
04 December 2023

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A model for surface EMG generation in volume conductors with spherical in-homogeneities / Mesin, Luca; Farina, D.. -
In: IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING. - ISSN 0018-9294. - STAMPA. - 52:12(2005), pp. 1984-
1993. [10.1109/TBME.2005.857670]

Original

A model for surface EMG generation in volume conductors with spherical in-homogeneities

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TBME.2005.857670

Terms of use:

Publisher copyright

©2005 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1913073 since: 2021-08-21T18:23:05Z

IEEE



 1 

IEEE Transactions on Biomedical Engineering 

 

 

 

A MODEL FOR SURFACE EMG GENERATION IN VOLUME 

CONDUCTORS WITH SPHERICAL INHOMOGENEITIES 

 

Luca Mesin and Dario Farina 

 

 

Laboratorio di Ingegneria del Sistema Neuromuscolare (LISiN), Dip. di Elettronica, Politecnico di 

Torino, Torino, Italy 

 

 

Keywords: electromyography, modeling, tissue inhomogeneity, space invariance 

Running title: Surface EMG and local tissue inhomogeneities 

 

Corresponding author: 

Dario Farina, PhD 

Dipartimento di Elettronica,  Politecnico di Torino; Corso Duca degli Abruzzi 24, Torino, 10129 ITALY 

Tel.   0039-0114330476; Fax.  0039-0114330404; e-mail : dario.farina@polito.it  

Acknowledgements 

This work was supported by the European Shared Cost Project Neuromuscular assessment in the Elderly Worker 

(NEW) (QLRT-2000-00139), Fondazione “Cassa di Risparmio di Torino”, and Compagnia di San Paolo, Torino, Italy. 

 

© 2005 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other 

uses, in any current or future media, including reprinting/republishing this material for advertising or 

promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of 

any copyrighted component of this work in other works 

mailto:dario.farina@polito.it


 2 

ABSTRACT 

Most models for surface EMG signal generation are based on the assumption of space-invariance of 

the system in the direction of source propagation. This assumption implies the same shape of the 

potential distribution generated by a source in any location along the propagation direction. In 

practice, the surface EMG generation system is not space invariant, thus the surface signal detected 

along the direction of the muscle fibers may significantly change shape along the propagation path. 

An important class of non-space invariant systems is that of volume conductors in-homogeneous in 

the direction of source propagation. In this study we focused on inhomogeneities introduced by the 

presence of spheres of different conductivities with respect to the tissue where they are located. This 

may model the presence of glands, vessels, or local changes in the conductivity of a tissue. We 

present an approximate analytical solution that accounts for an arbitrary number of spheres in an 

arbitrary complex volume conductor. As a representative example, we propose the solution for a 

planar layered volume conductor, comprised of fat and muscle layers with spherical 

inhomogeneities inside the fat layer. The limitations of the approximations introduced are 

analytically discussed. The model is computationally fast and constitutes an advanced mean for the 

analysis and interpretation of surface EMG signal features.  
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1. INTRODUCTION 

Many surface EMG models have been proposed in the past [28]. Their applications range from 

didactic purposes to the solution of a variety of research questions [5][8][19][31]. Most of the 

available surface EMG models are analytical, i.e., a mathematical explicit formula is provided as 

solution of the volume conduction problem. Numerical models have also been presented 

[18][26][10] and are necessary when dealing with complex geometries and/or conductivity tensors 

describing the volume conductor.  

Analytical approaches have advantages over numerical ones and should be preferred when an 

analytical solution can be obtained [10]. Indeed, analytical solutions require less computational time 

than numerical ones, are exact (or the degree of approximation can be calculated), and allow to 

better relate the model parameters to the simulated signal. Thus, efforts towards the determination 

of analytical solutions for complex volume conductors are justified by the more flexible use of these 

types of solutions. 

Most analytical models consider space invariant systems [2][4][7][9][13][20]. We defined as space 

invariance in the direction of propagation of the source (action potential) the property of a volume 

conductor of being both homogeneous and geometrically invariant along this direction [10]. This 

definition produces a class of volume conductors for which the simulation of surface detected EMG 

potentials can be viewed as a linear filtering problem. In particular, for space-invariant volume 

conductors, the potential distributions generated by two impulsive sources located at different 

positions along the direction of propagation are translated versions of each other, thus the response 

to a single source is sufficient to generate the potential as detected during source propagation. The 

space invariance property determines a significant simplification of the problem of simulating 

surface detected action potentials, as has been shown in previous model developments by applying 

properties of the 2-dimensional Fourier transform [7][9]. Since the space-invariance property is 

important to reduce the computational time also in case of numerical approaches (to avoid the 

computation of the source response for any location during propagation), numerical as well as 
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analytical models are often limited to space invariant systems [18]. Non space-invariant systems 

may indeed lead to a non-acceptable computational time when investigated by a numerical method. 

If a source moves at constant velocity along the space invariant direction and is detected along the 

same direction by different detection systems, the systems will record potentials with the same 

shape and a relative delay which depends on the distance between detection points. Thus, signal 

detection along a space invariant direction provides potentials of equal shape in any location. If the 

source changes during propagation, the surface detected potentials will also change depending on 

the detection point. The end-plate and end-of-fiber potentials, arising at the generation and 

extinction of the intracellular action potentials [14], originate from such changes in the source 

properties during propagation.  

In the case of non-space invariant volume conductors, the potentials detected along the direction of 

propagation may have different shapes also without changes in the source properties. For non-space 

invariant systems, the response to an impulse may be different for any location of the impulse along 

the direction of propagation. In practical cases, modifications of the shape of the detected surface 

potentials when recorded at different locations along the direction of propagation are due to many 

factors, whose analytical description may be complex. Although limited attention has been devoted 

to the analytical analysis of systems non-space invariant in the direction of potential propagation, 

these systems constitute important models, with relevant practical applications.  

An important class of non-space invariant systems is that of volume conductors in-homogeneous in 

the direction of source propagation. We recently investigated surface EMG generation from bi-

pinnate muscles [21]. In this case, the inhomogeneity is due to the presence of two main fiber 

directions. In the present study we will focus on local inhomogeneities, i.e., spheres having 

conductivity different from that of the tissue in which they are located. We will present an 

analytical solution to this volume conduction problem, with approximations due to the complexity 

of the problem. The relative weight of the approximations introduced will be analytically 

investigated. The developed model will provide the means for generating action potentials detected 
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from a volume conductor of any shape in which any number of local spherical inhomogeneities is 

introduced. 

 

2. MODEL DEVELOPEMENT AND APPLICATIONS 

We will begin with the case of infinite muscle tissue and we will then generalize to the case of any 

volume conductor. As an example of complex volume conductor, we will provide the solution for a 

two layer, planar medium with spherical inhomogeneities.  

A. Mathematical problem for a volume conductor with a single inhomogeneity 

In the case of quasi-stationary conditions, the electric potential in a volume conductor is obtained by 

the following relationship [3][15][22]: 

IJ  )(                                                                                          (1) 

where   is the electric potential, J  is the current density in the medium ( 2/ mA ), I  is the source 

current density ( 3/ mA ), and   the conductivity tensor (S/m).  

A volume conductor with a localized inhomogeneity can be modeled by a discontinuous 

conductivity tensor: 

                                                    pppc   )1(                                              (2) 

where c  is a continuous tensor, e.g., an anisotropic constant tensor modeling the muscle tissue, 

p  is the conductivity of the inhomogeneity, which will be assumed isotropic and constant, and p  

is the characteristic function of the inhomogeneity. In particular:  
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                                                          (3) 
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where   is the domain considered and p  the portion of the domain in which the inhomogeneity 

is defined (being p \  the notation chosen for the set difference between the domain   and the 

portion of the domain in which the inhomogeneity is defined p ).  

Considering 3 , the mathematical problem of determining the potential due to an impulsive 

current  in p \  can be stated as follows:  

 
 





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pp
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0

\

2

1
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                                                                                      (4) 

with the condition of vanishing of the potential at infinity, and the following conditions of 

continuity of the potential and of the flux at the interface of the inhomogeneity: 
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                                                                                       (5) 

where n is the direction normal to the surface p  of the inhomogeneity. By linearity, the potential 

generated by any source current density is obtained by integrating over the domain   the impulsive 

response weighted by the source term. The problem described in Eqs. (4) and (5) is very complex, 

thus some simplifying assumptions on the geometry of the inhomogeneity are essential for an 

analytical treatment.  

We will consider a spherical inhomogeneity. A closed solution can be obtained only in specific 

cases (such as with an inhomogeneity with infinite conductivity, [29]), using the image technique. 

Since we aim at providing a solution (even if approximated) which can be applied in more practical 

situations, we will need to exploit a more general approach.  

The solution of the Laplace equation in spherical coordinates in azimuthal symmetry can be 

represented as [26]: 

                





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n

n

n

n

n

nSph PrBrAr
0

)1( )(cos)(),(                                                              (6) 
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where nP  are the Legendre polynomials [1], and   is the zenith angle. This expression, with proper 

choices of the coefficients An, Bn , can be used both to represent the solution in p  and to study the 

effect of a spherical inhomogeneity on the potential distribution in p \  (in such a case, r  

measures the distance from the center of the inhomogeneity). Indeed, the solution in p \  is 

obtained, by linearity, from the summation of the solution associated to the impulsive source in 

absence of the inhomogeneity (i.e., for an infinite volume conductor, the impulse response is 

proportional to the inverse of the distance from the position of the source [23]), and the expression 

(6), in which r indicates the distance from the center of the inhomogeneity. As the terms in (6) with 

coefficient An diverge for r , and those with coefficient Bn diverge for 0r , the An 

coefficients are null for the solution in p \ , while the Bn coefficients vanish for the solution in 

p . We note that the solution in p \  can be interpreted as the sum of the inverse of the distance 

from the position of the source and a series of 
r

1
, its gradient and all higher spatial derivatives, 

which are all solutions of the Laplace equation vanishing at infinity. 

The solution to the problem can be obtained by imposing the interface conditions, matching all the 

terms of the series. An approximate solution is obtained considering only the first terms of the 

series in Eq. (6). This solution is valid for potentials observed at a certain distance from the 

inhomogeneity. Such an approximate solution and an estimate of the approximation error will be 

evaluated in the following. 

B. Approximate solution 

As the terms 
nr

1
 provide the largest contribution at a short distance from the inhomogeneity, an 

approximated solution can be obtained considering only some of these terms. The estimate of the 

error introduced in the solution can be expressed as function of the radius of the inhomogeneity, and 

the distances between the source, the inhomogeneity, and the detection point.  
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In this section we will consider the case of an inhomogeneity placed inside a homogeneous infinite 

( 3 ) isotropic volume conductor, i.e.,  c  in Eq. (2). The results apply also to the case of a 

homogeneous, anisotropic planar muscle, i.e., kkjjii ltc


  )( , as it is possible to relate the 

problems of determining the impulse responses such an anisotropic planar volume conductor and of 

a isotropic one by the following change of the space variables, [15], [31]: 
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                                                              (7) 

It is worth noticing that, with such change of variables, the spherical inhomogeneity is transformed 

into an ellipse. 

The problem may be solved by approximating the solution inside the inhomogeneity with a linear 

function. Such an approximation is justified as we assume the inhomogeneity to be small with 

respect to the distance from the source, so that it is reasonable to suppose the potential on p  to 

present small variations (yielding small variations inside the inhomogeneity, by the Mean Value 

Theorem for Laplace’s equation). The perturbation of the potential in p \  due to the 

inhomogeneity is studied considering the following expression: 

                          
2

1
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nA

r

a

r
A

r

a
)r(p


 

                                                    (8) 

(a and A

 being a scalar and a vector to be determined) which is a harmonic perturbation (i.e., a 

term satisfying Eq. (4)) of the inhomogeneity free potential, i.e., the potential corresponding to the 

case of the homogeneous volume conductor obtained by removing the inhomogeneity. The 

expression (8) approximates the perturbation effect of the inhomogeneity considering only the first 

two non vanishing terms in the series (6). As the first term in the right hand side of Eq. (8) would 
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give a flux proportional to a  through a closed surface surrounding the inhomogeneity, we set 0a  

[16]. Thus, the approximate solution to Eq. (4) in p \  can be written as the sum of the 

inhomogeneity free solution and the perturbation term (Figure 1): 

             
21

1

p
s

ps

rr

nA

rr
)r()r()r( 












                                                  (9) 

where sr


 is the position of the source and pr


 indicates the position of the center of the 

inhomogeneity (Figure 1).  

 

Figure 1 about here 

 

The boundary conditions at the surface of the spherical inhomogeneity impose a correction to the 

potential 
srr




1
. Such a correction is larger in the direction joining the center of the sphere to the 

source position (
n

 1  is maximum), and decreases considering the orthogonal directions (
n

 1  

vanishes in a circumference laying in the plane orthogonal to ps rr


 ; the points of such a 

circumference are obtained as tangent points of the sphere to the straight lines through sr


) (Figure 

2). Thus A


 should be chosen in the direction parallel to ps rr


 .  

 

Figure 2 about here 

 

The magnitude of A


 can be determined studying a one dimensional problem along the direction of 

A


. We will indicate by s  the arc length along such a direction. Imposing the boundary conditions 

at the surface of the sphere, i.e., at Rs p   and Rs p   (where R is the radius of the inhomogeneity 

and ps  its center), we obtain (Figure 1): 
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                                                     (10) 

where we assumed 0 sp ss , i


 is the unit vector along the direction of the positive s-axis, 

)()( 22 RsRs pp   . Note that in the third and fourth conditions, which are those 

concerning the continuity of the flux, 2  is assumed a linear function of s. With further algebraic 

calculations (omitted) and using a linear approximation of 
sss 

1
 in  RsRs pp  , , we obtain the 

following solution: 
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We note that the correction term vanishes if p  . Considering the limit case for which the 

inhomogeneity is modeled as a perfect conductor ( p ), the solution provided is the first order 

approximation of the exact solution [29], obtained by the image theory for the potential generated 

by a point source in a homogeneous infinite volume conductor with a sphere of infinite conductivity 

at a potential equal to the one that would be in the same volume without the in-homogeneous sphere 

at its center (equal to the average of the potential over the sphere or over its surface by the Mean 

Value Theorem for Laplace’s equation). In such a case we also obtain 0 , as expected. 

Another limit case is that of a sphere of insulating material. In this case, the solution is an 

approximation of a Neumann homogeneous problem, for which the solution has vanishing normal 
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derivative on the inhomogeneity surface. The approximated solution provided imposes the 

vanishing of the normal derivative along ps rr


 , which is the steepest descent direction of the 

potential, and in the orthogonal section through the center of the inhomogeneity.  

Figure 3 shows the potentials in the free space (in the direction ps rr


 ) with inhomogeneities of 

different conductivities. In the case 0p , the normal derivative on the inhomogeneity boundary 

is very small (it should vanish). For the case p , the difference between the potentials on the 

boundary points is very small (it should vanish). It is worth noting the different effects in the cases 

in which the ratio 


 p
 is larger or smaller than 1. 

 

Figure 3 about here 

 

C. Analysis of the errors in the approximation 

The approximate solution provided above is a first order approximation. As noted previously, the 

effect of the inhomogeneity is larger in the direction of A


. We can estimate the error in such a 

direction by considering other terms in the series expansion. Studying an approximation of the third 

order for 
r

1
, and adding correction terms 21,  (on the left and on the right of the inhomogeneity 

center, respectively) for the potential variation: 

21'                                                                                   (12) 

where: 

222122
2

)()(,
2

)()( 





 





 pppp sRssRs
                                      (13) 

and for the normal derivatives of the potential internal to the inhomogeneity:  
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we obtain the following approximated expression for the potential outside the inhomogeneity: 
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                                   (15) 

Calculations omitted yield to 
 4

6

sp ss

R


 , with a proportionality constant (which depends on 

the conductivities of the volume conductor and of the inhomogeneity) smaller than one. If the 

minimum distances between the source, the center of the inhomogeneity, and the detection point are 

larger than kR ( k ), the ratio between the term 
3)( pss 


 (omitted in the approximate solution 

in the previous section) and the free space potential 
sss 

1
 is less than 

6

1

k
, which is an estimate of 

the importance of the higher order correction terms over the total potential; the ratio between 

2)( pss

nA






 and 
3)( pss 


 is less than 

3

1

k
, which is an estimate of the effect of the correction term 

only on the perturbation induced by the inhomogeneity. Considering terms of higher order, the new 

contributions will give, in the worst case, an effect of the order 
nk 3

1
 on the simulated potential. This 

computation of the error in the approximation allows to select the minimum distance between the 

source and the inhomogeneity in order to maintain the error small enough. 

A further analysis necessary to investigate the errors due to the approximations introduced concerns 

the solution in the direction normal to the vector A


. As noted above, the normal derivative of the 

free space solution vanishes along a circumference belonging to the boundary of the inhomogeneity 

in a plane normal to A


. The perturbation term should vanish along that circumference. However, 
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the approximated perturbation term 
2)( pss

nA






 vanishes in the plane normal to A


, passing through 

the center of the sphere. The distance between the parallel planes containing the two circumferences 

is (Figure 2):  

                    

ps rr

R
d 




2

,                                                   (16) 

The circumference associated to the exact solution is closer to the source (Figure 2). We can 

consider d as a measure of the asymmetry of the perturbation term in the angular direction. We 

could correct it by shifting the discontinuity of the approximate perturbation term 
2)( pss

nA






 toward 

the source (with a trade-off between compensating the angular error and maintaining a good 

approximation in the direction of A


, which is the most important term far from the inhomogeneity) 

or using a higher order term. Both these procedures yield to terms which vanish rapidly far from the 

inhomogeneity. 

In the representative results presented we will consider conditions in which the distances between 

the source, the inhomogeneity, and the detection point are always sufficiently large to have the 

worst case error smaller than 10% of the perturbation term. The worst case condition corresponds to 

the source located at the minimum distance from the inhomogeneity, with the source, the 

inhomogeneity and the detection point located on the same line. This condition may be verified only 

for a specific time instant. In all other cases the error is smaller than the worst case one. 

D. Including more than one spherical inhomogeneity 

When more than one sphere is considered, by linearity we could sum the perturbation terms 

corresponding to each sphere. However, the perturbation term due to a sphere, as evaluated at the 

location of another inhomogeneity, may be comparable to the free space potential evaluated at such 

a position. In this case, the perturbation term of the inhomogeneity considered should take into 

account the sum of the total potential produced by the source and the first inhomogeneity. This 
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generates mutual terms in the expression of the approximated potential, considerably increasing the 

complexity of the solution.  

If the source and the inhomogeneities are not placed along the same line (which is never the case, 

apart possibly one time instant, as we are interested in moving sources), the one dimensional 

analysis performed in the previous sections can not be applied. Nevertheless, as the perturbation 

term is largest along the line between the source and the center of the inhomogeneity, studying the 

case in which the source and the inhomogeneities are aligned provides an estimate of the mutual 

effect of the inhomogeneities in the worst case. As we are interested in localized inhomogeneities, 

we will not consider the mutual effect but rather we will choose a distance between 

inhomogeneities which guarantees a negligible worst case mutual effect. For this purpose, the 

perturbation introduced by an inhomogeneity on a second one should be analyzed. 

The effect of the perturbation term associated to an inhomogeneity on another inhomogeneity can 

be studied comparing the free space potential on the second inhomogeneity (

sp rr


2

1
) with the 

perturbation term relative to the first inhomogeneity on the second one (
2

21 pp rr

nA







,where p1, p2 

refer to the two inhomogeneities). Imposing the perturbation term at least k times smaller than the 

free space term, a sufficient condition (i.e., a worst case condition) is (Figure 4):  

                 





 kr
d

rd
k  122

12
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2 1
                                                            (17) 

where the terms have been normalized with respect to the inhomogeneity radius R, 12d  being the 

normalized distance between the centers of the inhomogeneities,   the normalized distance 

between the source and the first inhomogeneity, r  the normalized distance between the source and 

the second inhomogeneity, and 1
2







p

p




 . The source and the inhomogeneities have been 

considered aligned (worst case because the effect of the inhomogeneity is the largest, and because 
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in Eq. (17) the alignment implies that  rd12 , which is the minimum value of 12d  for fixed r 

and  , as shown in Figure 4). Substituting  12dr  in Eq. (17), we obtain 12d  as a function of 

the distance from the source to the first inhomogeneity  : 

2

32242

12
2

4



 kkk
d


                                                                                      (18) 

It is worth noting that a two inhomogeneities model should be considered even in the case of a 

single inhomogeneity in the volume conductor, when we are interested in a homogeneous Neumann 

problem (insulated volume conductor), whose solution requires the application of the image 

theorem (Figure 4). Thus, Eq. (17) imposes a minimal depth of the inhomogeneity as a function of 

the fiber depth in the volume conductor. 

  

Figure 4 about here 

 

E. General Volume Conductors 

The approach introduced in the previous sections for one layer volume conductor can be 

generalized to more complex conductors. The effect of a spherical inhomogeneity can be 

approximated by adding a perturbation term involving the gradient of 
r

1
. In the general case, an 

explicit analytical solution of the in-homogeenity free potential may not be available. However, for 

solving the problem it is sufficient to calculate the inhomogeneity free solution (analytically or 

numerically) on the boundary of the inhomogeneity. For a best fit of the effect of the 

inhomogeneity, the approximate perturbation term should be maximum in the direction of the 

largest rate of variation of the inhomogeneity free solution, i.e., in the direction of its gradient. 

Thus, at a first order approximation, the gradient of the inhomogeneity free solution in the center of 

the inhomogeneity is sufficient to study the approximated perturbation effect of the inhomogeneity.  
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Following the same steps as above and assuming known the gradient of the impulsive response of 

the volume conductor, the following system of equation is obtained at a first order approximation:  














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

RR

nA
R

nA
R

p






3

2

42

22





                                                                   (19) 

with the same notations as before [Eq. (10)] and the potential variation   evaluated along the 

direction of the gradient of the potential. The solution is given by:  

3

2

2

6

RnA

R

p

p

p























                                                                                  (20) 

When a homogeneous Neumann condition at the surface of the volume conductor is considered, it is 

needed to study the effect of the perturbation term on such a surface. Indeed, the inhomogeneity 

provides a contribution with a normal derivative to the surface which has to be annihilated, by 

linearity, by adding a further term located out of the domain. In the case of planar volume 

conductors [7], it is necessary to place another identical sphere at the symmetric point with respect 

to the planar surface (image theorem, Figure 4). 

 

F. Example of application: two-layer planar volume conductor 

The problem of surface EMG simulation in the case of a multi-layer planar volume conductor was 

investigated in [7]. Using the same approach, the following transfer function for a two layer planar 

volume conductor (Figure 5) is obtained (calculations omitted): 
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where MTML  ,,  are the conductivities of the fat layer, and of the muscle in the directions 

longitudinal and transversal to the fibers, respectively, 
22

zxy kkk   (kx and kz being the spatial 

angular frequencies in x and z directions, respectively), the depth is measured by the y coordinate, y0 

is the source depth (<0), y = 0 is the position of the interface between fat and muscle, y = h is the 

detection surface. 

In [7] the transfer function was provided only for the detection surface while the expression (21) 

refers to a generic depth y into the fat layer, which is here of interest to study the effect of the 

inhomogeneity. We will consider spherical inhomogeneities placed in the fat layer. Generalizations 

of this case to multi-layer planar volume conductors are straightforward.  

The gradient of the inhomogeneity free potential at the center of the inhomogeneity is given by: 

                    

 
 
 





























Hjk

H

Hjk

z

y

x

1

2

1

2
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                                                         (22) 

where 
1

2


  is the two-dimensional inverse Fourier transform in zx kk ,  and H is given by Eq. (21). 

Note that the partial derivatives in the x and z coordinates are obtained in the spatial frequency 

domain, which is also the domain in which the problem has been studied [Eq. (21)] [7]. Substituting 

the expression (22) in (20), the perturbation term is obtained by Eq. (8). The surface potential is 

obtained summing the inhomogeneity free potential and the perturbation term at the detection 

surface: 

   

hy
p

zxps

rr

nA
khykHzhyxzhyxzhyx
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
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2 )),,((),,(),,(),,( 



               (23) 

For the numerical issues related to the inversion of the transfer function, i.e., a proper choice of the 

sampling in the spatial frequency domain, we refer to [7]. The numerical errors in the inverse 

Fourier transformation can be studied by comparison with the one layer solution, for which an 

analytical approximate solution is known in the space domain.  
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Figure 5 about here 

 

G. Representative Simulations  

Figure 6 reports examples of surface EMG signals filtered by spatial filters usually applied for 

EMG detection in the case of absence and presence of a local inhomogeneity. A small displacement 

of the inhomogeneity from the aligned (with the source and the electrode) situation is also 

considered. The figure shows that different spatial filters may have different sensitivities to local 

inhomogeneities. The sensitivity depends on the relative location of the inhomogeneities with 

respect to the electrodes forming the spatial filter, thus the results may be largely different for other 

geometrical arrangements with respect to those of Figure 6. 

 

Figure 6 about here 

 

3. DISCUSSION AND CONCLUSION 

In this study we proposed the analytical solution of the problem of surface EMG signal generation 

in volume conductors with spherical inhomogeneities. The presence of local inhomogeneities 

complicates significantly the analytical problem with respect to the analysis of the correspondent 

systems without the inhomogeneities. 

The systems analysed in this work are non-space invariant in the direction of source propagation, 

which makes the potential distribution different in shape for any location of the source along the 

propagation path. In the literature, only a few systems of this type have been investigated [21][26], 

either numerically or analytically. The availability of models of non-space invariant systems is 

relevant for the analysis of methods of signal detection or processing which are theoretically based 

on the absence of shape changes of the detected potentials along the direction of propagation. In 
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practice, this condition is not met, thus the performance is affected by the mismatch between the 

hypotheses on which the techniques are designed and the practical situation.  

A relevant example of techniques theoretically based on the pure propagation of the signal is spatial 

filtering. The classic bipolar recording is the simplest example of spatial filter and can be described 

by an analytical spatial transfer function, derived from the assumption of signal propagation along 

the direction of the fibers [17]. The same applies for other one- or two-dimensional spatial filters 

[24][25]. The comparison of filter selectivity is based on the high-pass frequency [6]; the higher the 

cut-off frequency, and the steeper the transfer function, the higher the selectivity of the filter. 

However, the transfer functions derived in the literature can not be applied in case of non-space 

invariant systems. In this case the deviation of performance of the filter applied for signal detection 

can only be investigated by models describing non-space invariant systems. 

Similarly, the methods developed for the estimation of muscle fiber conduction velocity are based 

on the assumption that the detected potentials are identical in shape and delayed [12]. The delay is 

related to the velocity of propagation. If the detected potentials do not have the same shape, there is 

not a unique definition of delay, thus different methods for its estimation may provide significantly 

different results. Moreover, some methods may be more or less sensitive to the shape variations, 

and thus can be preferred over others after an evaluation of performance based on models 

describing non-space invariant systems. 

Although the complexity of the analytical solution can be avoided by a numerical approach, an 

analytical solution is important for many reasons, such as the low computational time. Moreover, 

the analytical investigation allows a better insight into the physical phenomena which underlie the 

modifications in the signal characteristics, providing a detailed analysis of the generation of the 

potential distribution. For example, this study shows that the perturbation effect tends to zero as the 

inverse of the square of the distance from the detection point and the support of the perturbation on 

the detected signal travels in opposite direction with respect to the propagating source (see Figure 
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1.a). The latter observation indicates that this kind of inhomogeneities may have a large effect on 

conduction velocity estimation.  

In conclusion, this study provides an analytical approximation of the potential distribution in 

complex in-homogeneous volume conductors and, also because of the low computational time, 

constitutes the means for systematically analysing methods for surface EMG processing in 

conditions closer to the practical situation. Such means were not previously available and allow the 

development and characterisation of new methods for information extraction. 

 

 Approximations and limitations of the approach  

The limitations of the proposed model are due to the approximation introduced, explained through 

the paper. The approximations are mainly due to the truncation of series (6) and to neglecting the 

mutual effects between inhomogeneities. The first approximation can be removed by considering a 

more precise approximation by the same technique adding more terms in the series expansion 

approximating the solution (8). In this way, near field effects could be considered, widening the 

application of the method, adapting the method to the specific condition. To enlarge the minimal 

distance between the inhomogeneities is not simple, as mutual effects are difficult to handle 

analytically; a new model should be studied. This is an intrinsic characteristic of the topic 

addressed, as we are focused on local inhomogeneities: adding more inhomogeneities close to each 

other is the basis for the development of a model of a distributed inhomogeneity, which is out of the 

purposes of the paper. 

The main limitations of the method, as it is presented in the paper (without introducing more 

detailed approximations), concern the relation between the dimension of the inhomogeneities, their 

position with respect to the source and to each other (Eq. (18)). Note that in a recent application of 

this model [11] we proved that the perturbation effect due to local inhomogeneities (as modeled in 

the present manuscript) is very relevant on estimates of conduction velocity. A plane layer model 

with 3 inhomogeneities into the fat layer (4 mm thick) and fiber 4 mm deep in the muscle was used. 
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In all the simulations the worst case approximation error was smaller than 5% of the perturbation 

term (distance between two spheres larger than 3R, all the inhomogeneities depths equal to 2R, 

where R=1 mm is the radius of the three inhomogeneities considered for each of the simulations).  

Interesting simulations of physiological relevance can then be obtained by the proposed method. 

More situations can be described by adapting the method to a more precise simulation (as precise as 

required, by adding more and more terms of the series (6), being careful to the computational cost, 

which is slightly increasing by adding terms to the approximated solution). Finally, further 

developments are suggested to account for a distributed inhomogeneity, not taken into account in 

this paper. 
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Figure captions 

Fig. 1  Effect of an inhomogeneity on the surface potential generated in a homogeneous volume 

conductor. a) The impulse response is perturbed by a term which is not space invariant, and whose 

support propagates in the inverse direction with respect of the source. b) The potential along the 

direction sp rrs


 , given by the approximate solution of Eq. (9), with nA

  defined by Eq. (11); 

the perturbation effect decays rapidly with distance from the inhomogeneity. c) Contour plot of the 

perturbation term for different positions of  the impulsive source. 

 

Fig. 2 Analysis of the approximation error in the direction orthogonal to sp rr


 . The perturbation 

term should vanish where the normal derivative of the inhomogeneity free potential to the 

inhomogeneity boundary vanishes. Such a property is verified in a plane orthogonal to sp rr


  

passing through the tangent points of the lines through the source to the inhomogeneity surface. The 

approximated perturbation term vanishes in the plane orthogonal to sp rr


  passing through the 

center of the inhomogeneity. In the case of the source in position 1, the distance between the two 

planes is negligible with respect to the radius of the inhomogeneity.  

 

Fig. 3 Approximated potential along the direction sp rrs


  (Eq. (9), (11)). Examples of 

perturbation terms for different conductivities of the inhomogeneity. a) p , b) 0p ; in the 

first case, the values of the potential should be equal at the inhomogeneity boundary (i.e., at sp-R 

and sp+R), in the second, the normal derivative of the potential (i.e., 
ds

d
) should vanish. c), d) 

intermediate cases; in the first case, the ratio between the conductivity of the inhomogeneity and of 

the outer volume conductor is larger than unity, in the second it is smaller. In the first case the 

difference between the potential in sp-R and sp+R with respect to the inhomogeneity free potential is 
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reduced, in the second case it is enhanced, whereas the normal derivative is reduced in magnitude. 

A.U. stands for arbitrary units. 

 

Fig. 4 Effect of the perturbation term relative to an inhomogeneity over the potential detected at 

another inhomogeneity. a) Definition of the terms in Eq. (17). The quantities are normalized with 

respect to the inhomogeneity radius R. b) Source and inhomogeneities aligned. The dimensions in a) 

are maintained. (d
wc

)12 is the worst case value for d in Eq. (17), which is obtained in the aligned 

situation. Furthermore the effect of an inhomogeneity on the potential over the second is enhanced 

in the aligned case. c) Schematic representation of the surface potential. The superposition of the 

effects of the two inhomogeneities is underlined. d) Image theorem for a planar volume conductor. 

Two inhomogeneities are to be considered even if the volume conductor under consideration 

contains only one.  

 

Fig. 5 Two layer planar volume conductor constituted by an isotropic fat layer and an anisotropic 

muscle tissue. The notations of Eq. (21) and subsequent are reported.  

 

Fig. 6 Example of surface EMG signals filtered by different spatial filters (monopolar, longitudinal 

single and double differential, normal double differential, b)) in the case of absence and presence of 

a spherical inhomogeneity (  10p ). Two positions of the inhomogeneity are considered: aligned 

with the source and the detection point, and displaced by 2.5 mm, a). A section perpendicular to the 

fiber of the volume conductor is shown in a). The simulated signals are shown in c) (conduction 

velocity 4 m/s, tripole model of the source, with parameters from [20]). The muscle fiber was 

assumed of infinite length. The conductivity values are 02.0  S/m, 1.0MT  S/m, 5.0ML  

S/m. Different spatial filters present different sensitivities to local inhomogeneities. 
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