, h_{\tau}(t) \rangle |_{s=0}$. Now a computation as in Lemma 3.1. in [4] or Proposition 5.5. in [1] implies that $\frac{d}{dt}f(t) \geq 0$. Since $f(0) = 0$, due to the fact that $G.p$ is totally geodesic, we obtain that $f(1) = -(A_{\gamma}(1)(X,q), X,q) \geq 0$. Hence $A_{\gamma}(1)$ is negative semidefinite. Since $G.q$ is minimal, $\text{trace}(A_{\gamma}(1)) = 0$, we get that $f(t) \equiv 0$. Thus, $\langle R(\dot{\gamma}(t), X,\gamma(t))\dot{\gamma}(t), X,\gamma(t) \rangle \equiv 0$ and $\nabla_{\dot{\gamma}(t)}(X,\gamma(t)) \equiv 0$. Notice that the tangent spaces $T_{\gamma(t)}G \cdot \gamma(t)$ are parallel along $\gamma(t)$ in M. So the normal spaces $\nu_{\gamma(t)}G \cdot \gamma(t)$ are also parallel along $\gamma(t)$ in M. Since M is a symmetric space of non positive curvature the condition $\langle \nabla_{\dot{\gamma}(t)} Y, \eta(t) \rangle = \langle \nabla_{\dot{\gamma}(t)} \nabla_{X} Y, \eta(t) \rangle = \langle \nabla_{X} \nabla_{\dot{\gamma}(t)} Y, \eta(t) \rangle + \langle R(\dot{\gamma}(t), X,\gamma(t))(Y), \eta(t) \rangle \equiv 0$. Since $\langle \nabla_{X} Y, \eta(0) \rangle = 0$ we get that the G-orbits $G\cdot\gamma(t)$ are totally geodesic submanifolds of M. This show the first part.

For the second part let $K' := \text{Iso}(M)_p$ be the isotropy subgroup at $p \in M$ and let $\mathfrak{p}' \subset \text{Lie}(\text{Iso}(M))$ be such that $X \in \mathfrak{p}'$ if $(\nabla X)_p = 0$. Thus, $\text{Lie}(\text{Iso}(M)) = \mathfrak{t}' \oplus \mathfrak{p}'$ is a Cartan decomposition of $\text{Lie}(\text{Iso}(M))$. Let $\mathfrak{g} = \mathfrak{t} \oplus \mathfrak{p}$ be a Cartan decomposition of the Lie algebra $\mathfrak{g} = \text{Lie}(G)$. Since $G.p$ is totally geodesic in M we get that $\mathfrak{t} \subset \mathfrak{p}$ and $\mathfrak{p} \subset \mathfrak{p}'$. Let $\alpha := \{Y \in \mathfrak{p}' : Y \perp \mathfrak{p}$ and $[Y, p] = 0 \}$ which is a Lie triple system of \mathfrak{p}'. Moreover, $\mathfrak{n} := \mathfrak{p} \oplus \alpha$ is also a Lie triple system of \mathfrak{p}'. So, $N := exp_p(\mathfrak{n}) = exp_p(\mathfrak{p}) \times exp_p(\alpha)$ is a G-invariant totally geodesic submanifold of M. Notice that (by construction) $N \subset T_G$.

Let $G.p$ any other totally geodesic G-orbit. From the computation in the first part we get $R(\dot{\gamma}(t), X,\gamma(t))(\cdot) \equiv 0$ which implies $\gamma'(0) \in \alpha$. This shows $T_G \subset N$. Then $N = T_G = (G.p) \times A$ where $A := exp_p(\alpha)$ is a totally geodesic submanifold of M associated to the Lie triple system α. \(\square\)

4. Karpelevich’s Theorem for G a simple Lie group.

Here is the first step to prove Theorem 1.1.

Theorem 4.1. Let M be a Riemannian symmetric space of non positive curvature without flat factor. Then any connected, simple and non compact Lie subgroup $G \subset \text{Iso}(M)$ has a minimal orbit $G.p \subset M$.

Proof. Let $\mathfrak{g} = \mathfrak{t} \oplus \mathfrak{p}$ be a Cartan decomposition of the Lie algebra $\mathfrak{g} := \text{Lie}(G)$ and let $K \subset G$ be the maximal compact subgroup associated to \mathfrak{t}. Let Σ be the set of fixed points of K. Notice that $\Sigma \neq \emptyset$ by Cartan’s fixed point theorem. Since G is simple all G-orbits $G.x$ through points in $x \in \Sigma$ are homothetic i.e. the Riemannian metric induced on $G.x$ and $G.y$ differ from a constant multiple for $x, y \in \Sigma$. Let $x_0 \in \Sigma$ be a point in Σ and let g_0 be the Riemannian metric on $G.x_0 = G/K$ induced by the Riemannian metric $g = \langle \cdot, \cdot \rangle$ of M. So if $y \in \Sigma$ the Riemannian metric g_y on $G.y$ is given by $g = \lambda(y) \cdot g_0$. Notice that if $X \in \mathfrak{p}$ is unitary at x_0 (i.e. $g_0(X(x_0), X(x_0)) = 1$) then $\lambda(y) = g(X(y), X(y)) = \|X(y)\|^2$. We claim that $\lambda(y)$ has a minimum in Σ. Indeed, if $y_n \to \infty \in S_\infty(\Sigma) \subset S_\infty(M)$ (where $y_n \in \Sigma$) and $\lambda(y_n) \leq \text{const}$ then the monoparametric Lie group $\psi^X_{t_1} \subset G$ associated to any unitary $X \in \mathfrak{p}$ at $x_0 \in \Sigma$ must fix $\infty \in S_\infty(\Sigma) \subset S_\infty(M)$. Thus, since $X \in \mathfrak{p}$ is arbitrary and \mathfrak{p} generate \mathfrak{g} we get that $\infty \in S_\infty(\Sigma) \subset S_\infty(M)$ is a fixed point of G. This contradicts Corollary 2.3. So there exist $y_0 \in \Sigma$ such that λ has a minimum. Notice that the volume element Vol_y of an orbit $G.y$ is given by $\frac{1}{\lambda^n}Vol_{x_0}$, where $n = \dim(G/K)$. Now a simple computation shows that the mean curvature vector of $G.y_0$ vanish and we are done. \(\square\)
Now we are ready to prove Karpelevich’s Theorem 1.1 for G a simple non compact Lie subgroup of $Iso(M)$.

Theorem 4.2. Let M be a Riemannian symmetric space of non positive curvature. Then any connected, simple and non compact Lie subgroup $G \subset Iso(M)$ has a totally geodesic orbit $G.p \subset M$.

Proof. According to Proposition 2.4 we can assume that M has no flat factor. Let $i : (M, g) \hookrightarrow (\mathcal{P}, h)$ be a totally geodesic embedding as in Proposition 2.2. Notice that the pull-back metric i^*h can eventually differ (up to constant factors) from g on each irreducible De Rham factor of M. Anyway, totally geodesic submanifolds of (M, g) and (M, i^*h) are the same since totally geodesic submanifolds are defined in terms of the same Levi-Civita connection $\nabla^g = \nabla^{i^*h}$.

Notice that G also acts by isometries on (M, i^*h). Indeed, G can be also regarded as a subgroup of $Iso(\mathcal{P})$. Now Proposition 2.2 implies that G has a totally geodesic orbit $G.p$ in \mathcal{P}. The above proposition shows that G has a minimal orbit $G.y_0$ in (M, i^*h). Since the embedding $M \hookrightarrow \mathcal{P}$ is totally geodesic we get that the G-orbit $G.y_0$ is also a minimal submanifold of \mathcal{P}. Then Proposition 3.1 implies that $G.y_0$ is a totally geodesic submanifold of \mathcal{P}. Thus, $G.y_0$ is a totally geodesic submanifold of (M, i^*h) and so $G.y_0$ is also a totally geodesic submanifold of (M, g). □

5. **Karpelevich’s Theorem.**

Let $G \subset Iso(M)$ be a semisimple, connected Lie group. Then the Lie algebra $\mathfrak{g} = Lie(G) = \mathfrak{g}_1 \oplus \mathfrak{g}_2$ is a sum of a simple Lie algebra \mathfrak{g}_1 and a semisimple Lie algebra \mathfrak{g}_2. Due to Cartan’s fixed point theorem we can assume that each simple factor of \mathfrak{g} is non compact. We are going to make induction on the number of simple factors of the semisimple Lie algebra \mathfrak{g}. Let G_1 (resp. G_2) be the simple Lie group associated to \mathfrak{g}_1 (resp. the semisimple Lie subgroup associated to \mathfrak{g}_2). Let $T_{G_1} \subset M$ be the union of the totally geodesic orbits of the simple subgroup G_1 acting on M. Notice that Theorem 4.2 implies that $T_{G_1} \neq \emptyset$ and Proposition 3.1 implies that $T_{G_1} = (G_1 \cdot p) \times A$ is a totally geodesic submanifold of M, where $G_1 \cdot p$ is a totally geodesic G_1-orbit. Notice that G_2 acts on $T_{G_1} = (G_1 \cdot p) \times A$. Then G_2 (or eventually a quotient G_2/\sim of it) acts on A. Since A is symmetric space of non positive curvature we get (by induction) that the semisimple subgroup G_2 (or eventually a quotient G_2/\sim of it) has a totally geodesic orbit $S \subset A$. Then $(G_1 \cdot p) \times S$ is a totally geodesic orbit of G and this finish our proof of Karpelevich’s Theorem 1.1.

References

Antonio J. Di Scala
Dipartimento di Matematica,
Politecnico di Torino,
Corso Duca degli Abruzzi 24,
10129 Torino Italy
antonio.discal@polito.it

Carlos Olmos
Fa.M.A.F.,
Universidad Nacional de Córdoba,
Ciudad Universitaria,
5000 Cordoba, Argentina
olmos@mate.uncor.edu