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HERO: High-speed Enhanced Routing Operation
in Ethernet NICs for Software Routers ⋆

Michele Petracca Robert Birke Andrea Bianco

a Dipartimento di Elettronica, Politecnico di Torino, 10129Torino, Italy Email:
{firstname.lastname}@polito.it

Abstract

Software/open routers, PCs (Personal Computers) running open source OSs (Operating
Systems) and equipped with Ethernet Network Interface Cards (NICs), are receiving in-
creasing attention in the research community, because theycan offer multi-gigabit-per-
second packet forwarding speed, performance comparable tothose of low-medium end
commercial routers. However, commercially available NICslack programmability. Fur-
thermore, the use of standard NICs implies that each packet crosses the bus twice, and is
processed and routed in software by the OS, thus reducing forwarding performance. In this
paper we discuss the design and the implementation of an FPGA-based NIC that permits
to overcome the performance bottleneck and the lack of flexibility of commercial NICs.
Performance and limitations of the proposed approach are thoroughly discussed.

1 Introduction

Software/open routers are typically based on off-the-shelf hardware and open-source
operating systems running on Personal Computer (PC) architectures. They are re-
ceiving increasing attention in the research community, because high-end PCs shared
buses fit into the multi-gigabit-per-second routing segment with lower prices than
those of commercial routers.

SRs (Software Router) based on PC architectures can be considered as a central
memory packet switch. Ethernet NICs (Network Interface Cards) are connected
to the PC bus, receive packets from the network and transfer them into the main

⋆ A preliminary version of this paper was presented at the conference IT-NEWS Interna-
tional Telecommunication NEtworking WorkShop 2008, held at Venezia (Italy) in February
2008, under the title ”HERO: High-speed Enhanced Routing Operation in Software Routers
NICs”.

Preprint submitted to Elsevier 9 July 2008
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Fig. 1. Enhanced software router structure

memory. Packets are then routed by the OS (Operating System), transferred back
to the NICs and re-injected into the network.

Commercially available NICs require that packets cross theshared PC bus twice.
Furthermore, packets are always routed in software by the OS, thus further reduc-
ing the forwarding performance, especially when dealing with small-size packets.
Fig. 1 shows how the data forwarding procedure may be optimized to increase the
SR performance by exploiting the well-known fast path in a custom NIC [1]. Note
that, besides performance increase, classification schemes can also be introduced,
hence enabling, for example, priority enforcement to improve QoS support.

Indeed, the main performance impairment when routing packets in a software router
is in the centralized nature of PC architectures. The sharedmemory, the CPU, and
the OS involved in packet routing may easily become a bottleneck. A distributed
approach, where each NIC is able to determine the output portfor a significant por-
tion of the incoming traffic, allows using the shared bus to forward packets directly
between NICs. In this case, the main limitation becomes the PC bus bandwidth,
since OS processing is required only for a small fraction of packets, thus reducing
the occurrence of centralized processing bottlenecks. In this paper we refer to the
direct exchange of packets among NICs as thefast path. All the packets whose
destination cannot be determined locally on the input NIC, are routed by the OS

2



following the so-calledslow path. Both paths coexist and permit to forward data
traffic simultaneously, as shown in Fig. 1.

The fast pathhas several advantages: No memory access latency during read op-
erations, more efficient use of the bus by reducing the bus occupancy for packet
transmissions, and CPU off-loading. Furthermore, QoS oriented classification and
scheduling algorithms may replace the FIFO service discipline available on com-
mercial NICs. However, to implement direct NIC-to-NIC communication through
the fast path, the NIC must perform autonomously the routingfunction to determine
the packet destination. Furthermore, a protocol for directNIC-to-NIC communica-
tion has to be defined and implemented.

The availability of powerful programmable logics permits to extend the open soft-
ware paradigm to the hardware domain. The logic circuitry developed for FPGAs
can be made public [2], reused and improved by the research community. This
“open hardware” approach can open the door to low-cost hardware implementa-
tions of performance-critical functional blocks.

In this paper, we present a detailed description of a re-engineered version of a
FPGA-based NIC, whose performance was partly assessed in [1]. An important
motivation to develop the core is providing the research community with an open-
source VHDL core implementing the fast path packet processing and capable to
communicate with a PCI-X core and an Ethernet MAC core.

The paper is organized as follows. Sec. 2 gives a general overview of the main
features of the custom NIC, while the next five sections present a more detailed
analysis: Sec. 3 is devoted to NIC configuration, Sec. 4/Sec.5 to incoming/outgoing
packet management, Sec. 6 to theslow pathand Sec. 7 to thefast pathdescription.
In Sec. 8, the outcome of the logic synthesis process is presented. Sec. 9 provides
details on the hardware equipment and on the IP cores used forthis project. In
Sec. 10, performance results are assessed. Finally, Sec. 11draws conclusions.

2 HERO Architecture Overview

HERO (High-speed Enhanced Routing Operation) is the name ofthe IP core devel-
oped within the framework of the BORA-BORA (Building Open Router Architec-
tures - Based on Router Aggregation) project [3] . The developed IP core exploits
two available IP cores managing respectively the interfaces with the Ethernet net-
work and the PCI-X bus. HERO is organized in three main sections, respectively
performing the following tasks:

• NIC configuration, through interaction with the Linux driver by means of regis-
ters and interrupts
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• forwarding of incoming packets, i.e. packets received fromthe network. Packets
are stored into either the central memory when using theslow pathor NICs
memory when exploiting thefast path

• forwarding of outgoing packets, i.e. packets received fromthe driver or from
other NICs are sent to the network

Fig. 2 provides a high-level view of the HERO architecture. The NIC configura-
tion section deals with the control path, and includes theRegister File(RF) block,
which includes 64 32-bit wide registers, and theInterrupt Generatorblock. A more
detailed description is provided in Sec. 3.

TheDescriptor Queuesblock controls three FIFOs, containing the RAM memory
buffer addresses where packets are stored if using theslow path. Sec. 6 is devoted
to the detailed description of this block.

Incoming packets are managed by theIncoming Packet Managementblock. This
block receives packets from the Ethernet core, buffering them if possible or dis-
carding them if the FIFOs are congested, and performs the routing and classifica-
tion functions exploiting a VOQ (Virtual Output Queuing) buffering architecture,
i.e., one separate FIFO queue is available for each output NIC in the router. Finally,
it forwards packets either on theslowor on thefast path.

Outgoing packets are managed by theOutgoing Packet Managementblock, which
forwards them to the Ethernet core.

Fig. 2. HERO structure
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3 HERO Configuration Section

The RF block is used by the driver to write and read configuration data. The reg-
isters can be logically grouped into 5 sets, depending on their use: command reg-
isters, IRQ registers, descriptor registers, routing and classification registers, and
inter-NIC registers.

The command registers are used either to issue a set of commands to the NIC,
like the reset command, or to manage the Ethernet core, e.g.,enable Ethernet auto-
negotiation, configure the MAC address, verify the connection status.

TheInterrupt Generatorblock manages three IRQ registers to signal to the OS im-
portant asynchronous events such as a packet arrival or departure. A 32-bitRunmasked

register maps 32 possible interrupt events; currently, notall the bits are used. When-
ever one of the interrupt events occurs, the corresponding bit in Runmasked is raised.
A 32-bit Rmask register is set by the driver to select which events are allowed to
generate an IRQ. Since a unique IRQ channel is assigned to theNIC, an IRQ is
generated every time one of the enabled events occurs, if satisfying the following
condition:

Runmasked ⊕ Rmask > 0 (1)

The result of the⊕ operation is stored in theRmasked register, to allow the driver
to read the event that has triggered the IRQ. TheInterrupt Generatorblock detects
the events, masking the undesired ones and generating the IRQ signal. Every time
the driver reads theRmasked register, it clears it to permit re-assertion of the proper
bit when the next IRQ event occurs.

The use of maskable interrupts allows the driver to run in twodifferent operating
modes: IRQ and NAPI. In IRQ mode, each packet reception and transmission gen-
erates an IRQ. This operating mode is very easy to implement,but it can lead to
performance degradation due to the well know IRQ trashing phenomenon [4]. IRQ
trashing occurs when the CPU is flooded by IRQs and is unable toperform any
other operation apart from processing IRQs. To avoid this problem, the NAPI oper-
ating mode, based on the polling idea, has been devised [4]. When adopting NAPI,
the IRQ signal is used only to add the NIC to a polling list, disabling its IRQs un-
til the NIC is active in processing packets. When no more packets are available,
the NIC is removed from the polling list and NIC IRQs are re-enabled. Therefore,
when the packet transfer rate is low, the NIC driver mainly works on IRQs. On the
contrary, during high loads periods, polling will mostly beused, thus combining
the low latency property of the IRQ scheme with the high throughput of polling
systems.

The routing and classification registers are used to route and classify packets into
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priority classes. These registers are managed by the driverand are used to address
the incoming packets into the VOQ system. Further details about routing and clas-
sification operations are given in Sec. 4.

The inter-NIC registers are used for NIC-to-NIC signaling,needed when dealing
with data transfer via thefast path. More details are provided in Sec. 7.

Finally, the descriptor registers are used to make packet descriptors available to the
NIC. Sec. 6, describing theslow pathoperation, provides a detailed explanation on
descriptor registers types and functions.

4 Incoming Packets Management Block

The Incoming Packet Managementblock is the first stage that processes a packet
received from the Ethernet core. A detailed block diagram isshown in Fig. 3.

4.1 Parallelization, classification and routing

The interface with the Ethernet core comprises an 8-bit databus and some control
signals. Three control signals are defined: adata validsignal, asserted when a byte
on the data bus is valid, astart (stop) signal, asserted for one clock cycle during the

Fig. 3. Incoming packet management block structure
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first (last) byte of packet transmission. The HERO core is designed to be always
able to receive data from the Ethernet core, internally dropping packets if necessary.

The Input block (Fig. 4) transforms the serial 8-bit data into a parallel 64-bit word
compatible with the PCI-X bus parallelism. During the parallelization phase, the
Open Headerblock collects the initial words of the packet and transfersthe Eth-
ernet and IP headers to the routing and classification logic.Additional logic in the
Input block decrements the TTL field and updates the IP header checksum. The
routing operation is based on the destination IP address (32bits). The classification
function is based on the following fields (80 bits):

• destination IP address (32 bits)
• source IP address (32 bits)
• ToS (Type of service) (8 bits)
• protocol type (8 bits)

The system supports up to 4 custom NICs in a single PC; therefore, up to three
routes and four classification rules can be provided by the driver. Every packet
not matching any of the given routes is sent along theslow pathto the OS. Each
classification rule is associated with a possible destination, either one among the
three NICs or the OS. If a packet matches a classification rule, it is considered as a
high priority packet.

Routing and classification are based on two ternary masks. Since the FPGA uses
only binary logic, the masks were implemented using two separate registers. The
first register contains the patternP to be matched. The second register defines a bit
maskM , where 1 indicates a “care bit” and a 0 a “don’t care” bit. A valueV in the

Fig. 4. Input block details: routing and classification blocks structure
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packet header is a match if:

(V ⊕ P ) · M = 0 (2)

The destination IP address of each packet is compared in parallel with all three
ternary masks. The packet is forwarded to the lowest ranked NIC having a matching
ternary mask; otherwise, the packet is sent to the OS. The classification step is
executed concurrently with the routing. The header fields are compared with all
the classification ternary masks in parallel, thus obtaining one outcome for each
possible destination.

By using special values forM andP , it is possible to deactivate routing and clas-
sification functions. To disable routing, a pattern of all zeros and a mask of all ones
should be used. Since no packet can have an IP address set to 0.0.0.0, all the packets
are sent to the OS.

To disable classification, it is necessary to set all theM bits to 0; thus, all the packets
match the rule and are classified as high priority. When disabling both functions,
the board becomes a standard NIC, which supports a single priority and a single
FIFO queue storing packets addressed to the OS.

For each possible route, i.e., the 3 different NICs on thefast pathand the OS on the
slow path, a counter keeps track of the number of packets sent to the considered
destination. All those values are stored in the RF and can be accessed by the driver.
The driver can dynamically configure the NIC registers, removing and adding route
entries. This approach allows to dynamically redirect the highest bandwidth flows
on thefast path, forwarding the others through theslow path.

4.2 Dropping

After the routing and classification stages, packet destination and priority level are
established, and the packet is enqueued into an intermediate FIFO. From this FIFO,
packets are extracted by theExtractionblock that enqueues the packet in the proper
FIFO in the VOQ architecture, according to the result of the routing and classifica-
tion process. If not enough space is available in the destination queue to store the
full packet, the packet is dropped.

The intermediate FIFO is used to address some design issues.Packets could be di-
rectly dropped by the Ethernet core. Indeed, when any of the FIFOs is full, HERO
could simply advertise this information to the Ethernet core by “or-ing” the con-
trol signal that detects FIFO queue overflow. Since the routing and classification
have not been performed yet, there is no possibility of detecting the status of the
“proper” FIFO. This solution is not optimal, because the Ethernet core would drop
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also packets addressed to non-full queues. By using the intermediate FIFO, the
packet is received, processed and dropped only if the properdestination FIFO is
full. Moreover, a store and forward technique is needed to determine the size of
the packet and to check whether it fits into the destination queue. The intermediate
FIFO also simplifies the control logic allowing to perform the routing and classi-
fication process while receiving the packet, making those operation zero-latency.
If no buffer stage is introduced, it would be necessary to obtain the information
on the destination queue at the beginning of the packet, making the control logic
more complex or delaying the packet enqueuing. With our approach, it is enough to
execute routing and classification operations within a timebound equal to the du-
ration of the shortest possible Ethernet packet. Obviously, an additional store and
forward delay is paid. Finally, the intermediate FIFO is dual-clocked, and is used
to decouple the 125MHz clock domain of the Ethernet core fromthe 133-100MHz
clock domain of the PCI-X core.

4.3 VOQ enqueuing

The VOQ block contains four pairs of FIFOs, one pair for each supported output
NIC. One FIFO collects high priority packets, the other one low priority packets.
Each FIFO, as well as all the other FIFOs within the design, isphysically composed
by a “data” FIFO, storing packets, and by a “size” FIFO, storing the packet size
needed to determine packet boundaries in the data FIFO during packet extraction
operations.

ThePacket Uploadblock is involved in theslow pathforwarding, i.e., packet trans-
mission from the two FIFO queues to the PC main memory. TheSchedulerand the
Burstblocks are involved in the control and data forwarding over thefast path.

5 Outgoing Packet Management Block

The Outgoing Packet Managementblock, shown in Fig. 5, is much simpler than
the incoming packet management block. It performs the multiplexing of packets
received from both theslowand thefast path. A RR (Round Robin) policy is fol-
lowed, by extracting alternatively one packet from each queue. TheTransmission
block serializes the 64-bit words received from the PCI bus in words of 8-bits, the
parallelism needed by the Ethernet core.

Further details about the behavior of theReceptionandSchedulerblocks are pro-
vided when analyzing the NIC-to-NIC communication protocol via thefast pathin
Sec. 7.
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Fig. 5.Outgoing packets managementstructure

6 Slow Path

The packet passing mechanism between the driver and the NIC is based on packet
descriptors. A packet descriptor is a data structure containing two basic informa-
tion: packet data address in memory and packet size. These information are passed
to the NIC to exploit its bus master capability to initiate a DMA transfers through
the bus.

When a packet is received by a NIC from the network, it is locally processed, stored
and then forwarded as soon as possible to an available central memory location. The
memory location is determined by the driver by means of a descriptor. When the
packet transfer ends, the event is signaled to the driver rising an IRQ signal. Thus,
the driver can handle the packet to the OS, that will perform the routing operation.

Similarly, when the driver receives a packet from the OS kernel, it handles the
descriptor to the NIC, which reads the packet from the central memory to send
it on the Ethernet cable. When packet reception is completed, an IRQ signal is
generated to free the packet memory.

To increase performance, modern NICs organize the descriptors into circular buffers
called rings. These rings can be implemented at least in two different ways, with
different performance. We refer to the two implementationsasscatter-gatherand
vectormode.

Thescatter-gathermode organizes the descriptors into a linked list; the list head is
passed to the NIC. For each packet, the NIC first reads the descriptor and then starts
the packet transfer. Two PCI transactions for each packet are needed. Thevector
mode tries to overcome this problem by grouping the descriptors into vectors. The
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NIC can read all the descriptors at once, thus optimizing thebus utilization.

Fig. 6 compares the two modes in terms of achieved throughput. Thevectormode
shows better performance both in reading and writing. Indeed, thescatter-gather
mode needs several small bus transactions to download the descriptors. This re-
duces performance, due to the high initial transaction setup cost in accessing the
bus. Thedescriptors queuesin Fig. 2 are the FIFOs where the descriptors are stored
and are organized according to thevectormode.

Two vectors are used to build the rings. During packet reception, the driver allo-
cates new packet buffers into one descriptor vector. When the NIC has used all its
descriptors, the driver swaps the two vectors providing newdescriptors to the NIC.
Two vectors are used also in the transmission side, one by thedriver to group outgo-
ing packets, while the NIC is transmitting the packets stored in the other one. When
all packets are transmitted by the NIC, an IRQ is generated and the two vectors are
swapped.

To better support two priorities, a second incoming buffer ring has been added.

A scheduler within the driver serves both rings. Therefore,a total of three descriptor
FIFOs are needed, two for the descriptors to write incoming packets into the RAM
(one for each ring) and one for reading packets from the RAM. For the sake of sim-
plicity, the scheduler gives absolute priority to high priority packets, which implies
that, in principle, low priority packets may suffer starvation. Fig. 7 summarizes the
slow pathmanagement.
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7 Fast Path

The fast pathgoal is to provide a high bandwidth-low latency data transfer among
NICs. Indeed, the main shared resource in the PC architecture is the PCI bus. The
aim of bus management is to be fair for NIC-to-NIC communications and to max-
imize bus throughput. For example, it is obviously not a goodpractice to transfer
packets through the bus to a congested output NIC, since theywill be discard im-
mediately after. A better solution would be to discard thesepackets directed toward
a congest NIC directly at the input NIC. A back-pressure mechanism can be ex-
ploited to shape the sending rate of the input NICs. Fairnessmust be ensured: any
input NIC should be able to forward packets to any output NIC without starvation
in a reasonably short amount of time.

Taking into consideration that the PCI-X protocol schedules bus access with a pro-
prietary policy, we propose a protocol able to organize bus access requests and
packet transfers through the bus to meet the above requisites. One possible ap-
proach could be to introduce the control in software: the driver first inquires the
NICs state and then computes the optimal scheduling. The high latency imposed
by this approach when the driver accesses the NIC registers discourages this idea.
Thus, we developed a hardware-based inter-NIC communication protocol.

This protocol is inspired by the three-way schedulers proposed in synchronous slot-
ted IQ switches, like iSLIP [5]. However, our solution is completely asynchronous.
Indeed, each board can receive packets of variable size at any time; the use of the
bus is granted asynchronously and independently by each output NIC. For these
reasons, the protocol implements a communication protocolbased on three steps:
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• request: an input NIC sends a request containing the number of packets and the
amount of data available to the proper output NIC;

• response: the output NIC grants to the input NIC the amount of available bytes,
i.e., the available space in the output FIFO;

• burst: the input NIC transfers a number of packets whose total sizeis equal or
less than the granted amount received during theresponsephase.

The structure of the protocol is partly due to some limitations related to bus ac-
cess procedures. In the PC architecture, a board acting as a PCI-X bus master can
perform both write and read operations toward the main memory. However, only
write operations toward other peripherals are admissible.Thus, the protocol ex-
ploits write transactions only. If read operations were available, it would have been
possible to use simply arequestmessage; then, the output NIC would have been
able to read the data directly from each input NIC.

A requestmessage is a 32-bit word divided into two 16-bit sections, one for each
priority. Each section contains the number of bytes stored in the corresponding
FIFO. Therequestmessage is used to start a communication between two NICs.
When both FIFO queues (one per priority) addressed to an output are empty, the
communication phase ends. As soon as a new packet for that output is received, a
new request message is sent, opening again the communication channel.

When a NIC receives arequest, it sends back aresponsemessage containing the
minimum between the value stored in therequestitself and the size of the available
memory in thefast pathFIFO. All the free space available within the FIFO, if
needed, is allocated to the current data exchange. If the memory available is not able
to satisfy the request, the available buffer is first allocated to the high priority field;
the remaining part, if any, is devoted to the low priority field. Note that different
responsegeneration policies can be easily defined and implemented. Theresponse
message is divided into two 16-bit sections, one section foreach priority level. Each
section contains the number of bytes available for the corresponding priority level.

When a NIC receives aresponsemessage, the data transfer occurs. Packets are
grouped into aburst, composed by several high priority packets followed by the low
priority ones. For each priority level, the amount of bytes of the packets transmitted
within the burst never exceeds the value stored in theresponsemessage.

Each burst has a header that contains the total number of highand low priority
packets in the burst. A 64-bit control word is sent prior of each packet in theburst
message; the control word contains the packet size and it is needed to extract the
packet from the burst at the receiving end. A 64-bit control word is appended at the
end of the burst; it is used to piggy-back a new 32-bitrequestfor the two priorities.
If no other packets are available for that output NIC at the end of the burst trans-
mission, the request bits are set to zero. The piggy-backingtechnique keeps the
communication alive and, during high load periods, saves a bus transaction, thus
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improving forwarding performance.

The generation ofrequestmessages is performed by monitoring the VOQs occu-
pancy status. In Fig. 3, the block generatingrequestmessages is namedScheduler.
The same physical block, as shown in Fig. 5, is also involved in the management
of the requests and in monitoring thefast pathFIFO to generate theresponsemes-
sages at the receiving side. This block is also involved in the transmission phase, as
shown in Fig. 5. TheBurstblock in Fig. 3 is in charge of generating theburstmes-
sage, taking into account the incomingresponseand the newrequestto piggy-back.
When theburstarrives at the receiving side, it is parsed by thereceptionblock in
Fig. 5, and packets in the burst are stored into the proper FIFO.

Conflicts among NICs may occur in high load conditions. Indeed, two input NICs
may have data available for the same output NIC. In this case,bursts are serialized
and not interleaved. More precisely, therequestmessage is sent by the input as
soon as data arrive in an empty FIFO.Requestmessages are received and collected
by the outputs asynchronously, and then processed in a RoundRobin (RR) fashion.
If resources are available, aresponsefor the first requestin the RR order is sent
back. Then, the NIC waits to receive theburst. Only when theburst is completely
received, the followingrequests are processed. This mechanism allows each NIC
to wait for at most oneburst at a time, simplifying both the resource allocation
process and the communication protocol. If the input NIC, upon reception of a
responsemessage, is unable to send at least one packet in theburst due to size
constraints, an empty burst is sent. The empty burst contains only the piggy-backed
requestto keep alive the communication channel.

A RR scheduler is also adopted to manage incomingresponsemessages. Each NIC
detects the firstresponsemessage and creates the correspondingburst. Only when
thebursthas been completely sent, the NIC examines the nextresponsemessage.

Therequestandresponsemessages are written in the inter-NIC registers described
in Sec. 3.

8 Digital Design Analysis

In the above sections we discussed the main features of the HERO project mapping
them on the logic design of the HERO core. To better understand the physical level
of our implementation, we describe the results of the logic synthesis process.

The project has been synthesized on an Altera Stratix GX FPGAequipped with
41250 Logic Elements(LE) and3.3Mbits of embedded RAM. In a FPGA device,
a LE is the basic programmable block. It is composed by a Flip-Flop (FF) and a
LookUp Table (LUT) that can be configured and interconnectedto compose a ba-

14



LEs % design % FPGA

PCI 4798 20 12

MAC 4227 18 10

PHY 1541 6 4

HERO 15605 56 38

TOT 26171 100 63

Table 1
FPGA resource usage break down by core.

sic logic function. The embedded memory is composed by Static RAM (SRAM)
blocks distributed on the FPGA area, that are used to implement single-clock or
dual-clock FIFOs or to implement single-port or dual-port RAM blocks. The num-
ber of LEs upper-bounds the amount of logic and the number of registers the design
can use, while the available memory constraints mainly the FIFO buffer size.

Tab.1 offers the break-down of the resources used for each IPcore including the
PCI-X core and Ethernet core (including both the MAC and the Physical layers).
The entire design uses63% of the available resources on the FPGA. This leaves a
wide possibility to expand the design: i.e. more complex allocation policies in the
Fast-Path scheduling protocol or more routing and classification rules. For the rout-
ing and classification entries, considering that each FF implies the use of one LE
and that a routing-classification rule consists of 224 bits (see Sec. 4.1), we estimate
that the available LEs permit to implement up to 100 routing-classification rules.
However, the additional resource utilization will certainly affect HERO’s maximum
clock frequency. The relationship between clock frequencyand FPGA occupancy
is not linear: thus, it is not easy to predict the impact of adding new rules on the
HERO core clock speed.

Fig. 8 shows the break-down of HERO resources used by each logic function. Most
of the area is used by the incoming packets management, the register file and the
outgoing packets management. The large percentage of area used by the packet
management blocks is due to the complexity to manage packet bursts, while the
register file area is mainly devoted to the registers. All other functions require a
minimal resource usage.

Looking at memory utilization, most of the memory is used to implement the VOQ
system, Indeed, each FIFO queue requires32kBytes and a total of 24 FIFOs is
required to build the VOQ architecture for three NICs. The FIFO queue used to
decouple the two clock domains is set to2kBytes, because it never holds more
than one packet at a time (the packet arrival rate is lower than the extraction rate).
The queue receiving packets from theslow pathhas a16kBytes size, whereas the
FIFO queue receiving packets from thefast pathis larger (64kBytes) to permit
long packet bursts.
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Fig. 8. HERO resource usage break down by function

9 Hardware Equipment

HERO was tested using prototyping boards from PLDApplication [6] designed for
networking applications. The board hosts an Altera StratixGX FPGA and provides
two SFP (Small Form-factor Pluggable) transceiver slots able to support both op-
tical and copper based network connectivity. Bus connectivity is provided with a
64-bit PCI-X connector.

The Altera Stratix GX family is thought for high-speed communication applica-
tions, embedding hardware support for connectivity up to3.125GHz. In our project,
the target is a Gigabit Ethernet connectivity, which translates to a physical signal
frequency of1.25GHz, due to the8B/10B encoding of the Ethernet physical layer.
The maximum clock frequency achievable on the FPGA is325MHz. However,
the design maximum clock period is strongly affected by the size of the circuit.
The clock design requirements are125MHz for the network side clock and at least
100MHz on the bus side clock.

A commercial core developed by MTIP (More Then IP) [7] is usedto manage the
Ethernet interface. It fully implements both the physical layer and the hardware-
related part of the MAC layer. The physical layer manages channel synchroniza-
tion, auto-detection and bit transmission/reception from/to the wire. The MAC
layer buffers packets into internal FIFOs allowing an easier management of data
flows. Furthermore, it evaluates the Frame Check Sequence (FCS) field of incom-
ing packets and overwrites the source MAC address of outgoing packets. It also
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offers support for Jumbo frames, VPN and multicast, which are not considered in
our application.

The PCI-X core is directly provided by PLDA. In master mode, it provides 4 in-
dependent DMA channels that are multiplexed in time by the core itself. The core
does not buffer packets, but it simply redirects in real-time the bus control signals
to the control logic that schedules data transfers, either asking for or providing the
packet when the transaction is under progress. For each channel, the control logic
provides to the core the base address, the data size and the transfer type: read or
write.

The NIC’s host is a high-end PC with a SuperMicro X5DPE-G2 main-board equipped
with one2.8GHz Intel Xeon processor and2GByte of PC1600 DDR RAM con-
sisting of two interleaved banks, so as to bring the memory bus transfer rate up
to 3.2GByte/s. This motherboard has three PCI-X 133 and three PCI-X 100 slots
with peak transfer rates of respectively1GByte/s and0.8GByte/s.

An Agilent N2X RouterTester 900 [8], equipped with Gigabit Ethernet ports, able
to transmit and receive Ethernet frames of any size at full rate, was used for sourcing
and sinking the traffic in the tests.

10 Performance Evaluation

The aim of this section is twofold. First, we wish to assess the NIC performance in
terms of forwarding rate and latency on the one hand, and of flexibility in dealing
with different priority flows on the other hand. Second, the benefits provided by the
developed NIC with respect to standard NICs are examined. All tests are run with
NAPI enabled on the Linux kernel.

10.1 Throughput

We first test the developed NIC as a standard commercial NIC toforward packets
passing through the OS. The achievable throughputs are in line with those obtained
using commercial Gigabit NICs (e.g., Intel e1000 NICs) working under the same
conditions. The forwarding limit is400Mbps when using minimum sized (64byte)
Ethernet Frames. This derives from both CPU and memory latency bottlenecks, as
shown in [9]. To overcome this limit, the developed NIC uses thefast path. On the
fast pathit is possible to route all the packets at wire speed, regardless of their size.
Fig. 9 summarizes these results.

The aggregate SR throughput can be increased by adding more cards. By using
3 boards plugged into the PCI-X bus, we are able to route an aggregated traffic
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flow of 3Gbps. Unfortunately, due to the lack of FPGA cards in our lab, it was not
possible to try configurations with more then three NICs, even though, theoretically
the PCI-X bus is able to support loads up to the peak value of8.512Gbps.

To improve the quality of service support with respect to theclassical FIFO best-
effort model provided by commercial NICs, the developed NICis able to classify
traffic in two priority classes and treat them differently. When all the traffic can be
routed without losses, the classification has no impact on packets forwarding. But
in overload, having different priority flows permits to allocate the limited amount
of resources to packets with higher priority. Fig. 10 shows the forwarding perfor-
mances along theslow pathwithout packet classification, like on standard NICs.
All the packets are treated the same, and losses are equally distributed between low
and high priority packets. By adding packet classification,we obtain the results
shown in Fig. 11. High-priority packets experience a higherforwarding rate to the
detriment of low-priority packets.

Packet classification can also be exploited on thefast pathwhen an output is over-
loaded by two or more inputs with an aggregate rate higher than the wire speed.
Again, high-priority packets are privileged to the detriment of low-priority packets
obtaining similar results as on theslow path.

10.2 Latency

The fast pathnot only permits to achieve higher forwarding rates, but also lower
packet latencies. Two main reasons reduce the packet latency:
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Fig. 11. Traffic forwarding with two different priority flowsusing HERO-based NICs

• no additional latency due to the CPU scheduling by the OS to process the packet;
• only one bus transversal per packet.

Fig. 14 compares the average latencies of the two paths closeto saturation for
different packet sizes, The latency is always computed at the maximum throughput
with zero losses for each packet size. Fig. 12 and Fig. 13 plotthe latencies versus
the offered load for the slow and fast path respectively.

First of all, observe that the average latency on thefast pathis always at least one
order of magnitude lower than the one on theslow path. Taking a closer look at the
slow path, the latency increases for smaller packets. This happens because the PC
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workload is higher for small packets. Indeed, the throughput at which the latency
is computed is very close to the maximum effective throughput. With larger packet
size, the load on the system decreases and the maximum throughput becomes lim-
ited by the wire speed.

When looking at thefast path, no increase in the latency value for small packet size
is visible, because the throughput is always limited by the wire speed. The CPU
processing time is mainly linear with the packet size, because the FPGA processes
a fixed amount of data per clock cycle. However, around a packet size of256bytes,
a latency drop occurs. The drop is due to a threshold phenomenon depending on
the distributed message-passing scheduling algorithm adopted in thefast path. For
small packets, due to the different transmission speeds between the PCI-X bus and
the Ethernet, the probability of being able to piggy-back the next request transfer is
lower than with larger packets.

Finally, Fig. 12 shows theslow pathlatency as a function of the offered load, when
using64bytes packets. The latency is constant until the saturation pointis reached.
For higher loads, the non discarded packets experience a high latency when travers-
ing the software router. Thefast pathas shown in Fig. 13, is not affected by this
performance degradation since it permits to run at wire speed. Therefore, the satu-
ration point is never reached.
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11 Conclusions

We presented the implementation choices and the design logic of a custom NIC,
suitable for SR running Linux. The NIC implements extra features with respect
to standard, commercial NICs reducing the CPU load and improving both QoS
support and system throughput. The project is available as an open source IP core
which is interfaced with a PCI-X and an Ethernet IP core to obtain a portable NIC
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implementation.

This core is fully compatible with the Linux OS and exploits very flexible interfaces
toward both the PC bus (PCI core) and the network (Ethernet core). Therefore, it is
useful not only for SRs performance analysis, but also in other applications need-
ing non-standard network cards. e.g., security enforcement, network measurements,
monitoring and analysis, development and testing of new MACprotocols for new
generation optical or wireless packet networks.
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The design can be modified increasing the number of possible routes and the num-
ber of possible priority classes per route. It is also possible to change the module
that allocates resources in the output NIC during the response phase of the schedul-
ing algorithm, to obtain more sophisticate fairness policies. The driver scheduler
used to manage the two priorities on theslow pathcan also be modified. Finally,
different mechanisms that can use the flow/packet statistics to dynamically config-
ure the routing entries to better exploit thefast pathare under study.

References

[1] A.Bianco, R.Birke, G.Botto, M.Chiaberge, J.Finochietto, G.Galante, M.Mellia, F.Neri,
and M.Petracca, “Boosting the performance of PC-based software routers with FPGA-
enhanced network interface cards,” HPSR (IEEE Workshop on High Performance
Switching and Routing), Poznan, Poland, June 2006

[2] “HERO: High-speed Enhanced Routing Operation for software routers.” [Online].
Available: http://www.telematica.polito.it/hero/

[3] “BORA-BORA (Buildin Open Router Architectures - Based On Router
Aggregation).” [Online]. Available: http://www.telematica.polito.it/projects/borabora

[4] J.C.Mogul and K.K.Ramakrishnan, “Eliminating receivelivelock in an interrupt-
driven kernel”, ACM Transactions on Computer Systems, vol.15, no.3, pp.217–252,
Aug. 1997

[5] N. McKeown, “The iSLIP scheduling algorithm for input-queued switches,”
IEEE/ACM Transaction on Networking, vol.7, no.2, pp.188–201, 1999

[6] “PLDApplications.” [Online]. Available: http://www.plda.com

[7] “MoreThanIP.” [Online]. Available: http://www.morethanip.com

[8] “Agilent, N2X routertester 900.” [Online]. Available:
http://advanced.comms.agilent.com/n2x

[9] A.Bianco, R.Birke, D.Bolognesi, J.Finochietto, G.Galante, M.Mellia, M.Prashant, and
F.Neri, “Click vs. linux: two efficient open-source IP network stacks for software
routers,” HPSR (IEEE High Performance Switching and Routing Workshop), Hong-
Kong, May 2005

23


