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Sequential multiphoton strategy for semiconductor-based
terahertz detectors

Fabrizio Castellano,a� Rita C. Iotti, and Fausto Rossi
Dipartimento di Fisica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

�Received 17 June 2008; accepted 3 November 2008; published online 17 December 2008�

A semiconductor-based terahertz-detector strategy, exploiting a bound-to-bound-to-continuum
architecture, is presented and investigated. In particular, a ladder of equidistant energy levels is
employed, whose step is tuned to the desired detection frequency and allows for sequential
multiphoton absorption. Our theoretical analysis demonstrates that the proposed multisubband
scheme could represent a promising alternative to conventional quantum-well infrared
photodetectors in the terahertz spectral region. © 2008 American Institute of Physics.
�DOI: 10.1063/1.3043577�

I. INTRODUCTION

The recent development of reliable far-infrared �far-IR�
semiconductor-based laser sources, such as the quantum-
cascade �QC� laser,1,2 together with the potential applications
in imaging, communication, and medicine, identifies tera-
hertz radiation detection as a crucial technological milestone.
To this end, many approaches have been proposed in the past
years, which aim at accessing the 1–10 THz region of the
electromagnetic spectrum. Currently proposed solutions en-
compass a variety of different approaches, each with its own
peculiar characteristics.

From the electronics world, field effect transistors are
extending their operation frequency into the subterahertz and
terahertz region exploiting plasmon resonance effects.3–5 On
the other hand, optoelectronic techniques benefiting from
electro-optical properties of LiTaO3, LiNbO3, and ZnTe
crystals were proposed.6,7

Semiconductor heterostructures also play a fundamental
role in this field, QC structures8,9 as well as quantum-well
infrared photodetectors �QWIPs� �Ref. 10� being among the
most promising directions. Concerning the latter, radiation
detection via conventional QWIP designs resorts on direct
bound-to-continuum electronic transitions, which allowed
achieving remarkable levels of performance in the mid-IR
range. Recently, the use of multilevel architectures, opening
up to bound-to-bound electronic transitions, has been pro-
posed and studied, focusing both on their intrinsic nonlinear
character and on their wide-band absorption spectra. While
the latter feature allows for multicolor11 or wideband
detection,12–15 second-order nonlinearities of two-level sys-
tems have been studied and experimentally demonstrated
with the idea of using the devices for second-order autocor-
relation measurements.16–19

The extension of the conventional, bound-to-continuum,
QWIP principle into the far-IR range is not straightforward.
In particular, one of the main issues in terahertz-operating
devices is the huge dark current value that causes the back-
ground limited infrared photodetection temperature �Tblip� to

be in the range of 10–15 K,20,21 that is, much lower than that
of state-of-the-art mid-IR QWIPs. In a previous work,22 we
addressed the advantages of the application of multilevel ar-
chitecture in terahertz QWIP designs and concluded that a
bound-to-bound-to-continuum scheme may efficiently face
the above-mentioned dark current issue. More recently,23 we
have analyzed the performances of such novel architecture,
focusing on the characteristic figure of merit Tblip. Our results
suggest the possibility to achieve a consistent improvement
of the operation temperature of terahertz QWIPs by means of
our proposed multilevel design. In the present article, our
findings are further discussed and the theoretical model on
which our calculations are based is explained in more detail.

II. PHYSICAL SYSTEMS AND MODELING
STRATEGY

Our prototypical device consists of an infinitely periodic
semiconductor-based heterostructure supporting, within each
period, a set of equally spaced bound states. The physical
system we are considering is therefore an electron gas within
a periodic nanostructure and in the presence of external elec-
tromagnetic fields. The corresponding Hamiltonian can be
schematically written as

Ĥ = Ĥ� + Ĥ�. �1�

The first term in Eq. �1�,

Ĥ� = Ĥe
� + Ĥqp

� = �
�

��ĉ�
† ĉ� + �

�q
��qb̂�q

† b̂�q �2�

is the sum of the free-carrier �Ĥe
�� and free-quasiparticle

�Ĥqp
� � Hamiltonians, where the fermionic operator ĉ�

† �ĉ��
denotes creation �destruction� of a carrier in the single par-

ticle state �, with energy ��, while the bosonic operator b̂�q
†

�b̂�q� denotes creation �destruction� of a quasiparticle excita-
tion of type � �phonons, photons, plasmons, etc.� with
wavevector q.

The Hamiltonian Ĥ� in Eq. �1� is the sum of all possible
interaction terms between electrons and quasiparticles. Since
the aim of the present paper is to provide a focus on the
electron-photon interaction dynamics, the latter will bea�Electronic mail: fabrizio.castellano@polito.it.
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treated in a fully microscopic scheme, in terms of the Fermi’s
golden rule. Conversely, all the other carrier-quasiparticle in-
teractions will be described within a phenomenological elec-
tronic mean-lifetime picture, providing effective scattering
probabilites that guarantee the proper thermalization of the
electron population in the absence of external electromag-
netic fields.

A. Band structure calculation

The single-particle Hamiltonian Ĥe
� describes the nonin-

teracting carrier system within the effective three-
dimensional potential profile of our quantum device. The ge-
neric label � adopted in Eq. �2� denotes, in general, a
suitable set of discrete and/or continuous quantum numbers;
for the case of quasi-two-dimensional semiconductor hetero-
structures, as the ones considered in this paper, the latter
includes a partially discrete index along the so-called growth
direction. In particular, since our prototypical design is made
up of a sequence of identical units, the potential term con-
sists, in the envelope-function formalism, of a periodic one-
dimensional �1D� profile.

For a device grown along the z-direction and homoge-
neous as far as the in-plane �x ,y� dynamics is concerned, the
following factorization of the electron wave function may
then be assumed:

�bkzkp
�r� = �b,kz

�z��kp
�x,y� , �3�

where kp and kz are the in-plane and along-z components of
the electron wavevector k, respectively, and b is the label
numbering the various discrete subbands in which the con-
duction band is split because of the 1D quantum confinement
potential.

While parabolic bands are considered for the in-plane
dispersion, and �kp

�x ,y� is the corresponding plane wave,
the band structure along the growth direction is computed
from the 1D Schrödinger equation for the given potential
profile. Moreover, due to the typically low doping levels in
this kind of devices, charge-density effects on the potential
profile may safely be neglected and no Schrödinger–Poisson
coupling is included in our modeling.

The Schrödinger equation projected along the z direction
is solved by means of a plane-wave expansion, as described
in Ref. 24. The following basis functions may then be
adopted

�n,kz
�z� =

1
�Lz

ei�Gn+kz�z, �4�

where n is an integer running from −N to N, Lz is the period
of the 1D potential �i.e., the supercell width�, and Gn

=2�n /Lz and kz �−� /Lz	kz	� /Lz� are the reciprocal lat-
tice vector and the quasimomentum in the first Brillouin
zone, respectively. The basis functions are normalized, as
usual, over the supercell

�
−Lz/2

Lz/2

�n,kz

� �m,kz
dz = 
nm. �5�

In a reduced-zone scheme we can express the along-z
wave function of an electron in subband b and momentum kz

as

�b,kz
�z� =� Lz

2�
�

n=−N

N

cb,n,kz
�n,kz

�z� . �6�

The series expansion in Eq. �6� allows us to convert the
stationary Schrödinger equation into a discrete eigenvalue
problem. The solution of such problem consists of a set of
2N+1 energy eigenvalues �b,kz

, each representing the al-
lowed energy level for an electron in subband b with
wavevector kz. The components cb,n,kz

represent the spectrum
of the wave function in the plane wave basis set. The plane-
wave-like normalization of the wave functions �b,kz,kp

,

��bkz�kp�
	�bkzkp


 =� �bkz�kp�
� �r��bkzkp

�r�dr = 
�k − k�� ,

�7�

is guaranteed by the form �4� of the basis functions and is
consistent with the fact that the structure is assumed to be
infinite along z.

B. Potential profile

The quantum design of our semiconductor device should
satisfy several requirements. First of all, the main constrain
is to have equally spaced bound levels. Second, we want to
be able to control the number of such levels and their spac-
ing, too.

When speaking of equally spaced levels, the first solu-
tion would seem to be that of a parabolic potential profile.
The implementation of the latter, however, besides nontrivial
growth issues, poses more fundamental problems: in order to
have carrier transport we need a continuum and thus the
parabolic potential must be truncated at some point. Such a
truncated parabola would not support equally spaced levels
anymore. We therefore decide to use multi-quantum-well
strategies for our QWIP basic period.

Single quantum wells are used to produce the single
bound level providing the bound-to-continuum transition ex-
ploited in conventional QWIPs. Two energetically equal
transitions can still be obtained with a single QW of proper
geometry. The tuning of the separations of three bound levels
cannot be achieved with a potential having only two free
parameters �width and depth� and thus we have to switch to
more complex structures.

The nested QW structures—shown in Fig. 1—turn out to
be convenient choices. The introduction of additional geo-
metrical parameters to the standard QW design allow us to
control the number and position of the desired number of
energy levels. A detailed description of the method used to
determine the potential profiles is given in Appendix A.

Figure 1 shows the supercells of our prototypical struc-
tures, which are to be infinitely replicated along the growth
direction. The use of many repetitions of the basic unit is
indeed the strategy exploited in this kind of unipolar devices
to optimize detection efficiency. Finite-size �i.e., boundary
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and contact� effects are therefore of minor importance.
Moreover, due to the low doping values, in-plane quantum
confinement effects are negligible, too.

C. Transport model

The transport model we employ to describe the electron
dynamics in our unipolar device is based on the Boltzmann
transport equation describing the distribution of electrons in
the device conduction band. Its general form for the case of
N subbands is the following:

� fb�k�
�t

=
e

�
F · �fb�k� + �

b�=1

N � �Pbb��k,k��fb��k��

− Pb�b�k�,k�fb�k��dk�, �8�

where fb�k� is the single-particle distribution function of
electrons in a state with wavevector k in subband b,
Pb�b�k� ,k�dk� is the probability per unit time that a scatter-
ing event bringing an electron from a state in band b and
wavevector k to a state in band b� and wavevector k� occurs,
and F is the external electric field providing the electron
drift. F may in general be oriented in any direction; in this
paper, we will limit our discussion to biases applied only
along the growth axis. The knowledge of fb�k� allows us to
evaluate the current density across the device, J, as follows

�J
 =
e

�2��3�
�

b
� �Eb�k�fb�k�dk , �9�

provided that the distribution function is normalized as

1

�2��3�
b
� fb�k�dk = Ne, �10�

where Eb�k� is the miniband dispersion and Ne is the number
of electrons per unit volume in the device.

Being interested in the steady-state behavior of our de-
vice, we solve the homogeneous equation obtained from Eq.
�8� when the time derivative is set equal to zero

e

�
F · �fb�k� + �

b�=1

N � �Pbb��k,k��fb��k��

− Pb�b�k�,k�fb�k��dk� = 0. �11�

The latter equation is solved employing a finite difference
strategy as described in Appendix B. The various scattering
mechanisms affecting the electron dynamics are included
into the global probabilities Pb�b�k� ,k� and may be separated
into the following contributions:

Pb�b�k�,k� = Pb�b
opt �k�,k� + Pb�b

th �k�,k� , �12�

where Pb�b
opt �k� ,k� is the electron-photon interaction part and

Pb�b
th �k� ,k� accounts for all thermalization processes.

D. Nonoptical scattering model

To keep the model as simple as possible, yet without
spoiling the proper description of the main physical issues,
all nonoptical scattering processes are accounted for by
means of a phenomenological mean lifetime �, which acts as
a global fitting parameter. Let us introduce a thermal transi-
tion probability density Pbb�

th �k ,k�� such that the mean life-
time �bk of an electron in band b with wavevector k is given
by

1

�bk
= �

b�
� Pb�b

th �k�,k�dk�. �13�

The mean lifetime of the electrons � is then defined in
terms of the distribution function fb�k� as

1

�
=

1

�2��3Ne
�

b
� fb�k�

�bk
dk

=
1

�2��3Ne
�
bb�
� � fb�k�Pb�b

th �k�,k�dk�dk . �14�

The latter can be used to compute the Pth probabilities once
� has been fixed and a functional form for Pth has been set.
However, the definition of � given in Eq. �14� implies the
knowledge of the single-particle distribution function, which
is obtained from Eq. �11�, which in turn requires Pth to be
determined. To break this loop we choose to drop the strict
physical interpretation of � as the actual mean lifetime of
electrons and simply use it as a measure of the strength of
thermalization mechanisms. In this picture we can perform
the mean in Eq. �14� using a distribution function of our
choice and convenience, bearing in mind that this will not
affect our conclusions. We thus define � as
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FIG. 1. Potential profiles along the growth direction of our prototypical
devices, designed to operate at 3 THz, with a number of bound states vary-
ing from one �a� to four �d�. The proposed symmetric nested-quantum-well
structure in �c� and �d� provides additional geometric parameters, with re-
spect to the single QW design, which can be varied to tune the energy level
separation.
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1

�
=

1

�2��3Ne
�
bb�
� � Pb�b

th �k�,k�dk�dk . �15�

To evaluate the integral in Eq. �15�, we have to choose a
functional form for Pth containing a free parameter suitable
for normalization. Since Pth must account for all thermaliza-
tion mechanisms, its form must ensure that in the absence of
any external excitation �i.e., no bias, no light� the system
exhibits a thermal distribution function, that is, a distribution
function such that

fb�k�
fb��k��

= e−�Eb�k�−Eb��k���/kBT. �16�

At equilibrium we know from the detailed-balance principle
that

fb�k�
fb��k��

=
Pbb�

th �k,k��

Pb�b
th �k�,k�

�17�

the simpler way to fulfill this requirement is to impose

Pb�k�,bk
th = P0Pb�b�k�k�

= P0� 1 if Eb�k�  Eb��k��

e−�Eb��k��−Eb�k��/kBT if Eb�k� 	 Eb��k�� ,�
�18�

where P0 is a normalization constant that can be computed in
terms of � as follows

1

P0
=

�

�2��3Ne
�
bb�
� Pb�b�k�,k�dk�dk . �19�

The strategy is therefore to first assume a value for � and
then use the latter to compute P0. This completely deter-
mines the probabilities Pth that appear in Eq. �12� and allows
us to solve Eq. �11�.

Actually the definition of P0 would not be of any impor-
tance if thermal scattering was the only scattering process
but, since we want to investigate its competition/interplay
with carrier-photon interaction, P0 �and consequently �� is
the parameter that allows us to adjust the relative strength of
the two mechanisms.

E. Electron-photon interaction

To evaluate the Tblip of our prototypical device, we have
to properly describe the interaction between the electron
population and the radiation field of an external blackbody
source.

The second-quantization electric- and magnetic-field op-
erators for a plane electromagnetic wave with wavevector q
have the form

Êq =
	Eq	
�2

eq�ei��qt−q·r�âq + e−i��qt−q·r�âq
†� , �20�

B̂q =
	Bq	
�2

bq�ei��qt−q·r�âq + e−i��qt−q·r�âq
†� , �21�

or alternatively

Êq =���q

2�V
eq�ei��qt−q·r�âq + e−i��qt−q·r�âq

†� , �22�

B̂q =���q�

2V
bq�ei��qt−q·r�âq + e−i��qt−q·r�âq

†� , �23�

where Eq and Bq are the classical electric and magnetic
fields, �q is the dispersion relation of the medium, � is the
dielectric constant, � the magnetic permittivity, V is the de-
vice volume, eq and bq are the polarization unit vectors such
that eq ·q=bq ·q=eq ·bq=0, and âq and âq

† are destruction and
creation operators, respectively, for a photon of wavevector
q.

The expressions above allow us to write the electric and
magnetic field operators in the case of a linear superposition
of plane waves as

Ê = �
q

Êq, �24�

B̂ = �
q

B̂q. �25�

With the latter definition, we can easily recover the usual
expression for the second quantization Hamiltonian of a
population of photons in terms of the energy density operator

Û�r�,

Ĥph
� = �

V
Û�r�dr = �

V
�
q
1

2
�Êq · Êq

† +
1

2�
B̂q · B̂q

†

−
��q

2V �dr = �
q

��qâq
†âq. �26�

In this picture, the classical energy density, U�r�= 1
2��qEq

2

+1 /2��qBq
2, refers to the zero-point energy density ��q /2V

of the electromagnetic field in a cavity of volume V.

Given the electric field operator Ê, we can define the

vector potential operator Â as

Â = �
q

Âq = �
q

1
�2

�Aqâq + Aq
�âq

†� = �
q

Êq

i�q
, �27�

where Aq is the classical vector potential, having implicitly
assumed a gauge where E=�A /�t.

In a second-quantization picture, the electron-photon in-
teraction Hamiltonian operator

Ĥopt = − i�
e

m
� · Â = −

i�e

m�2
�
q

�� · Aqâq + � · Aq
�âq

†�

�28�

can be written as
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Ĥopt = �
���q

�g���qĉ�
† âqĉ�� + g���q

� ĉ��
† âq

†ĉ�� . �29�

Here, the first �second� contribution describes a process in
which an electron performs a transition between the two
single-particle states �= �b ,kz ,kp� and ��= �b� ,kz� ,kp�� ab-
sorbing �emitting� a photon; this mechanism has a coupling
constant g, which is expressed as

g���q = −
i�e

m�2
� dr��

��� · Aq����. �30�

The evaluation of g���q from Eq. �30� can be carried out
in terms of the plane wave expansion of �� given in Eqs. �3�
and �6�

gbkzkp,b�kz�kp�,q =
�e

m�2

�k + q − k��

��
n

cb�nkz�
� cbnkz

�Az,q�qz + Gn + kz�

+ Ap,q · kp� , �31�

where Az,q and Ap,q are the along-z and in-plane components
of the vector potential, respectively.

Equation �31� may be simplified in several ways. First of
all, the usual dipole approximation allows neglecting the
photon momentum q with respect to the electron momentum
k.

Since we have assumed a parabolic in-plane dispersion,
and since we expect electrons to have a quasithermal distri-
bution, then the great majority of them will occupy states
close to the subband bottom �kp�0�. On the other hand, the
minibands along kz are either flat or slightly dispersive, that
is, much narrower that the related subbands. Therefore we
may assume that, for the majority of the electrons, kp� �Gn

+kz�.
This leads to the following simplified expression for the

coupling constant:

g���,q =
�e

m�2

�k� − k���	Aq	cos �q�

n

cb�nkz�
� cbnkz

�Gn + kz� ,

�32�

where �q is the angle between the vector potential and the z
direction. The relevant term in the computation of transition
probabilities is 	g���,q	2, which contains a cos2 �q term. If we
consider a blackbody radiation we can assume it as com-
posed of a superposition of plane waves with random polar-
ization and thus we would replace cos2 �q with its mean
value over �0,2��, that is, 1/2. Anyway each electromagnetic
mode is the sum of two independent polarizations thus we
may simply replace cos2 �q�1, obtaining

g���,q =
�e

m�2

�k� − k���	Aq	p���, �33�

where

p��� = �
n

cb�nkz�
� cbnkz

�Gn + kz� �34�

is the matrix element of the momentum operator between
states �� and �.

Let us now consider a photon absorption process, bring-
ing the system from state 	�� ,nq
, with an electron in state ��
and n photons with wavevector q, to state 	� ,nq−1
, with the
electron in state � and �n−1� photons in state q. Its prob-
ability per unit time can be evaluated by Fermi’s golden rule
as

P���,q
opt =

2�

�
	��,nq − 1	Ĥopt	��,nq
	2
�E� − E�� − ��q� .

�35�

The calculation gives

P���,q
opt =

2�

�
	g���,q	2nq
�E� − E�� − ��q� . �36�

On the other hand, the probability of a photon emission pro-
cess, in which the system performs a transition from state
	� ,nq
 to state 	�� ,nq+1
, is

P���,q
opt =

2�

�
	g���,q	2�nq + 1�
�E� − E�� + ��q� . �37�

F. Interaction with blackbody radiation

Since our aim is to determine the Tblip of our prototypical
detector, we need to study its interaction with the back-
ground radiation, considered as a blackbody radiation at 300
K. From a quantum mechanical point of view, a blackbody
radiation is a photon population at thermal equilibrium fol-
lowing the Bose–Einstein distribution law.

A noninteracting electron system only coupled to a pho-
ton bath at thermal equilibrium, must itself thermalize. In-
deed, by employing the detailed-balance principle and sub-
stituting the Bose–Einstein distribution in Eqs. �36� and �37�
we can write

f�

f��
=

P���,q
opt

P���,q
opt =

nq

�nq + 1�
= e−��q/kBT = e−�E�−E���/kBT, �38�

that is, the steady-state distribution function is such that the
ratio between the occupation numbers of states � and �� is,
as expected, the Boltzmann factor.

Equations �36� and �37� give the transition probabilities
for an electron interacting with an electromagnetic plane
wave, which can be seen as an electromagnetic mode of a
cavity. When our device is inside a cavity at thermal equilib-
rium �a blackbody�, the total transition probabilities must be
summed over all modes q. This is also formally described by
the interaction Hamiltonian �29�, which is a sum over all
wavevectors q. We therefore write, for the absorption pro-
cess,
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P���
opt = �

q
P���,q

opt =
2�

�
�
q

	g���,q	2nq
�E� − E�� − ��q� .

�39�

In the limit of an infinitely large cavity, the summation be-
comes an integral in dq and 	g���,q	2 becomes a spectral den-
sity 	g����q�	2, which is related to the squared vector poten-
tial spectral density 	A�q�	2 through Eq. �33�.

The quantity 	A�q�	2 can be expressed in terms of the
energy density U�q�= 1

2�	E�q�	2+1 /2�	B�q�	2 and, consider-
ing the relations E�q�= i�qA�q� and B=��A, as

	A�q�	2 =
U�q�
��q

2 . �40�

For a linear dispersion relation �q=cq, we can switch from
spectral densities in the wavevector domain to spectral den-
sities in the frequency domain. In particular, we can consider
the spectral energy density

U��� =
��3

4�3c3F , �41�

which is the energy density of an infinite cavity in which
each mode is populated by one photon. The term F is a
constant expressing the limited field-of-view �FOV� of the
device and depending on how the blackbody radiation is
coupled into the detector in the specific experimental setup.
The absorption probability can then be evaluated in the fre-
quency domain as

P���
opt =

2�

�2 � 	g������	2n���
��� − ��d�

=
2�

�2 	g�������	2n���� , �42�

where ��= �E�−E��� /� is the resonance frequency of the
transition.

After substitution of Eqs. �33� and �40� into Eq. �42�, we
obtain

P���
opt = U����

�e2

m2���2 	p���	
2n����
�k� − k��� . �43�

Since we are dealing with a thermal population of photons
we take n���� as the Bose–Einstein distribution function so
that the total absorption probability can be finally written as

P���
opt =

e2���F
4�2c3m2�

	p���	
2 1

e���/kBT − 1

�k� − k��� . �44�

Analogously, the emission probability is

P���
opt =

e2���F
4�2c3m2�

	p���	2� 1

e���/kBT − 1
+ 1�
�k�� − k�� .

�45�

G. Fixing the value of �

The model contains a free parameter �, which has to be
adjusted in order to reproduce some experimental data. Its
value is, in principle, crucial in determining the Tblip of the

simulated devices since changing the mean lifetime of elec-
trons will change the strength of thermal scattering with re-
spect to optical scattering and thus will affect the point at
which these two competing processes balance.

In particular, we choose to adjust � in order to reproduce
the measured Tblip �12 K� of the bound-to-continuum QWIP
operating at 3.2 THz and reported in Ref. 21. Figure 2 shows
the total normalized current densities that we obtain for a 3
THz QWIP as a function of temperature for different values
of �. Although � is the key parameter that fixes the value of
the Tblip, it can be noted from the figure that in the interval
��50–100 ps, the Tblip shows little variation around 12 K.
We can thus safely assume for � any value in this range, such
as, e.g., �=80 ps, in order to reproduce the experimental
data. It is important to stress once more, at this point, that
this very large value derives from the fact that we are using
a simplified model for thermal scattering; our fitting param-
eter � is not to be taken as a realistic indication of electron
scattering time in the real heterostructure. Once the value of
� has been set, on the basis of the above discussion, we use
it in modeling the current response of detectors operating at
identical frequencies but employing the proposed bound-to-
bound-to-continuum strategy and differing in the number of
bound states.

III. RESULTS AND DISCUSSION

We now apply the model of Sec. II to describe four
different devices, having a number of bound levels ranging
from one �standard QWIP� to four and designed according to
our bound-to-bound-to-continuum strategy. All devices are
exposed to a 300 K blackbody radiation under a 90° FOV
and are subject to a 50 V/cm external bias.

Figure 3 shows the total normalized currents across each
of the four devices as a function of the device temperature.
Each curve allows one to identify a low-temperature regime
in which the dark current is negligible with respect to the
photocurrent: the total current is therefore independent from
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FIG. 2. Estimated normalized current density along the growth direction as
a function of device temperature for the one-level QWIP in Fig. 1, operating
at 3 THz in the presence of a background radiation field at 300 K. Different
symbols correspond to different values of �. The applied electric field is 50
V/cm, FOV is 90°. The dashed line marks the current doubling.
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the device temperature. Conversely, in the high temperature
region, the dark current increases almost exponentially so
that the photocurrent quickly becomes negligible and the cur-
rent is totally due to the “dark” contribution. The Tblip may
be identified as the temperature at which the total current
doubles with respect to the low temperature region �dashed
horizontal line in Fig. 3�: at this temperature the dark current
and the photocurrent have the same magnitude. The diverse
designs have values of Tblip=11.5, 19.5, 23.5, and 28.5 K for
one, two, three, and four bound levels, respectively, showing
the trend reported in Fig. 4.

The increase in Tblip may be better interpreted by looking
at Fig. 5, where the photocurrent and the dark current are
plotted as a function of the number of bound levels. Both
currents decrease upon increasing the latter, but the dark cur-
rent does it faster. Therefore, the temperature at which the
two are equal moves toward higher values.

As can be observed in Fig. 5 there is a dramatic decrease
in the photocurrent when switching from two to three bound
states, which is mainly due to the reduction in the photocon-
ductive gain. In fact, for the four-level design, the latter re-
duces to just the 0.2% of the value of the one-level QWIP.
Conversely the quantum efficiency is only lowered by 14%
and thus its variation does not significantly affect the photo-
current.

This behavior can be explained by considering Fig. 1
and noting that there is a remarkable geometrical difference
between the two-level and the three-level designs. The pres-
ence of the nested QW introduces a new ground state whose
wave function has little overlap with the wave functions of
higher energy states, therefore reducing the oscillator
strength. This conclusion is supported by the fact that the
photocurrent reduction between the three and four levels de-
signs, where no major structural change has been introduced,
is comparable to the decrease between one and two level
cases. In the present work the optimization of device perfor-
mance is not the central issue; in this respect, a more elabo-
rate tuning of the device geometry to achieve higher oscilla-
tor strengths would surely allow for better operational
results.

IV. SUMMARY AND CONCLUSIONS

The scaling down of QWIPs to access the terahertz
range of the electromagnetic spectrum is not straightforward:
in this frequency range the dark current, mainly due to the
high-energy tail of the electron distribution function, may
indeed become predominant over the photocurrent signal. In
a recent paper22 we have proposed and theoretically investi-
gated a terahertz-detector design alternative to the conven-
tional QWIP structure. The former, instead of resorting on
the conventional bound-to-continuum scheme, exploits a
bound-to-bound-to-continuum strategy. In particular, a ladder
of equally spaced bound levels is employed, whose energy
step is tuned to the desired detection frequency.

Our previous analysis demonstrated that a multilevel ar-
chitecture can indeed satisfactorily face the dark-current
problem in far-infrared QWIPs. In the present paper we have
significantly improved some features of our model to better
reproduce the behavior of realistic state-of-the art designs. In
particular, our attention has been devoted to a specific figure
of merit of QWIPs, such as the background-limited infrared
photodetection temperature �Tblip�, which is related to the
interplay between dark current and photocurrent. Our results
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FIG. 3. Estimated current density �normalized� along the growth direction
as a function of device temperature for the four diverse multilevel designs in
Fig. 1 differing in the number of bound states.
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FIG. 4. Estimated values of Tblip for the four devices of Fig. 1, as deduced
from the data shown in Fig. 3. The dashed line is a guide to the eyes.
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have demonstrated that the proposed multisubband scheme
allows for higher Tblip values, with respect to conventional
QWIP designs operating at the same frequency, and therefore
could represent a better alternative for terahertz radiation de-
tection.

APPENDIX A: POTENTIAL PROFILE CALCULATION
The key point of the proposed bound-to-bound-to-

continuum architecture is the design of the nanostructure po-
tential profile. The latter requires the solution of the inverse
problem of setting the desired energy spectrum and then
finding the corresponding operator, i.e., the potential energy
term of the electron Hamiltonian He

� . In the present paper,
this problem has been solved numerically by means of a
variational approach.

In particular, starting from the function V�z� that de-
scribes the potential profile in one period of our device, a
functional F�V�z�� has been defined whose value represents

how far the function V�z� is from our target function Ṽ�z�.
The latter must be such that the operator

H = −
�2

2m

�2

�z2 + Ṽ�z� �A1�

has a spectrum composed of a lower part with Ñ equally
spaced discrete values �bound states� and an upper continu-

ous part. The number Ñ and the energy spacing Ẽ of the
bound states are our design constraints.

In general, a function V�z� will produce N bound states
of energies Ei, i=1, . . . ,N, where N can range from one to
infinity �infinitely deep potential well�. If there are two or
more bound states we can define a mean interlevel spacing

E =
1

N
�
i=1

N

�Ei+1 − Ei� �A2�

and a level spreading

� =
1

N
�
i=1

N

�Ei − E�2. �A3�

In terms of the quantities E and � specified above, the
functional F�V�z�� is defined as

F�V�z�� = �1 − 
NÑ� + � + 	E − Ẽ	 . �A4�

From the latter equation we see that F is always positive and

assumes the minimum, null, value only when N= Ñ, �=0,

and E= Ẽ.
The actual existence of the minimum depends on the

functional space we choose for V�z�. Indeed, we already
know a solution for the problem F=0, which is the harmonic
oscillator, but the latter cannot be taken into consideration
because it is not a realistic potential profile and its spectrum
does not contain a continuous part.

Without going into the rigorous mathematical definition
of the space, which is beyond the scope of the present paper,
V�z� must be a periodic function with period Lz. We therefore
define V�z� on the domain −Lz /2	z	Lz /2 and impose V�
−Lz /2�=V�Lz /2�. Of course we do not want V�z� to diverge

at any point and in addition we want it to be as close as
possible to realistic and technologically accessible potential
profiles.

We choose to take V�z� piecewise constant on its domain
so that it can be described by a discrete set of M parameters
representing widths and depths of every constant sector. In
this way, V�z� can be represented by a point in an
M-dimensional space and F actually becomes a function of
M variables. In practice, V�z� takes the form of a multi-
quantum-well or a nested quantum-well structure, in which
we vary depths and widths of the diverse layers.

The minimization of F is not trivial mainly because of
the 
NÑ term that makes it discontinuous in an unpredictable
way: by slowly varying the free parameters, the potential
profile can suddenly produce a new bound state or lose one
causing F to jump by �1 and thus we cannot use methods
that seek a local minimum following the function gradient.

We adopted the easiest possible solution: starting from
an initial guess for V�z�, the free parameters are varied within
a certain range to see if a minimum is present and whether
the latter is actually the absolute one, for which F=0. The
existence of such minima mostly depends on the number M
of free parameters that can be varied. We choose to start with
the minimum number of parameters �which is two for a
single quantum well� and then gradually increase this num-
ber in order to generate more bound states.

APPENDIX B: BOLTZMANN EQUATION SOLUTION

1. State space discretization

The electron dynamics in our prototypical quantum de-
vice is described by the Boltzmann transport equation �11�.
The latter will be solved by finite difference discretization of
the derivatives and Reimann discretization of the integral.

Due to the cylindrical symmetry of the physical prob-
lem, guaranteed, as in our case, by an external field applied
along the growth direction only, a convenient starting point is
to employ cylindrical coordinates, with kz being the perpen-
dicular �growth direction� wavevector, and kp and � the
modulus and anomaly, respectively, of the in-plane wavevec-
tor.

A central difference approximation of the derivatives
along kz may then be applied, with periodic boundary condi-
tions accounting for the repetition of the Brillouin zone. In
particular, the values of kz span the first Brillouin zone
−� /LZ	kz	� /Lz forming a uniform grid of step Nkz

. The
width of each discrete cell is therefore equal to �kz

=2� /LzNkz
.

The in-plane angle � is uniformly discretized in the do-
main �0,2��. The number of discrete cells is N� and their
size is ��=2� /N�. Again, central difference approximation
of derivatives and periodic boundary conditions are adopted.

Discretization along kp poses the problem of limiting the
in-plane k-space. The electron distribution function f�kp� at
thermal equilibrium has the form

f�kp� � e−�2kp
2/2mkBT �B1�

and thus decays rather quickly in kp. We expect the electron
nonequilibrium distribution to decay more or less in the same
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way in the presence of the external radiation field. We there-
fore set a cutoff value fcut, below which f�kp� is considered to
be negligible, and use it to define a maximum value for kp in
the following way

kp
max =�2mkBT

�2 ln fcut. �B2�

The interval �0,kp
max� is then discretized into a uniform grid

of dimension Nkp
, and derivatives are approximated by cen-

tral difference formulae in the inner nodes. In particular,
f�kp=0� is supposed to have null derivative �Gaussian-like
behavior� and the same applies for f�kp

max�. Discrete cells
along kp have a width �kp=kp

max /Nkp
.

To complete the description of the state space we need to
set the number Nb of subbands actually considered for cal-
culations. The plane-wave solution of the Schrödinger equa-
tion requires from 1 to 200 plane waves to give stable energy
level values, producing the same number of subbands. How-
ever, the electron distribution function decays rather quickly
and a number of bands from five to a few tens are usually
enough to ensure convergence. Indeed, the actual number of
bands depends on the operating conditions of the device,
such as the temperature and the presence of incident light or
external bias.

2. Discrete Boltzmann equation

After discretization of the state space, the distribution
function fb�k� can be itself discretized into a vector of com-
ponents f i. The label i ranges from 1 to the total number of
grid points N=Nkz

Nkp
N�Nb and accounts for the band index

bi and the three k-space coordinate indices kz,i, kp,i, and �i,
collectively named ki. The value f i is the mean of fbi

�ki� over
the grid volume element �ki=�kz,i�kp,i��i

f i =
1

�ki
�

�ki

fbi
�ki�dk �B3�

from f i we define the occupation number ni of the ith discrete
cell as

ni = f i�ki. �B4�

With this definition and taking into account relation �10� the
occupation number is normalized as

�
i

ni = Ne. �B5�

After the discretization of the distribution function, we
need to find a suitable discretization of the scattering prob-
abilities Pbb��k ,k��. The total number of particles Rji that
perform a transition from the volume �ki in band bi to the
volume �k j in band bj, is given by the probability that a
particle in ki performs a transition toward one of the states in
volume �k j, which is ��kj

Pbjbi
�k ,ki�dk, integrated over all

states of the starting volume

Rji = �
�ki

�
�kj

fbi
�k��Pbjbi

�k,k��dkdk�. �B6�

In the discretized system the probability that a particle per-
forms the same transition is Pji�k j and the number of par-
ticles in the starting volume is ni= f i�ki, thus

Rji = f i�kiPji�k j . �B7�

The combination of Eqs. �B6� and �B7� allow us to de-
rive the following expression for Pji:

Pji =
1

f i�ki�k j
�

�ki

�
�kj

fbi
�k��Pbjbi

�k,k��dkdk�. �B8�

If we approximate fbi
�k�� with its mean value f i over the

volume �ki, we can take it out of the integral and rewrite Eq.
�B8� as

Wji = Pji�k j =
1

�ki
�

�ki

�
�kj

Pbjbi
�k,k��dkdk� �B9�

and Eq. �B7� as

Rji = Wjini. �B10�

The quantity Wji is the probability that an event bringing an
electron from a state i to one of the states in volume �k j

occurs. By multiplying Wji by the number of particles in the
volume �ki, that is, ni, one obtains the rate Rji of particles
leaving the volume �ki and entering the volume �k j.

For the generic ith volume element we can then write a
rate equation in the usual form

�ni

�t
= �

j

�Wijnj − Wjini� , �B11�

which is the Boltzmann equation for a discrete system com-
posed of N states. For the stationary state we write

�
j

�Wijnj − Wjini� = 0. �B12�

Due to the discretization procedure, the drift term in Eq.
�8� can be written as

�fb�k� ·
q

�
F = �

j

Wij
Df j , �B13�

where Wij
D is an equivalent scattering matrix that can be in-

cluded into the Wij term in Eq. �B12�. The latter will in
general consist of several contributions

Wij = Wij
D + Wij

th + Wij
opt, �B14�

where Wij
th and Wij

opt are the discretized probability densities
P���

th and P���
opt defined in Eqs. �18� and �44� and computed

using Eq. �B9�.

3. Nonoptical scattering probabilities

The derivation of Sec. II D can be followed in the dis-
cretized system by replacing fb�k� with f i and Pbb��k ,k��
with Pij. In particular, the discretized version of Eq. �15�
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1

�
=

1

�2��3Ne
�
ij

Pji
th�k j�ki �B15�

leads to a definition of Pij
th similar to Eq. �18�

Pij
th = P0Pij = P0� 1 if Ej  Ei

e−�Ei−Ej�/kBT if Ej 	 Ei,
� �B16�

where again P0 is a normalization constant that can be com-
puted as

1

P0
=

�

�2��3Ne
�
ij

Pij�k j�ki. �B17�

The discrete thermal transition probabilities are then written
according to Eq. �B9�

Wij
th = Pij

th�ki. �B18�

4. Optical scattering probabilities

The discrete optical scattering probabilities can be di-
rectly computed using Eqs. �B9� and �44� or Eq. �45�. In both
cases, the transition probabilities are of the form

Pij
opt�ki,k j� = wij
�ki − k j� , �B19�

where wij contains all the coefficients and differs for absorp-
tion and emission processes. Substituting the latter expres-
sion into Eq. �B9� gives

Wij
opt =

1

�k j
�

�kj

�
�ki

wij
�k − k��dk�dk

=

ij

�k j
�

�kj

wijdk . �B20�

Assuming that wij is a smooth function over the volume
cell �k j and for a sufficiently dense grid, we can approxi-
mate wij as a constant and take it out of the integral, which in
turn results to be �k j, therefore yielding

Wij
opt = wij
ij , �B21�

which is the discrete transition probability to be used in the
solution of the discrete Boltzmann equation.
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