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Abstract—In this paper we define a simple experimental set-
up to analyze the behavior of commercial P2P-TV applications
under adverse network conditions. Our goal is to reveal the
ability of different P2P-TV applications to adapt to dynamically
changing conditions, such as delay, loss and available capacity,
e.g., checking whether such systems implement some form of
congestion control. We apply our methodology to four popular
commercial P2P-TV applications: PPLive, SOPCast, TVants and
TVUPlayer. Our results show that all the considered applications
are in general capable to cope with packet losses and to reactto
congestion arising in the network core. Indeed, all applications
keep trying to download data by avoiding bad paths and carefully
selecting good peers. However, when the bottleneck affectsall
peers, e.g., it is at the access link, their behavior resultsrather
aggressive, and potentially harmful for both other applications
and the network.

I. I NTRODUCTION AND MOTIVATIONS

A new class of peer-to-peer (P2P) systems providing real-
time video streaming over the Internet is fast emerging
and gaining popularity. Several commercial P2P streaming
systems such as PPLive [1], SOPCast [2], TVants [3] and
TVUPlayer[4], just to mention the most popular ones, are
already available on Internet. This first generation of P2P-TV
systems offers moderate-quality P2P video streaming (200–
400 kbit/s); a next generation high-quality P2P streaming (1–
10 Mbit/s) is just beyond the corner, as commercial P2P video
applications, such as Joost [5], Babelgum [6], Zattoo [7] are
at an advanced stage of beta-testing and are likely to be fully
launched in the next few months.

P2P-TV systems may contribute to revolution the broad-
cast TV paradigm allowing ubiquitous access to a prac-
tically unlimited number of channels. This represents an
important step forward in the direction of an Any-
thing/Anyone/Anywhere/Anytime (A4) ubiquitous communi-
cation paradigm of future Internet applications [8].

From a technical point of view, the adoption of a P2P
paradigm reduces the network costs, pushing complexity from
the network to the users, while helping to relieve the band-
width cost burden at the server. Although from the users’
as well as from the server points of view this class of P2P
applications has useful and interesting characteristics,from
the network operators’ point of view serious concerns exist
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about the capability of the Internet to support large scale
P2P-TV systems (mainly due to the potential high bandwidth
requirements, large number of involved users, and the intrinsic
inelasticity of transported traffic). These concerns are con-
firmed by some news reports, see for instance [9].

It seems, therefore, rather urgent to have a better understand-
ing of the potential impacts that these applications may entail
on the underlying transport network. Since the most widely
deployed commercial systems cited above follow a closed and
proprietary design, only an experimental behavioral (black-
box) characterization of traffic injected by such systems is
in general possible; we emphasize, indeed, that approaches
requiring to partially reverse the engine of P2P-TV systems
are viable, at larger cost, only in a few cases. Also, in order
to develop new architectures and algorithms that improve
the “network friendliness” of such applications [10], [11], it
is necessary to understand how current applications react to
different network conditions and scenarios. Do they implement
any congestion control algorithm? How do they react to packet
drop? What is the impact of increased end-to-end delay?

In this paper we accomplish a first step, by defining a
methodology that helps in answering those questions. We
propose simple test-bed experiments to assess how these ap-
plications react to different network conditions, like available
bandwidth, loss probability, delay; both network load, and
user perceived quality of service, should then be measured.
Applying our methodology, we test and compare four popular
P2P-TV applications, namely PPLive, SOPCast, TVants and
TVUPlayer. All selected applications adopt the “mesh-based”
approach [8], in which peers form a generic overlay topology
used to exchange chunks of data among neighboring peers.

Results show that all applications are effective in trying to
overcome network impairment. For example, all applications
avoid impaired paths by carefully selecting peers to download
from. However, when the bottleneck affects all paths, e.g.,in
case they access link is congested, the aggressively download
data trying to receive the video stream. This leads to overload
factors larger than two in some scenarios. While the behavior
of P2P-TV guarantees to offer good end-user service even in
presence of adverse network conditions, it poses a problem
when considering the network and application friendlinessof
P2P-TV applications.

We discover then that all applications implement a memory
based algorithm that tracks good and bad neighbor peers,
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while no change is observed in the mechanisms to create the
neighbors set.

The paper is organized as follows: we start by summarizing
the related work in Sec. II. Then, the measurement setup and
methodology are defined in Sec. III. Sec.IV presents then
results in which network impairment affects all peer, while
Sec. V investigate scenarios in which “good” and “bad” peers
are present so to investigate the capability of the applications
to correctly handle them. Finally, Sec. VI summerizes our
findings.

II. RELATED WORK

To the best of our knowledge, this is the first experimental
work on P2P-TV systems exploring how such systems react
to different network conditions. In a previous paper, we
performed a similar characterization considering Skype [12],
in which the focus was on the voice traffic sent/received by a
Skype client.

Considering more general experimental results about P2P-
TV systems, the research community has given a lot of
attention to understand application internals [13], [14],[15],
[16], [17], [18], [19], [20], [21], [22], [23].

A few works [13], [14], [15], relying on the implementa-
tion of an active crawler, focus on a single system. These
approaches face the daunting task of partially reversing the
engine of the P2P-TV system under analysis. As a conse-
quence, this methodology is limited by the ability to break
closed and proprietary systems, and we believe that they can
be hardly extended to characterize all the possible P2P-TV
applications. In particular, [13] investigates PPLive, whereas
[14] focuses on the commercial re-engineer of Coolstreaming,
and [15] considers UUSee. All these papers mainly provide
a big picture of the considered P2P-TV, focusing on metrics
such as the number of users in the systems, their geographical
distribution, the session duration of users, the distribution of
packet size. None of the above mentioned paper considers
the particular aspects we are interested into, i.e., the waythe
system reacts to network conditions.

Other works, such as [16], [17], instead, study specific
aspects of a P2P streaming system. For instance, [16] gives
some preliminary results on the node degrees of popular versus
unpopular channels in PPLive. Authors in [17] investigate
the stability of nodes in P2P live video streaming system,
considering again PPLive, and devising schemes to identify
the most stable nodes in the system.

Quality of service is of concern in [18], [19]. Authors in [18]
exploit an analysis of PPLive buffer maps, collected through
protocol reverse engineering, to infer QoS metrics such as
network-wide playback continuity, startup latency, playback
lags among peers, and chunk propagation timing. Authors in
[19] focus on similar metrics but exploit logs made available
from an (unspecified) commercial P2P streaming system.

Authors in [20] analyze and compare PPLive and SOPCast
investigating the time evolution of different metrics, like trans-
mitted/received bytes, number of parents and children, etc.
Paper [21], on the contrary, presents a comparative evaluation

of four commercial systems (namely PPLive, PPStream, SOP-
Cast and TVAnts) and compares these systems showing flow-
level scatter plots of mean packet size versus flow duration
and data rate of the top-10 contributors versus the overall
download rate. In [22] PPLive, SOPCast and TVAnts systems
are analyzed. A systematical exploration of the mechanism
driving the peer-selection in the different systems is performed.
At last, in [23] a simple experimental analysis of PPLive
and Joost is presented to evaluate the characteristics of both
data distribution and signaling process for the overlay network
discovery and maintenance.

III. M ETHODOLOGY

The aim of this work is to study how P2P-TV applications
react to different network scenarios. Given that all successful
P2P-TV applications follow a proprietary and closed design,
we have to follow a “black-box” approach. We therefore setup
a testbed, in which a client running the Application Under
Test (AUT) is connected to a Linux router, which is in turn
connected to the Internet via our Fast-Ethernet based campus
LAN. The router itself is then used to enforce particular
network conditions. In particular, we used the Linux Net-
work Emulation functionalitynetem coupled with the Token
Bucket FilterTBF. This allows us to emulate the properties
of wide area networks, controlling available bandwidth, delay,
loss, duplication and re-ordering of packets routed through the
router.

Note that, since we run real on-field experiments, our
control on the experimental set-up is limited to the interface
in object only. This implies that the global network conditions
are unknown and that possible effects due to congestion,
loss, delay inside the Internet are superposed to the effects
“artificially” introduced at the router under our control.

Two packet level traces are then collected at the router: the
first one logs all packets sent/received by the network interface
that connects the router to the Internet; the second one logsall
packets sent/received by the network interface that connects
the PC running the AUT. Packet level traces are then post-
processed to obtain the desired measurements. In this paper,
we report results considering only the trafficreceivedby the
Internet interface, reporting in particular theaverage received
bit-rate r(t) evaluated at the application layer, i.e., neglecting
transport, network and data-link overheads. The number of
peers that sent packets to the AUT during a time intervaln(t),
i.e. thenumber of active peers, is reported as well.

Finally, the PC running the AUT is used to capture the video
stream that is received and to dump it on a file by means of
a video grabber utility. To evaluate the video quality of the
received stream, we cannot apply any standard technique, since
they all rely on the comparison of the received and original
video (being impossible to get the latter one). In addition,
all selected applications utilize a 378 kbps stream encoded
using the Microsoft VC-1 encoder in all tests; a bit-rate of
450-500 kbps is received by the AUT, so that 100-150 kbps
of additional overhead is required by the applications to suc-
cessfully deliver the stream (not including transport, network
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and data-link headers). Since the codec relies on proprietary
design, it is difficult to evaluate the quality of the received
stream. We are therefore forced to estimate the stream quality
by simply counting the number of errors a decoder has to
manage when decoding the stream. In particular, we decoded
each file usingffmpeg utility which reports a detailed list
of corrupted video I-frames. Those are major impairment that
will affect the video quality for several frames, i.e., up towhen
a good I-frame is received (usually several seconds). Similarly,
the audio stream decoding errors are evaluated as reported by
ffmpeg. In the following, we report therefore the number of
corrupted I-frames and audio blocks as quality index. While
this allows only a qualitative evaluation of the stream quality,
it permits us to fairly compare different applications.

A. Scenario definition

The parameters we consider in this paper are the following:

• c: Capacity limit
• l: Packet loss
• d: Delay

The arrayL = {c(t), l(t), d(t)} specifies the state of the
controlled link during the experiment - we restrict to the cases
in which only one of the three above parameters is evolving
with time and we denote withp(·) its profile over time.

As profile p(·) we select a step function, with initial value
p0, incrementsI, and step duration∆T , so that

p(p0, I, ∆T ) = p0 + I
∑

n=0

H(t − n∆T ) (1)

in which H(t) is the Heaviside step function

H(t) =

{

0 t < 0
1 t ≥ 0

(2)

If I is positive, p(·) corresponds to anincreasing profile;
negative values ofI, on the contrary, generatedecreasing
profiles. A null increment,I = 0, finally, leads to aconstant
profile.

The impairment defined by a scenario can affect all
sent/received packets, so thatglobal impairment is imposed,
or only a subset of sent/received packets, so thatper peer
impairment is imposed; for example the scenario can affect a
single peer, a subnet, an Autonomous System, or any generic
subset of IP addresses.

B. Considered general setup

We performed several experiments considering different
scenarios and profiles, during various time periods and with
clients tuned on different TV channels. We collected a total
of more than 300 hours of experiments. In this paper, we
report a subset of the most representative experiments. In
particular, we consider only scenarios in which the download
link is controlled, while the upload link capacity is limited
to cup(t) = 200 kbps. This indeed allows us to evaluate the
application behavior when the peer has not enough capacity
to act as an “amplifier”, i.e., to serve many peers; this is the
typical condition of ADSL users.

In the following, we show results considering scenarios in
which one parameter at a time varies.

IV. GLOBAL IMPAIRMENT

A. Effect of available capacity

In the first set of experiments we report, the download
available capacityc(t) is imposed. Results are shown in Fig. 1
and are organized in the following way. The two largest plots
in the left part of the figure report the bit-rater(t) versus time
for the four considered applications, for profiles with either
decreasing or increasing capacity limit (on the top and bottom
plots respectively). The 8 small plots on the right part of the
same figure depict the number of corrupted audio and video
frames for the same experiments; each plot refers to a specific
application.

Let us start by considering the decreasing profile. Every
∆T = 5 minutes, the available bandwidth is decreased by a
I = −50 kbps, starting from an initial value ofc0 = 800
kbps. The average bit-rate evaluated using 60 seconds time
intervals is reported for all applications on left top plot of
the figure. The experiment lasted 1 hour, after which the
available capacity was set back to 800 kbps. All applications
have similar behavior: the bit-rate remains basically constant
for all the time the available capacity is larger than the data
rate, c(t) > r(t). When the capacity bottleneck kicks in, all
the applications react by increasing the download data rate.
Consider, for example, TVAnts, which exhibits the largest
value of the bit-rate. The normal data rate is about 600 kbps;
when the capacity limit reaches 650 kbps, the receiver starts
suffering the bottleneck (due to traffic burstiness), and itreacts
by asking other peers to send more traffic; the download rate
becomes larger than 800 kbps. Interestingly, as the capacity
limits c(t) decreases, the received rate decreases also, being
always about twice the available capacity, i.e., the offered load
to the congested link is about 2,r(t)/c(t) ≃ 2. The other
applications show similar behavior, with smaller values ofthe
offered load in congested conditions; in particular, TVUPlayer
exhibits the smallest overload factorr(t)/c(t) ≃ 1.3.

From these results, we can conclude that the considered
applications do not correctly identify the globally limited avail-
able bandwidth. They assume that congestion is not affecting
all peers, e.g., as it happens when the bottleneck is at the access
network, but, rather, in some specific paths only. Reduced
performance is then faced by trying to retrieve the video
stream from other peers in possibly different network locations
(not affected by congestion). This is further investigatedin
Sec. V. By acting this way, if the application itself causes
congestion, it actually ends up worsening the situation and
further increasing congestion.

Looking at the last 10 minutes of the experiment, when
the capacity returns to high values, an unexpected, strange
behavior is observed. Indeed, sincec(t) is larger then the
normally required capacity,r(t) should take again the typical
values that can be observed when no bottleneck is present.
While this is true for PPLive and SopCast, both TVAnts and
TVUPlayer keep receiving at a rate which is about twice as
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Fig. 1. Left plots: received bit-rate for decreasing (top) and increasing (bottom) available bandwidth. Right plots: percentage of corrupted audio/video frames,
one plot for each application.

large as the normal receiver rate. This maintains the bottleneck
offered load higher than 1, so that audio/video impairment can
be noted up to the end of the experiment. Indeed, looking at
the number of corrupted frames reported in the top right part
of Fig. 1, audio/video impairment starts to show up as soon
as the bottleneck kicks in, and it does not always disappear
when the bottleneck capacity is set back to 800 kbps. TVAnts
shows the longest period during which corrupted frames are
observed, while, PPLive can cope with downlink capacity as
small as 400 kbps without any audio/video error.

Results for the case of an increasing capacity profile are
reported in bottom part of Fig. 1. The AUT is started now
in scarce bandwidth conditions (b0 = 200 kbps), andI = 40
kbps increments are applied every∆T = 5 minutes. All ap-
plications react to the adverse condition by trying to download
much more data than the available capacity; also in this case
r(t)/c(t) is between 1.3 (for TVUPlayer) and 2 (for TVAnts).
Only when the available capacity is large enough to sustain
the minimal download rate, all applications but TVUPlayer
decreaser(t) to their typical values. This is reflected by the
disappearance of audio/video impairment, as shown by the
right plots.

We can conclude that P2P-TV applications do not correctly
perform congestion control, in scenarios in which peer access
links get congested. They all try and react to limited access
capacity by increasing the redundancy (by FEC or ARQ mech-
anisms) and, thus, the download rate. This may be potentially
harmful for both the network and other applications sharing
the congested link.

Note that a single congested link may also be present when

the unique peering link between a stub ISP and the rest of the
Internet gets congested. If this happens, P2P-TV applications
may react as in the previously presented cases, causing further
network problems and congestion.

B. Effect of loss probability

The second set of results we report aims at investigating
the impact of loss probability on the AUT. Organized in a
similar way as the previous figure, Fig. 2 shows the receiver
rate for increasing (top plots) and decreasing (bottom plot)
packet loss probability profiles. The right y-axis of the bit-
rate plots reports the percentage of losses,l(t) that varies in
time steps of∆T = 5 minutes, with loss incrementI = 5%
(l0 = 0%). In this case also, all the applications react to
increasing packet losses by increasing the bit-rater(t). By
doubling its received data rate forl(t) > 35%, TVUPlayer
is the most aggressive application, while PPLive shows the
smallest increase. Looking at the corresponding number of
audio/video corrupted frames, it is impressive to observe
that all applications achieve very good video quality up to
l(t) < 25%. In particular, it is worth noticing that SopCast
can cope with 25% packet loss probability with only about
100 kbps of additional data rate. TVUPlayer exhibits similar
performance, but at a much higher cost that account to up to
600kbps of additional data rate.

Similar observations can be drawn by looking at the decreas-
ing packet loss probability scenario reported in bottom plots
of Fig. 2. In this scenario,I = −5%, i0 = 40%, ∆T = 5
minutes.

These results allow us to conclude that all applications react
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Fig. 2. Left plots: received bit-rate for increasing (top) and decreasing (bottom) loss probability. Right plots: percentage of corrupted audio/video frames,
one plot for each application.
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Fig. 3. Received bit-rate for increasing (left plot) and decreasing (right plot) delay.

to packet losses by trying to recover them, using some kind
of ARQ mechanism that causes an increase of the received
traffic. While this is very efficient in repairing the audio/video
stream, it comes at the expense of an offered load that can be
as large as twice the rate in normal conditions. This definitively
confirms that P2P-TV applications do not perform, in general,
TCP-friendly congestion control.

C. Effect of the delay

We now consider the effect of increasing and decreasing
delay profiles. Fig. 3 reports the results for the received bit-
rate of the increasing (left plot,I = 200 ms, d0 = 0 ms,
∆T = 5 minutes) and decreasing (right plotI = −200 ms,
d0 = 2000 ms, ∆T = 5 minutes) profiles; plots about the
number of corrupted frames are not reported for the sake of
brevity.

Results about the increasing delay case show that the
applications can manage quite well slow variations of the
delay; they can stand up to 1.5 s of additional delay without
any significant variation of the received bit-rate (and any
audio/video error). The applications start suffering the delay
when it reaches almost 2 s, which is quite large; PPLive seems
the most delay sensitive application.

Interestingly, the applications seem to suffer more for large
values of the delay at the start up; it is probably difficult
for them to successfully create the neighbor list (notice that
the additional delay applies also to packets carrying signaling
information, and signaling dialogs are probably hardly com-
pleted with large values of the delay). In the decreasing profile,
delay should decrease below 1.2 s to allow the applications to
start receiving the video stream. Again, PPLive seems the most
sensitive application: additional delay should be smallerthan
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Fig. 4. Number of active peers for decreasing or increasing available bandwidth (top plots) and increasing or decreasing packet loss probability (bottom
plots).

1 s to allow it to work.

D. Number of active peers

Finally, Fig. 4 reports the number of active peers,n(t),
for the previously described scenarios with increasing and
decreasing capacity limit and loss probability. Similar results
are gathered considering delay impairment.

The network conditions have no impact on the behavior of
n(t), which repeats regularly during the whole experiment.
On the contrary, different experiments show different absolute
values ofn(t); indeed, the absolute values change with channel
popularity and time of day so as to reflect the population of
available peers. PPLive, that is an extremely popular appli-
cation, has always the largest values of the number of active
peers.

The same observations can be made by considering the
rate of new contacted peers, i.e., the number of new peers
contacted in a given time interval, which is independent from
the network conditions; the associated plots are not reported
here for the sake of brevity. Notice also that the periodic peaks
clearly visible in most of the applications are due to periodic
keep-alive messages used to exchange signaling information,
as already highlighted in [23].

These results allow us to conclude that the internal algo-
rithms each application implements to discover the network,
create and maintain the overlay, are completely insensitive
to network conditions; network conditions influence only the
video stream distribution mechanisms, i.e., the chunk schedul-
ing.

V. PER PEER IMPAIRMENT

A. Effect of the available capacity

We now investigate the capability of the AUT to cope
with scenarios in which only a subset of peers is affected by
network impairment, so that “good” and “bad” peers coexist.
The goal is to verify if the AUT can identify the set of
“good” peers to download from. In particular, for the results
reported here, the imposed network impairment affects only
peers having an odd IP address. The rational behind this choice
is to have the peer population split into two equally large
subsets: odd peers, affected by network impairment, and even
peers, not affected.

The first row of plots in Fig. 5 reports results considering
a decreasing capacity limit profile. In particular, the profile
c(t), that is imposed to odd peers only, starts fromc0 = 400
kbps, and every∆T = 5 minutes a further bandwidth decrease
of I = −25 kbps is applied. After 60 minutes, the available
bandwidth is again set to the initial value. Each plot reports,
for a given application, the bit-rate received from even andodd
peers and the total received bit-rate. The imposed profile isalso
given for completeness. Again, the applications exhibit similar
behavior: during the initial phase there is no preference inre-
ceiving data from even or odd peers: they equally contributeto
the total download rate. As soon as the bandwidth limit kicks
in, reducing the performance of odd peers, the applications
preferentially download data from even peers. The preference
is stronger for PPLive and SopCast (rightmost plots) for which
even peers contribute to 80-90% of download rate. TVAnts, on
the contrary, adapts less than the other applications to these
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Fig. 5. Received bit-rate for decreasing (top plots) and increasing (bottom plots) capacity limit. Odd peers only are affected by the impairment.
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Fig. 6. Received bit-rate for increasing (top plots) and decreasing (bottom plots) loss probability. Odd peers only areaffected by the impairment.
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Fig. 7. Received bit-rate for increasing (top plots) and decreasing (bottom plots) delay. Odd peers only are affected bythe impairment.
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network conditions.
The second row of Fig. 5 reports results for an increasing

bandwidth profile applied to odd peers only; the profile has
parameters:c0 = 125 kbps,I = 25 kbps,∆T = 5 minutes.
Similar considerations as before hold. All applications quickly
identify the adverse capacity constraints affecting odd peers,
so that even peers provide larger contribution to the total
download bit-rate. In particular, TVUPlayer (second plot from
the left) has a very accurate control mechanism that allows it
to quickly identify the changing network conditions. PPLive
and SopCast also exploit the additional bandwidth of odd
peers that becomes gradually available, but a longer (and more
bursty) transient phase is required. Finally, TVAnts ignores the
additional bandwidth, since about 70% of traffic is received
from even nodes during the whole experiment.

In all cases, all the applications receive the minimum
required amount of data that guarantees them to decode the
audio/video streams without suffering any error.

B. Effect of the loss probability

For packet loss probability, Fig. 6 reports results considering
increasing and decreasing profiles ofl(t). Let us start by
considering increasing loss probability; plots on top row of
the figure refer to a profile withl0 = 0%, I = 5%, ∆T = 5
minutes. In this case, different reactions are observed. TVAnts
has a strong preference to receive from even peers starting
from l(t) ≥ 5%. TVUPlayer has an on/off behavior, so that
no preference is shown untill(t) = 10%, and, then, 95% of
data is received from even nodes only. PPLive is ignoring
the loss impairment untill(t) ≥ 20%, after which data are
preferentially received from even nodes (but still 20% of traffic
is received from odd peers even whenl(t) = 40%). Finally,
SopCast shows a more irregular and uncontrolled behavior
which causes a preference toward odd peers untill(t) = 15%,
after which about 90% of data is received from even nodes
only.

Consider now bottom plots of Fig. 6, which report results
considering a decreasing profile ofl(t) (with l0 = 40%, I =
−5%, ∆T = 5 minutes). Since all applications start in very
unfavorable conditions for odd nodes, most of the traffic is
received from even nodes. In particular, TVUPlayer constantly
receives 98% of traffic from even nodes only, even when
l(t) becomes small. Similarly, TVAnts and SopCast exhibit
a very stable preference during the whole test duration, with
TVAnts trying to received 15-20% of traffic from impaired
peers. PPLive, on the contrary, keeps on receiving 20% of
traffic from odd nodes, percentage that goes up to 50% when
l(t) ≤ 10%. This confirms that PPLive is capable of coping
with high packet loss rates (as already noticed in Fig. 2),
hinting to an effective FEC algorithm support.

C. Effect of the delay

Considering increasing delay impairment (top plots of
Fig. 7, d0 = 2000 ms, I = 200 ms, ∆T = 5 minutes),
we observe that all applications are very delay sensitive. In
particular, SopCast and TVUPlayer peers essentially receive

data only from even peers, while very little traffic is exchanged
with odd peers. PPLive and TVAnts are less biased, so that
additional delay of 400 ms is better tolerated.

When considering decreasing delay profile (bottom plots of
Fig. 7,d0 = 2000 ms,I = −200 ms,∆T = 5 minutes), it can
be noted that the initial impaired conditions are immediately
detected by all applications. Also in this case, TVUPlayer and
SopCast are almost ignoring odd peers, since more than 95%
of data is received from even nodes. TVAnts on the contrary
keeps trying to download data from odd peers, so that they are
quickly selected whend(t) < 400 ms. Notice that TVUPlayer
shows the fastest control algorithm that allows it to receive
data from odd peers onced(t) = 0 ms.

We performed other similar tests, targeting with impairment:
a particular peer, IP subnetworks, and Autonomous Systems.
All the experiments showed consistent results. We, thus,
conclude that all applications implement a per-peer preference
mechanism that is used to select the subset of good performing
peers. While internal algorithms are unknown, the presented
results suggest the applications are using different algorithms.

D. Number of active peers

Finally, in order to observe if the AUTs implement any
sort of control on the number of contacted peers in presence
of impairment that affects only a subset of peers, Fig. 8
reports the number of active peers distinguishing between
even peers (positive y-axis) and odd peers (negative y-axis),
for increasing and decreasing profiles of capacity limit, loss
probability and delay; impairment applies to odd peers only.
Results clearly show that the AUT keeps contacting odd peers,
sincen(t) is not correlated withc(t), l(t) or d(t). This hints
to control algorithms that react to different network scenarios
by carefully selecting the good peers to exchange data with.
However, signaling is exchanged with all peers (including
“bad” peers) independently from the instantaneous end-to-
end network quality. We also verified that all AUTs keep
exchanging data with and probing “bad” peers even during
very unfavorable conditions. In these cases only few, small
packets are sent and (possibly) received. This clearly indicates
that only signaling information is exchanged between any two
peers that are experiencing adverse network conditions, but
the bad peers are not dropped in favor of the good one.

VI. CONCLUSIONS

In this paper, we propose an experimental methodology
to investigate the behavior of P2P-TV applications under
adverse network conditions. Since most of the successful
P2P-TV applications rely on a closed and proprietary design,
it is indeed important to understand if these applications
implement smart algorithms to cope with different and variable
network scenarios. In particular, available bandwidth, delay
and packet loss probability are the most important impairment
applications face in the Internet. We therefore explored how
P2P-TV applications react to those parameters, by setting up
real test-bed experiments. We applied this methodology to
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Fig. 8. Number of active peers for decreasing and increasingcapacity limit (leftmost plots), increasing and decreasing packet loss probability (plots in the
middle) and increasing and decreasing delay (rightmost plots). Odd peers only are affected by the impairment.

four P2P-TV applications, namely, PPLive, SopCast, TVAnts
and TVUPlayer. By observing the received bit-rate and the
number of contacted peers, we have shown that all applications
effectively react to impairment caused by i) lack of bandwidth,
ii) packet loss probability, or iii) large delay. Applications
indeed successfully select the subset of peers that offer the best
performance, disregarding peers on impaired paths. However,
in case the bottleneck affects all peers, e.g., it is at the access
link, their behavior results rather aggressive, and potentially
harmful for both other applications and the network. Interest-
ingly, the control algorithm preferentially operates by selecting
the active peers among the neighbors on the overlay, but it
does not affect the neighborhood selection, i.e., the overlay
topology discovery and setup.

Finally, even if all applications show similar behaviors,
some differences arise: TVUPlayer is the fastest and most
prompt to react to changing conditions, but sometimes its
control algorithm overreacts to dynamic situations; TVAnts
on the contrary shows a less controlled behavior, which causes
the highest overload when resources are scarce, and forces the
client to keep downloading from impaired peers.
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