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ABSTRACT 

In this study we propose a time-domain index to assess M-wave widening during high-frequency 

stimulation, as an objective parameter for quantifying muscle fatigue. At high stimulation 

frequencies, signal truncation, due to the delivery of the electrical stimulus before the M-wave 

generated by the previous stimulus extinguishes, biases the spectral frequency variables usually 

computed to estimate M-wave widening. Thus, we propose an estimator of the scale factor between 

two truncated M-waves. The estimator is derived from the Scale Transforms of the two signals, 

with an efficient implementation that avoids limits of resolution. The method was tested on both 

simulated and experimental signals. The simulations showed that the proposed technique is 

significantly less affected by signal truncation than previous approaches. The experimental 

recordings were collected from 11 subjects at stimulation frequencies of 20 Hz, 40 Hz, and 60 Hz. 

The scale factor estimation assessed M-wave widening in the three conditions, differentiating 

between the different rates of change of signal widening. The method proved to be significantly 

superior to M-wave spectral analysis. The technique can be applied to investigate myoelectric 

manifestations of muscle fatigue at stimulation rates that could not be analyzed in the past and thus 

opens new perspectives in the evaluation of electrical stimulation for training and rehabilitation 

protocols. 



 3 

INTRODUCTION 

Transcutaneous electrical stimulation determines artificial activation of axon branches and 

depolarization of the innervated muscle fibers. When the current or voltage stimulus is provided, the 

motor units that are activated generate synchronous action potentials detectable at the skin surface. 

The potentials sum to form a compound signal, termed M-wave. The M-wave can be analyzed in 

the time or frequency domain [1] and provides information on the peripheral properties of the 

neuromuscular system [2][3] and on their changes due to fatigue [4], pathology [5], or exercise [6]. 

When the muscle is repetitively stimulated, the detected motor unit action potentials change their 

characteristics, reflecting the underlying physiological mechanisms. The physiological 

modifications in the muscle fiber membrane properties, such as the changes in intra-cellular action 

potential shape and conduction velocity, determines the M-wave widening over time [1][7]. This 

phenomenon can be analyzed to assess the so-called myoelectric manifestations of muscle fatigue 

[1]. 

The M-wave widening can be monitored by spectral analysis. An increase in signal duration 

corresponds to a reduction in signal bandwidth. Thus, characteristic spectral frequencies, such as 

mean or median frequencies, can be used as indicators of spectral compression and of expansion of 

the M-wave temporal support [8].  

Indexes alternative to spectral variables have been proposed to describe the M-wave widening. 

LoConte et al. [9][10] expanded the M-wave by a series of Hermite-Rodriguez functions with 

varying scale factor (i.e., the multiplicative constant scaling the independent variable of a 

mathematical function). Olmo et al. [11] proposed the use of a single waveform to approximate the 

M-wave; the scale factor to be applied to the waveform to best approximate the original signal was 

used as an index of signal duration. More recently, Muhammad et al. [12] proposed a method for 

scale factor estimation, based on the time-domain analysis of the M-wave.  

One of the problems encountered in the analysis of M-wave scale factor is the truncation of the 

signal that may occur at stimulation frequencies higher than the inverse of M-wave duration. Let’s 
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consider, e.g., a semi-fiber length of 60 mm, average conduction velocity of 4 m/s, and a length of 

15 mm of the intracellular action potential; the time needed for the action potentials to generate, 

travel along the fiber length, and extinguish is in this case 18.75 ms. Thus, stimuli repeated in time 

at a frequency higher than approximately 50 Hz will generate an M-wave before the previous one 

has extinguished at the tendons. The scatter of the neuromuscular junctions and of the conduction 

velocities of different motor units would lower this limit if the M-wave is considered instead of the 

single fiber potential. Moreover, if the conduction velocity decreases and the intra-cellular action 

potential widens, due to fatigue, the time needed for the extinction of the M-wave will be longer. 

When stimulating at high frequencies, the changes of the M-wave due to fatigue may be relatively 

fast over time. Thus, it is likely that the detected M-waves will be truncated by the successive 

stimulus and this truncation will be more and more important as fatigue develops.  

The M-wave truncation introduces high frequency components, which bias the spectral based 

fatigue indexes. The time-domain based approaches proved to be less sensitive to this phenomenon 

[9][10][12]. However, there are no methods that allow reliable assessment of M-wave widening at 

stimulation rates higher than 30-35 Hz, without a significant bias introduced by signal truncation 

[12]. 

Although not reached during voluntary contractions, high stimulation rates may be used for training 

[13], functional exercise, or muscle characterization, such as in the case of countermeasures for 

reducing microgravity effects [14][15]. The analysis of the changes in membrane fiber properties at 

these stimulation rates is of importance both from the basic physiological point of view [16] and for 

the analysis of muscle fatigue properties, necessary for the design of training stimulation protocols 

[13].  

The aim of this work was to propose a time-domain index to quantify M-wave widening during 

high-frequency stimulation, to quantify muscle fatigue. This index is the scale factor between two 

signals of equal or similar shape, detected in a time interval shorter than the signal duration. The 

method proposed for the estimation of the scale factor is based on the Scale Transform [17] and is 
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almost insensitive to signal truncation, thus applicable to M-waves elicited at high stimulation 

frequencies. The technique was applied to both simulated and experimental signals.  

 

METHODS 

Two M-waves detected at different instants of time during a sustained electrically elicited 

contraction can be ideally described as: 

 T,t)t(s)t(x

)t(s)t(x

002

1






     (1) 

where 0  is the scale factor between the two signals and T is the interval of observation (time 

interval between two subsequent stimuli). We will assume 0  < 1. With this notation, considering 

the signal s(t) to have bounded temporal support (here defined as the interval of time outside which 

0)( ts ), the temporal support of x1(t) is 0  times shorter than that of x2(t). The signals x1(t) and 

x2(t) have the same shape (with different scale factor) only if T is longer than the temporal support 

of x2(t). On the contrary, if x2(t) has a longer duration than T, the two signals no longer have the 

same shape and, in principle, it is not possible to define a scale factor between them. Fig. 1 reports 

an example of M-wave detected during a sustained contraction at high stimulation rate. The first 

detected M-wave and the last one can be approximated by the signal model (1). The effect of signal 

widening as well as of signal truncation is evident. 

 

Figure 1 about here 

 

Let’s consider the signal ),t(x~ 1 , derived from x1(t): 
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where   < 1. The signal ),t(x~ 1  is the truncated version of )t(x1 . The signals ),t(x~ 1  and x2(t) 

have the same shape if  = 0 . If the duration of )t(x1  is shorter than 0 T, ),t(x~ 01  = )t(x1  and 

x2(t) is not truncated. In general, ),t(x~ 01   )t(x1  and x2(t)= ),t(x~ 001  . Since the signals 

),t(x~ 001   and x2(t) have the same shape, the scale factor between them can be estimated without 

bias.  

A further generalization concerns the possibility of limiting the time interval in which the signals 

are analyzed, skipping the first samples. For example, we may want to avoid the stimulation artifact 

and thus remove from the analysis the first acquired samples. In this case, the reference truncated 

signal will be: 
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with d the duration of the time interval at the beginning of the recording which is not included in the 

scale factor estimation. 

In order to obtain signals with the same shape, we should also define: 
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Fig. 2 shows these concepts for elementary signals. With the definitions of Eqs. (3) and (4), we 

obtain ),t(x̂ 001   = ),t(x̂ 02   (Figure 2). From ),t(x̂ 01   and  ),t(x̂ 02  , it is possible to 

estimate the scale factor between the two signals independently on the time interval of observation 

T and on the interval duration d. These two signals are indeed exactly the scaled version of each 

other for any choice of the parameters T and d. However, since 0  is not known (it is indeed the 

unknown scale factor to be estimated), the signals ),t(x̂ 01   and ),t(x̂ 02   are not available. 

Rather, we may determine a set of signals ),t(x̂ 1  and ),t(x̂ 2  for any choice of . In the 

following we will propose a criterion to estimate 0  from ),t(x̂ 1  and ),t(x̂ 2 . 
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Figure 2 about here 

 

A. Scale Transform 

The  Scale Transform (ST) of a signal v(t), as firstly introduced by Cohen [17], is defined as: 


 


0

ln

)(
2

1
)( dt

t

e
tvcD

tjc


                           (5) 

where c is the scale variable. The ST of the signal v(αt), which is the scaled version of v(t), is 

)c(D
jc



lne
. Thus, the Fourier transforms of the STs of two signals scaled between each other by 

the factor  are delayed by ln.  

In the following, we will consider signals with compact support, rescaled to [0,1], i.e., the time 

variable is normalized dividing by T (T is not longer than the stimulation period). Hence, the 

integration in (5) is performed in the interval [0,1], instead of [0,+∞). Being the scale operator self-

adjoint [17], the set of eigenfunctions is complete, so that any square integrable function can be 

uniquely represented by the transform (5), and the signal can be obtained inverting the transform, 

i.e., evaluating the integral of the ST D(c) weighted by the eigenfunctions 
t

e tjc ln

 of the scale 

operator. 

The direct application of the ST to the signals x1(t) and x2(t) [Eq. (1)] for estimating the scale factor 

between them was proposed in [12]. In presence of signal truncation, the assumption of equal shape 

was not met, thus the STs of the two signals could have different magnitudes with a bias in the scale 

factor estimation. It was shown that this approach was less sensitive to signal truncation than the 

classic spectral analysis [12]. However, stimulation frequencies larger than 30-35 Hz determined 

too large biases in the scale factor estimation.  
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B. Signal truncation 

The STs of the signals x1(t) and x2(t) [Eq. (1)] are different in magnitude if T is shorter than the 

duration of x2(t). Thus, we should consider the signals ),t(x̂ 1  and ),t(x̂ 2  [Eqs. (3) and (4)], 

which, for  = 0 , are equal in shape. 

Let’s consider the ST of the signal ),t(x̂ 1 : 














d

tlnjctlnjc

],d[

tlnjc

dt
t

e
)t(sdt

t

e
)t(p)t(sdt

t

e
),t(x̂),c(D

2

1

2

1

2

1 1

0

1

0

11     (6) 

where )t(p ],d[   is equal to 1 in the time interval [d, ] and to 0 otherwise.  

The ST of the signal ),t(x̂ 2  can be written as: 
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with ),c(D
~

 = ),(1 cD  for = 0 , and y is the integration variable ( ty 0 ). 

Both ),(1 cD  and ),c(D 2  depend on the selection of . If the scale factor  is different from 

0 , the magnitude of ),(1 cD  and ),c(D 2  have different shapes. On the contrary, in case = 0 , 

the magnitude of the two STs have the same shape (Fig. 3) and the Fourier transforms of ),(1 cD  

and ),c(D 2  are delayed by the factor 0ln . Thus, for  = 0 , the two functions ),(1 cD  and 

),c(De lnjc  
2

  are equal [Eq. (3)]. 

 

Figure 3 about here 

 

Given the properties of ),(1 cD  and ),c(D 2 , we define the following quadratic error: 
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The function )(e 2  is the mean square error between ),(1 cD  and ),c(D 2 , shifted in the 

frequency domain by the amount ln . For each selection of the variable , the mean square error 

(8) defines the error between two STs derived from the two available signals. In the ideal case, the 

mean square error (8) is zero when  = 0 , regardless of the durations T and d. For experimental 

signals, the two STs are not exactly delayed in the frequency domain, due to noise and errors in the 

model assumed, thus the scale is estimated as the one corresponding to the minimum of the 

quadratic error (8).  

Given the two recordings as in the model (1), we define the following estimator of the scale factor 

between the two signals: 
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      (9) 

which corresponds to the argument of the minimum of the mean square error (8). When the mean 

square error is zero, the scale factor 0  is exactly estimated without any bias due to truncation since 

the two signals are truncated by exactly the same amount (with appropriate scaling). Due to the 

definitions of ),t(x̂ 1  and ),t(x̂ 2  [Eqs. (3) and (4)] (Figure 2), and the properties of the STs, the 

mean square error (8) is a complicate function of  .  

The minimum of )(e 2  can be obtained by computing the STs of the signals ),t(x̂ 1  and 

),t(x̂ 2  for a number of scale values . The scale value  will also define the shift associated to 

the Fourier transform of ),c(D 2 .  

An exhaustive computation of the mean square error )(e 2  for a number of  values is time 

consuming and implies a limited resolution with which the scale is estimated. Indeed, a discrete step 

of  should be selected. A better approach is to use an iterative method to find the zero of the first 
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derivative of )(2 e . For this purpose, the first and second derivatives of )(e 2  should be 

analytically computed. Using the notation  

1

0

22 )( dcbae  , we can express the first and second 

derivative of the quadratic error (8) as: 
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where the dot indicates differentiation with respect to , and the asterisk indicates the complex 

conjugate. The expressions of bbaa  ,,,  can be obtained by analytical derivations (omitted): 
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For a numerical implementation, all previous expressions must be sampled. For the sampling of the 

ST, the same approach proposed in [12] is adopted. Moreover, Eqs. (11) require the evaluation of 

the signals and their derivatives at specific time instants. These instants of time may be not exact 

multiple of the sampling period. However, we can substitute the signals and their derivatives in Eqs. 

(11) by the following equivalent expressions: 
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where N is the number of samples, and  wX1  is the discrete Fourier transform of the time series 

1x [n] [sampled version of 1x (t)]. In this case, k can be any real number. 

Given the two derivatives of the mean square error, as computed by Eqs. (11), an estimate of 0  

can be obtained by the following iteration: 
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starting from a coarse estimate 00,̂ . Since the process of M-wave widening evolves progressively 

in time, a coarse estimate 00,̂  can be the scale factor between the previous M-wave and the 

reference. Fig. 4 shows a schematic diagram of the method proposed. 

 

Figure 4 about here 

 

C. Simulated signals 

The method described above was tested on both simulated and experimental signals. The simulated 

signals were generated by a structure-based model [18]. For testing the method and comparing it 

with previous approaches, a single fiber action potential has been simulated to describe an M-wave. 

This strong simplification of the M-wave is not a concern for the purpose of the comparison 

between methods of estimation of signal widening. A scale factor corresponding to 0.5, 0.6, 0.7, 

0.8, and 0.9 was applied to the simulated action potential, according to an M-wave widening model 

of Eq. (1). Additive white Gaussian noise was added to the signals with signal-to-noise ratio 5 dB, 

10 dB, and 20 dB. For each signal-to-noise ratio, 100 signal realizations were generated. The time 

interval of signal observation was varied in order to change the degree of signal truncation (see 

Results). 

The approach proposed for scale factor estimation was applied to the simulated signals. For 

comparison with previous techniques, the scale factor was also estimated a) by directly applying the 

ST to the two signals without considering a signal truncation [12], and b) from the mean power 

spectral frequency (MNF). The MNF was normalized with respect to the value assumed for the 
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signal with scale factor 1 (reference signal in the case of scale factor estimation). Median frequency 

resulted in similar results (not shown) as MNF.  

 

EXPERIMENTAL PROCEDURE 

A. Experimental protocol 

Eleven male healthy subjects (age, mean ± SD, 26.8 ± 2.7 years, stature, 178 ± 6.8 cm, weight, 73.1 

± 8.4 kg) participated to the measurements. The study was approved by the Local Ethics Committee 

of the Health Department of Region Piemonte, Italy, and written informed consent was obtained 

from all participants prior to inclusion. 

Surface EMG signals were recorded from the right (dominant) biceps brachii muscle. A brace was 

used to fix the subjects’ arm for an isometric contraction. The forearm was placed at 120°
 
flexion 

(being 180° the full extension of the forearm). The subject sat on a chair, with the arm 90° flexed 

(0° being the angle corresponding to the arm along the body). A 40 cm
2
 electrode was placed on the 

triceps muscle, to close the current path during stimulation. The motor points of the biceps brachii  

were then identified with electrical stimulation at 2 Hz, using a pen electrode of 1 cm
2
. The point 

corresponding to the maximal mechanical response elicited by the minimal current was defined as 

the motor point for the stimulation. An adhesive electrode of 1 cm
2
 surface was fixed on the 

selected point.  

Surface EMG signals were detected by a linear adhesive array (LISiN-SPES Medica, Torino, Italy) 

of 8 electrodes with 5 mm inter-electrode distance in single differential configuration. The EMG 

signals were amplified (LISiN-PRIMA Biomedical & Sport, Treviso, Italy), filtered (3-dB 

bandwidth 10-500 Hz), sampled at 2048 Hz, and digitized by a 12-bit A/D converter. To ensure 

synchronous sampling, the seven differential channel amplifier incorporated sample and hold 

circuits. The acquisition board was triggered by the stimuli from the stimulator.  

Stimulations at 2 Hz with progressively increasing current intensity were delivered to determine the 

supra-maximal stimulation current, which corresponded to the current beyond which the M-wave 
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did not further significantly increase in amplitude [1]. Stimulations at 20, 40, and 60 Hz, sustained 

for 10 s each, at the supra-maximal current were then applied to the subjects. After 5-min rest from 

the determination of the supra-maximal current, the first elicited contraction at 20 Hz was 

performed. Five-minute rest was allowed after this contraction which was followed by the 

contractions at stimulation frequencies 40 Hz and 60 Hz, separated by 10-min rest. 

 

B. Signal analysis 

Of the seven bipolar signals detected during the experimental session, only the central one was 

considered for further analysis in this study. The experimental signals were divided into epochs of 1 

s. The M-waves detected in one epoch were averaged [1]. The M-wave in the first epoch was 

considered as the reference signal (scale factor 1). The scale factor was computed considering the 

first epoch as reference and each of the other epochs, obtaining a total of nine scale factor values. 

Mean frequency was computed from the 10 epochs and its values were normalized with respect to 

that obtained in the first epoch. In ideal conditions of scale changes without truncation, the 

normalized MNF should coincide with the scale factor. 

The new method was applied to both simulated and experimental signals setting d = 0, thus no 

samples were excluded at the beginning of the signals. This allowed proper comparison with the 

other methods. 

 

C. Statistical analysis 

Scale factors and normalized MNF estimated from the experimental signals were analyzed using 

three-way repeated measures analysis of variance (ANOVA), followed by post-hoc Student-

Newman-Keuls (SNK) pair-wise comparisons, when required [19]. The factors in the ANOVA 

were the method used for estimating the scale factor (new method, direct application of the ST, and 

normalized MNF), stimulation frequency, and epoch. Statistical significance was set to P < 0.05. 

Data are presented as mean  standard deviation (SD) and mean  standard error (SE), as indicated. 
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RESULTS 

A. Simulation 

Fig. 5 reports an example of estimation of scale factor by the different methods tested when 

increasing signal widening for a finite time interval of observation for simulated EMG signals. The 

method proposed was less affected by signal truncation than the direct application of the ST. The 

results indicated that MNF is a poor estimator of scale factor when truncation occurs. Fig. 6 reports 

the results on the complete set of simulations. The interval of observation was in this case limited to 

22 samples (see Fig. 5c). The signal-to-noise ratio had a small effect on the mean value of the scale 

factor estimates while it had a larger impact on normalized MNF. 

 

Figures 5and 6 about here 

 

B. Experimental signals 

Fig. 7 reports the scale factor estimates at the three stimulation frequencies. Scale factor tended to 

decrease over time, indicating the widening of the M-wave due to reduction in average muscle fiber 

conduction velocity [1]. Thus, the scale factor can be considered a fatigue index. When normalized 

MNF was used to estimate the scale factor, M-wave truncation hindered the decreasing trend at high 

stimulation frequencies (40 and 60 Hz) while the new method clearly revealed M-wave widening. It 

has to be noted that at 60 Hz stimulation frequency, M-wave scale factor decreased to 0.4 at the end 

of the contraction with respect to the average M-wave in the first epoch (Fig. 7). Thus, M-wave 

duration increased more than twice in these conditions.  

A three-way ANOVA of the estimated scale factor was significant for the method, stimulation 

frequency, and epoch and for the interaction among these factors (F > 8.1, P < 0.01; interaction 

among factors: F = 3.65, P < 0.0001). When analysing the effect of stimulation frequency and 

epoch with SNK post-hoc pair-wise comparisons, the new method led to scale factor estimates 

different for all stimulation frequencies (P < 0.05; mean ± SD, 0.97 ± 0.04, 20 Hz, 0.82 ± 0.17, 40 
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Hz, and 0.62 ± 0.30, 60 Hz). Moreover, the scale factor estimated with the new method was 

significantly different among all epochs (P < 0.05), except between epochs 3, 4, 5, 6 and between 7, 

8, 9. The scale factor estimated applying the ST directly to the signals was different only between 

20 Hz and 60 Hz (P < 0.05; 0.97 ± 0.04, 20 Hz, 0.91 ± 0.08, 40 Hz, and 0.84 ± 0.23, 60 Hz), while 

normalized MNF (mean ± SD, 0.97 ± 0.04, 20 Hz, 0.95 ± 0.20, 40 Hz, and 1.04 ± 0.18, 60 Hz) did 

not depend on the stimulation frequency. The first five epochs resulted in different scale factors, 

when directly applying the ST to the signals, compared with the last four epochs (P < 0.05), while 

normalized MNF did not change with the epoch. 

 

Figure 7 about here 

 

When comparing the three methods by post-hoc pair-wise comparisons, the new method led to 

significantly lower scale factor estimates than the other two methods for the last two epochs at 40 

Hz stimulation frequency (P < 0.05). At 60 Hz, the method proposed resulted in significantly lower 

estimates than the other two methods for the first 4 and the last 2 epochs (P < 0.05); for the other 

epochs the method proposed and the ST directly applied to the signals resulted different from 

normalized MNF (P < 0.05). 

 

DISCUSSION AND CONCLUSION 

A novel method for assessing the scale factor between two M-waves has been proposed. The 

method provides an alternative parameter which can be used as a fatigue index. The parameter is 

derived in the time domain and is almost insensitive to a possible truncation of the M-wave, thus it 

can be applied to investigate changes in M-wave duration during electrically elicited contractions at 

high stimulation frequencies. This may provide a quantitative method to design and compare 

rehabilitation and training protocols [13][16]. 
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The method considers the average M-wave from the first signal epoch as reference and computes 

the scale factor between subsequent average M-waves and the reference. As for previous methods, 

this estimator of scale factor is based on some approximations when it was applied to the M-wave. 

It is assumed that the two M-waves have the same shape [model (1)] and are scaled between each 

other. This is a simplified model of the complex changes which occur in the M-wave during 

repeated stimulation. The M-wave is the summation of action potentials of different motor units, 

which have a distribution of conduction velocities [20]. The rate of change of the velocities of 

propagation during sustained contraction depends on the motor unit type, thus the distribution of 

conduction velocity may change shape. Moreover, there can be phenomena of loss of sarcolemma 

excitability with sustained activation [21], with the consequent change of the active MU pool and 

shape of the compound potential. Thus, the model assuming a pure scaling of the M-wave with time 

is a simplification of the practical situation. However, it constitutes a good approximation and 

allows the reduction of the phenomenon to a single parameter, which is useful for the clinical 

application of the method. 

The experimental results reported in this study show for the first time quantitative myoelectric 

fatigue assessment at stimulation rates as high as 60 Hz, for contractions sustained until significant 

fatigue was present. This opens interesting perspectives in the analysis of muscle fiber membrane 

properties during high activation frequency.  

The method is fast and has no limits in resolution. Moreover, it is relatively little sensitive to 

additive noise (Fig. 6), thus it can be applied in practical cases. An additional advantage of the 

method is that it can work on any portion of the M-wave. It is possible to truncate the M-wave at 

the beginning of its temporal support in order to avoid the stimulation artefact in the computation of 

the scale factor. This truncation does not generate bias in the method since the two signals from 

which the scale factor is computed will always have exactly the same shape, in ideal conditions. 

Thus, the influence of the artefact on the scale estimation is nullified by the proposed approach. 

This is particularly important when the artefact and the M-wave are significantly overlapped [22]. 
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In these conditions, the introduction of a traditional blanking [23] will introduce high frequency 

components in the M-wave and bias the characteristic spectral frequencies. It has to be noted that 

the artefact represents a signal portion which does not scale as the M-wave, thus its presence may 

affect the rate of change of the scale factor.  

In addition to avoiding the stimulation artefact, removing the first portion of the M-wave may 

improve the scale factor estimation since the previous M-wave partially overlaps at the beginning of 

the signal. Since the method proposed can work on any signal portion, the interval in which the 

scale is estimated can be selected in order to have a minimal effect due to the tail of the preceding 

M-wave. 

In conclusion, we proposed a novel method for estimating the scale factor between M-waves 

detected during sustained tetatic stimulation. The method provides a new variable for quantifying 

the M-wave widening during sustained activation. The estimated scale factor was almost insensitive 

to significant M-wave truncations, as assessed by both experimental and model results. 
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FIGURE CAPTIONS 

Fig. 1 a) M-waves detected during muscle stimulation at 40 Hz for 10 s. The first (reference) and 

last detected M-waves are indicated by thick lines and are also shown in (b), (c). The last M-wave is 

truncated by a greater amount than the reference one due to the widening. The thick line in (b) 

indicates the portion of the reference signal equal in shape to the truncated last M-wave. This 

portion is scaled by the estimated scale factor and shown in (d).  

Fig. 2 The signals ),t(x̂ 01   and  ),(ˆ
02 tx  derived from a period T (also equal to the observation 

interval) of a sinusoidal function x1(t) and its scaled version x2(t). The scale factor 0  is 0.75. Since 

the observation interval T is shorter than the temporal support of x2(t), the signals x1(t) and x2(t) 

have different shapes (a). The signals ),t(x̂ 01   and  ),(ˆ
02 tx  are obtained from the truncation (at 

the beginning and end of the observation interval) of the original signals, so that the resultant 

signals are exactly equal in shape and scaled between each other (see text for details) (b and c). 

Since 0  is unknown, only the signals ),(ˆ
1 tx  and  ),(ˆ

2 tx , with   unknown, are available in 

practice. These signals have the same shape only for 0  , as shown in this example. 

Fig. 3 Two simulated signals scaled between each other and observed for a time interval shorter 

than the duration of the second signal. a) Reference signal with four possible truncations. b) The 

second signal considered, which is the scaled version of the reference signal. c) The ST of the 

reference signal for the different truncations. The truncation indicated by 3 corresponds to having 

the same shape of the second signal. d) The ST of the signal in (b). 

Fig. 4 Schematic representation of the proposed method for estimation of the scale factor. The 

minimum of the mean square error is determined by the Newton iterative procedure (see text or 

details). At each step, the original signals are truncated to obtain the signals ),(ˆ
1 tx  and  ),(ˆ

2 tx  

(with   the estimated scale factor at the previous step). The ratio between the first and second 

derivative of the mean square error between the STs of the two truncated signals is used to update 

the estimate of the scale factor [Eq. (13)]. 
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Fig. 5 a) Simulated noise-free signals of equal shape and scaled between each other. The scale 

factor is estimated by the proposed approach, by direct application of the STs, and by normalized 

MNF, from 30 (b), 22 (c), and 18 (d) samples. The scale factor of the 21 signals is estimated with 

respect to the first signal taken as reference and changes from 1 to 0.5 in the 21 steps.  

Fig. 6 Estimation of scale factor (mean ± SD) as a function of the ideal scale factor from the signals 

shown in Fig. 5 with 22 samples considered. For each signal to noise ratio, 100 realizations have 

been generated. MNF values have been normalized with respect to the value assumed for a scale 

factor equal to 1 (not shown). 

Fig. 7 Scale factor estimation (mean ± SE, N = 11 subjects) during the stimulated contractions at 

the three stimulation frequencies for the three methods compared. The value of d (Fig. 4) has been 

fixed to zero in all cases. 
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