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Michele Petracca Robert Birke Andrea Bianco

a Dipartimento di Elettronica, Politecnico di Torino, 1012®rino, Italy Email:
{firstname.lastname@ polito.it

Abstract

Software/open routers, PCs (Personal Computers) runrpeg source OSs (Operating
Systems) and equipped with Ethernet Network Interface €aXdICs), are receiving in-
creasing attention in the research community, because dheyoffer multi-gigabit-per-
second packet forwarding speed, performance comparaliteose of low-medium end
commercial routers. However, commercially available Nl@sk programmability. Fur-
thermore, the use of standard NICs implies that each pac&sses the bus twice, and is
processed and routed in software by the OS, thus reducimgfding performance. In this
paper we discuss the design and the implementation of an HRGAd NIC that permits
to overcome the performance bottleneck and the lack of flayilmf commercial NICs.
Performance and limitations of the proposed approach areulhly discussed.

1 Introduction

Software/open routers are typically based on off-thef$taetiware and open-source
operating systems running on Personal Computer (PC) aotuies. They are re-
ceiving increasing attention in the research communitgabee high-end PCs shared
buses fit into the multi-gigabit-per-second routing segiméth lower prices than
those of commercial routers.

SRs (Software Router) based on PC architectures can bedeoedias a central
memory packet switch. Ethernet NICs (Network InterfacedSaiare connected
to the PC bus, receive packets from the network and transéen into the main

* A preliminary version of this paper was presented at thearenice IT-NEWS Interna-
tional Telecommunication NEtworking WorkShop 2008, hdldfenezia (Italy) in February
2008, under the title "THERO: High-speed Enhanced Routingr@on in Software Routers
NICs".
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Fig. 1. Enhanced software router structure

memory. Packets are then routed by the OS (Operating System3ferred back
to the NICs and re-injected into the network.

Commercially available NICs require that packets crossstieed PC bus twice.
Furthermore, packets are always routed in software by thal@sS further reduc-
ing the forwarding performance, especially when dealindpwmall-size packets.
Fig. 1 shows how the data forwarding procedure may be opéidiia increase the
SR performance by exploiting the well-known fast path in stom NIC [1]. Note
that, besides performance increase, classification scheamealso be introduced,
hence enabling, for example, priority enforcement to imprQoS support.

Indeed, the main performance impairment when routing gadkea software router
is in the centralized nature of PC architectures. The shaedory, the CPU, and
the OS involved in packet routing may easily become a battknA distributed

approach, where each NIC is able to determine the outputqaatsignificant por-

tion of the incoming traffic, allows using the shared bus tevlrd packets directly
between NICs. In this case, the main limitation becomes théd&s bandwidth,

since OS processing is required only for a small fractionawiqets, thus reducing
the occurrence of centralized processing bottlenecksisnpaper we refer to the
direct exchange of packets among NICs asftst path All the packets whose
destination cannot be determined locally on the input NI€,rauted by the OS



following the so-callecslow path Both paths coexist and permit to forward data
traffic simultaneously, as shown in Fig. 1.

Thefast pathhas several advantages: No memory access latency duricigpea
erations, more efficient use of the bus by reducing the buspaswy for packet
transmissions, and CPU off-loading. Furthermore, QoShtetk classification and
scheduling algorithms may replace the FIFO service dis@pvailable on com-
mercial NICs. However, to implement direct NIC-to-NIC comnication through
the fast path, the NIC must perform autonomously the rodtingtion to determine
the packet destination. Furthermore, a protocol for dik#€-to-NIC communica-
tion has to be defined and implemented.

The availability of powerful programmable logics permitseixtend the open soft-
ware paradigm to the hardware domain. The logic circuitnyettgped for FPGAS
can be made public [2], reused and improved by the reseancimoaity. This
“open hardware” approach can open the door to low-cost henelwmplementa-
tions of performance-critical functional blocks.

In this paper, we present a detailed description of a rersmsged version of a
FPGA-based NIC, whose performance was partly assessed. iArjlimportant

motivation to develop the core is providing the researchroomty with an open-
source VHDL core implementing the fast path packet proogsand capable to
communicate with a PCI-X core and an Ethernet MAC core.

The paper is organized as follows. Sec. 2 gives a generaviewef the main
features of the custom NIC, while the next five sections preaemore detailed
analysis: Sec. 3 is devoted to NIC configuration, Sec. 45&&cincoming/outgoing
packet management, Sec. 6 to ghew pathand Sec. 7 to thiast pathdescription.
In Sec. 8, the outcome of the logic synthesis process is pie$eSec. 9 provides
details on the hardware equipment and on the IP cores usdti$oproject. In
Sec. 10, performance results are assessed. Finally, Sdca@$ conclusions.

2 HERO Architecture Overview

HERO (High-speed Enhanced Routing Operation) is the nartteedP core devel-
oped within the framework of the BORA-BORA (Building Openurer Architec-
tures - Based on Router Aggregation) project [3] . The deyaddP core exploits
two available IP cores managing respectively the intedaci¢h the Ethernet net-
work and the PCI-X bus. HERO is organized in three main sesticespectively
performing the following tasks:

¢ NIC configuration, through interaction with the Linux drmgy means of regis-
ters and interrupts



¢ forwarding of incoming packets, i.e. packets received fthennetwork. Packets
are stored into either the central memory when usingsibes pathor NICs
memory when exploiting thiast path

e forwarding of outgoing packets, i.e. packets received ftom driver or from
other NICs are sent to the network

Fig. 2 provides a high-level view of the HERO architectureeNIC configura-
tion section deals with the control path, and includesRkgister File(RF) block,
which includes 64 32-bit wide registers, and theerrupt Generatoblock. A more
detailed description is provided in Sec. 3.

The Descriptor Queueslock controls three FIFOs, containing the RAM memory
buffer addresses where packets are stored if usinglthve path Sec. 6 is devoted
to the detailed description of this block.

Incoming packets are managed by theoming Packet Managemehlock. This
block receives packets from the Ethernet core, bufferimgnthf possible or dis-
carding them if the FIFOs are congested, and performs thengpand classifica-
tion functions exploiting a VOQ (Virtual Output Queuing)ffaring architecture,
i.e., one separate FIFO queue is available for each outgliti\the router. Finally,
it forwards packets either on tiséowor on thefast path

Outgoing packets are managed by @atgoing Packet Managemelock, which
forwards them to the Ethernet core.

=" >Driver selttings arld ; i i
< Board-to-board; _ Register File (RF) .
gommunication, 64 32-bit registers o |
. IRQ | : f .
N : ! ' I
| Desctiptors || Descriptors Interrupt o |
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Fig. 2. HERO structure



3 HERO Configuration Section

The RF block is used by the driver to write and read configaratiata. The reg-
isters can be logically grouped into 5 sets, depending an tise: command reg-
isters, IRQ registers, descriptor registers, routing dadstfication registers, and
inter-NIC registers.

The command registers are used either to issue a set of casmarthe NIC,
like the reset command, or to manage the Ethernet coreg@aple Ethernet auto-
negotiation, configure the MAC address, verify the conmecsitatus.

Thelnterrupt Generatoiblock manages three IRQ registers to signal to the OS im-
portant asynchronous events such as a packet arrival ortdega® 32-bitR,,.,nasked
register maps 32 possible interrupt events; currentlyahdte bits are used. When-
ever one of the interrupt events occurs, the corresponding B,.,,,...s..q IS raised.

A 32-bit R,,.s, register is set by the driver to select which events are @b
generate an IRQ. Since a unique IRQ channel is assigned ftdI@ean IRQ is
generated every time one of the enabled events occursjsfysag the following
condition:

Runmasked @ Rmask >0 (1)

The result of thep operation is stored in th&,,,,...q register, to allow the driver
to read the event that has triggered the IRQ. Titerrupt Generatoblock detects
the events, masking the undesired ones and generating @hsitfRal. Every time
the driver reads th&,,....q register, it clears it to permit re-assertion of the proper
bit when the next IRQ event occurs.

The use of maskable interrupts allows the driver to run in different operating
modes: IRQ and NAPI. In IRQ mode, each packet reception amstnission gen-
erates an IRQ. This operating mode is very easy to implenbett can lead to
performance degradation due to the well know IRQ trashirempmenon [4]. IRQ
trashing occurs when the CPU is flooded by IRQs and is unabpetiorm any
other operation apart from processing IRQs. To avoid thoblgm, the NAPI oper-
ating mode, based on the polling idea, has been devised Hénvedopting NAPI,
the IRQ signal is used only to add the NIC to a polling listathkng its IRQs un-
til the NIC is active in processing packets. When no more ptckre available,
the NIC is removed from the polling list and NIC IRQs are rexgled. Therefore,
when the packet transfer rate is low, the NIC driver mainlyksamon IRQs. On the
contrary, during high loads periods, polling will mostly beed, thus combining
the low latency property of the IRQ scheme with the high tigtqaut of polling
systems.

The routing and classification registers are used to roudeckssify packets into



priority classes. These registers are managed by the dmceare used to address
the incoming packets into the VOQ system. Further detaibsiatouting and clas-
sification operations are given in Sec. 4.

The inter-NIC registers are used for NIC-to-NIC signalingeded when dealing
with data transfer via thiast path More details are provided in Sec. 7.

Finally, the descriptor registers are used to make pacleeirigors available to the
NIC. Sec. 6, describing treow pathoperation, provides a detailed explanation on
descriptor registers types and functions.

4 Incoming Packets Management Block

The Incoming Packet Managemehlock is the first stage that processes a packet
received from the Ethernet core. A detailed block diagrash@wn in Fig. 3.

4.1 Parallelization, classification and routing

The interface with the Ethernet core comprises an 8-bit dassand some control
signals. Three control signals are definedasa validsignal, asserted when a byte
on the data bus is valid,start (stop signal, asserted for one clock cycle during the
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Fig. 3. Incoming packet management block structure



first (last) byte of packet transmission. The HERO core isgiesl to be always
able to receive data from the Ethernet core, internally piragppackets if necessary.

Thelnputblock (Fig. 4) transforms the serial 8-bit data into a pafadk-bit word

compatible with the PCI-X bus parallelism. During the pkel&ation phase, the
Open Headeblock collects the initial words of the packet and transtées Eth-

ernet and IP headers to the routing and classification |églditional logic in the

Input block decrements the TTL field and updates the IP header sbetkThe

routing operation is based on the destination IP addressi{8R The classification
function is based on the following fields (80 bits):

destination IP address (32 bits)
source IP address (32 bits)
ToS (Type of service) (8 bits)
protocol type (8 bits)

The system supports up to 4 custom NICs in a single PC; thexefip to three

routes and four classification rules can be provided by tinvedrEvery packet

not matching any of the given routes is sent alongdloev pathto the OS. Each

classification rule is associated with a possible destnatither one among the
three NICs or the OS. If a packet matches a classification ituteconsidered as a
high priority packet.

Routing and classification are based on two ternary maskseShe FPGA uses
only binary logic, the masks were implemented using two sEpaegisters. The
first register contains the pattefihto be matched. The second register defines a bit
mask)M , where 1 indicates a “care bit” and a 0 a “don’t care” bit. Au&l” in the

Classification Routing
patterns patterns
Classification Routing

masks masks {
i ChecksurriJ
Recomputation

Priori o Incoming data
-(% Classification |«
. T ‘ Y ' ‘ ETH+IP headers Open (Bbit
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Control

Data G4bit ™ signals
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Fig. 4. Input block details: routing and classification estructure



packet header is a match if:

(VeP)-M=0 )

The destination IP address of each packet is compared itiganéth all three
ternary masks. The packet is forwarded to the lowest rank€dhisiving a matching
ternary mask; otherwise, the packet is sent to the OS. Tissifitaation step is
executed concurrently with the routing. The header fieldscampared with all
the classification ternary masks in parallel, thus obtgrane outcome for each
possible destination.

By using special values far/ and P, it is possible to deactivate routing and clas-
sification functions. To disable routing, a pattern of alaeand a mask of all ones
should be used. Since no packet can have an IP address $e0t0 (all the packets
are sent to the OS.

To disable classification, it is necessary to set allthbits to O; thus, all the packets
match the rule and are classified as high priority. When dirsgiboth functions,
the board becomes a standard NIC, which supports a singlatprand a single
FIFO queue storing packets addressed to the OS.

For each possible route, i.e., the 3 different NICs orféisé pathand the OS on the
slow path a counter keeps track of the number of packets sent to thad=red
destination. All those values are stored in the RF and carctesaed by the driver.
The driver can dynamically configure the NIC registers, reimgand adding route
entries. This approach allows to dynamically redirect tighést bandwidth flows
on thefast path forwarding the others through tiséow path

4.2 Dropping

After the routing and classification stages, packet detsbnand priority level are
established, and the packet is enqueued into an interreddi@®. From this FIFO,
packets are extracted by tR&tractionblock that enqueues the packet in the proper
FIFO in the VOQ architecture, according to the result of theting and classifica-
tion process. If not enough space is available in the desimgueue to store the
full packet, the packet is dropped.

The intermediate FIFO is used to address some design is3agsts could be di-
rectly dropped by the Ethernet core. Indeed, when any of tR@§ is full, HERO
could simply advertise this information to the Ethernetecby “or-ing” the con-
trol signal that detects FIFO queue overflow. Since the nguéind classification
have not been performed yet, there is no possibility of detgthe status of the
“proper” FIFO. This solution is not optimal, because thedtttet core would drop



also packets addressed to non-full queues. By using thamatkate FIFO, the
packet is received, processed and dropped only if the prdgsination FIFO is

full. Moreover, a store and forward technique is needed terdene the size of
the packet and to check whether it fits into the destinatiuguThe intermediate
FIFO also simplifies the control logic allowing to performetiouting and classi-
fication process while receiving the packet, making thossratmn zero-latency.
If no buffer stage is introduced, it would be necessary t@iobthe information

on the destination queue at the beginning of the packet,ngakie control logic

more complex or delaying the packet enqueuing. With our@gogr, it is enough to
execute routing and classification operations within a tomend equal to the du-
ration of the shortest possible Ethernet packet. Obvigasiyadditional store and
forward delay is paid. Finally, the intermediate FIFO is ldelacked, and is used
to decouple the 125MHz clock domain of the Ethernet core filoenl33-100MHz

clock domain of the PCI-X core.

4.3 VOQ enqueuing

The VOQ block contains four pairs of FIFOs, one pair for each sumggubdutput
NIC. One FIFO collects high priority packets, the other oow priority packets.
Each FIFO, as well as all the other FIFOs within the desigphissically composed
by a “data” FIFO, storing packets, and by a “size” FIFO, sigrthe packet size
needed to determine packet boundaries in the data FIFOgdp&aoket extraction
operations.

ThePacket Uploadlock is involved in theslow pathforwarding, i.e., packet trans-
mission from the two FIFO queues to the PC main memory.Séteeduleand the
Burstblocks are involved in the control and data forwarding oherfast path

5 Outgoing Packet Management Block

The Outgoing Packet Managemehltock, shown in Fig. 5, is much simpler than
the incoming packet management block. It performs the plaking of packets
received from both thelowand thefast path A RR (Round Robin) policy is fol-
lowed, by extracting alternatively one packet from eachugu@ heTransmission
block serializes the 64-bit words received from the PCI lusords of 8-bits, the
parallelism needed by the Ethernet core.

Further details about the behavior of tReceptiorand Scheduletblocks are pro-
vided when analyzing the NIC-to-NIC communication protioga thefast pathin
Sec. 7.
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6 Slow Path

The packet passing mechanism between the driver and thesNi@sed on packet
descriptors. A packet descriptor is a data structure coimigitwo basic informa-
tion: packet data address in memory and packet size. Thiesengtion are passed
to the NIC to exploit its bus master capability to initiate MB transfers through
the bus.

When a packet is received by a NIC from the network, it is llygalocessed, stored
and then forwarded as soon as possible to an available beramnaory location. The
memory location is determined by the driver by means of argasc. When the
packet transfer ends, the event is signaled to the drivieigran IRQ signal. Thus,
the driver can handle the packet to the OS, that will perfdrenrbuting operation.

Similarly, when the driver receives a packet from the OS &krit handles the
descriptor to the NIC, which reads the packet from the cémtiemory to send
it on the Ethernet cable. When packet reception is completedRQ signal is
generated to free the packet memory.

To increase performance, modern NICs organize the destsijtto circular buffers
called rings. These rings can be implemented at least in tii@reht ways, with
different performance. We refer to the two implementatiagscatter-gathemand
vectormode.

Thescatter-gathemode organizes the descriptors into a linked list; the kstchis
passed to the NIC. For each packet, the NIC first reads theipEsand then starts
the packet transfer. Two PCI transactions for each packeheeded. Thegector
mode tries to overcome this problem by grouping the desasphto vectors. The
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Fig. 6. Performance comparison between scatter-gathevestdr mode descriptor rings
(PCI-X @ 133 MHz).

NIC can read all the descriptors at once, thus optimizingptigeutilization.

Fig. 6 compares the two modes in terms of achieved throughjpetvectormode
shows better performance both in reading and writing. Iddé®e scatter-gather
mode needs several small bus transactions to download Hueigters. This re-
duces performance, due to the high initial transactionpgsetist in accessing the
bus. Thedescriptors queues Fig. 2 are the FIFOs where the descriptors are stored
and are organized according to tectormode.

Two vectors are used to build the rings. During packet recepthe driver allo-
cates new packet buffers into one descriptor vector. WhemMIlC has used all its
descriptors, the driver swaps the two vectors providing descriptors to the NIC.
Two vectors are used also in the transmission side, one ldrithes to group outgo-
ing packets, while the NIC is transmitting the packets stanghe other one. When
all packets are transmitted by the NIC, an IRQ is generatddtatwo vectors are
swapped.

To better support two priorities, a second incoming bufileg has been added.

A scheduler within the driver serves both rings. Therefartetal of three descriptor
FIFOs are needed, two for the descriptors to write incomaugkpts into the RAM

(one for each ring) and one for reading packets from the RAdtike sake of sim-
plicity, the scheduler gives absolute priority to high pitippackets, which implies
that, in principle, low priority packets may suffer staieat Fig. 7 summarizes the
slow pathmanagement.

11
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7 Fast Path

Thefast pathgoal is to provide a high bandwidth-low latency data tranafaong
NICs. Indeed, the main shared resource in the PC architeishe PCI bus. The
aim of bus management is to be fair for NIC-to-NIC communars and to max-
imize bus throughput. For example, it is obviously not a gpaattice to transfer
packets through the bus to a congested output NIC, sincevitiidye discard im-
mediately after. A better solution would be to discard thesekets directed toward
a congest NIC directly at the input NIC. A back-pressure rae@m can be ex-
ploited to shape the sending rate of the input NICs. Fairmasst be ensured: any
input NIC should be able to forward packets to any output Nitheut starvation
in a reasonably short amount of time.

Taking into consideration that the PCI-X protocol schedides access with a pro-
prietary policy, we propose a protocol able to organize hisess requests and
packet transfers through the bus to meet the above requishee possible ap-
proach could be to introduce the control in software: thgadrfirst inquires the
NICs state and then computes the optimal scheduling. The latgncy imposed
by this approach when the driver accesses the NIC registsutages this idea.
Thus, we developed a hardware-based inter-NIC commuarcatiotocol.

This protocol is inspired by the three-way schedulers psedon synchronous slot-
ted IQ switches, like iSLIP [5]. However, our solution is cpletely asynchronous.
Indeed, each board can receive packets of variable sizeydina®; the use of the
bus is granted asynchronously and independently by eagluoiC. For these
reasons, the protocol implements a communication proteasdd on three steps:

12



e requestan input NIC sends a request containing the number of packet the
amount of data available to the proper output NIC;

e responsethe output NIC grants to the input NIC the amount of avaddijtes,
i.e., the available space in the output FIFO,;

e burst the input NIC transfers a number of packets whose totalisisgual or
less than the granted amount received duringésponsehase.

The structure of the protocol is partly due to some limitasioelated to bus ac-
cess procedures. In the PC architecture, a board acting @s4 Bus master can
perform both write and read operations toward the main mgnttowever, only
write operations toward other peripherals are admissiliheis, the protocol ex-
ploits write transactions only. If read operations werelaée, it would have been
possible to use simply eequestmessage; then, the output NIC would have been
able to read the data directly from each input NIC.

A requestmessage is a 32-bit word divided into two 16-bit sectiong fum each
priority. Each section contains the number of bytes storethe corresponding
FIFO. Therequestmessage is used to start a communication between two NICs.
When both FIFO queues (one per priority) addressed to arubatp empty, the
communication phase ends. As soon as a new packet for thattastreceived, a
new request message is sent, opening again the communicaaonel.

When a NIC receives sequest it sends back aesponsanessage containing the
minimum between the value stored in tleguesitself and the size of the available
memory in thefast pathFIFO. All the free space available within the FIFO, if
needed, is allocated to the current data exchange. If theomysaaailable is not able
to satisfy the request, the available buffer is first alledab the high priority field;
the remaining part, if any, is devoted to the low priority dieNote that different
responsegeneration policies can be easily defined and implementaeeEponse
message is divided into two 16-bit sections, one sectioadoh priority level. Each
section contains the number of bytes available for the sporeding priority level.

When a NIC receives gesponsemessage, the data transfer occurs. Packets are
grouped into durst composed by several high priority packets followed by tve |
priority ones. For each priority level, the amount of bytéthe packets transmitted
within the burst never exceeds the value stored irésponsanessage.

Each burst has a header that contains the total number ofamgdHow priority
packets in the burst. A 64-bit control word is sent prior offe@acket in thdurst
message; the control word contains the packet size and #dded to extract the
packet from the burst at the receiving end. A 64-bit controtdvs appended at the
end of the burst; it is used to piggy-back a new 32«ijuestor the two priorities.
If no other packets are available for that output NIC at the efithe burst trans-
mission, the request bits are set to zero. The piggy-badedgnique keeps the
communication alive and, during high load periods, saveasatiansaction, thus

13



improving forwarding performance.

The generation ofequestmessages is performed by monitoring the VOQs occu-
pancy status. In Fig. 3, the block generatraguestmessages is nam&theduler
The same physical block, as shown in Fig. 5, is also involvetthe management
of the requests and in monitoring tfeest pathFIFO to generate theesponsenes-
sages at the receiving side. This block is also involvedetithnsmission phase, as
shown in Fig. 5. Th@urstblock in Fig. 3 is in charge of generating therstmes-
sage, taking into account the incomiggponseand the newequesto piggy-back.
When theburstarrives at the receiving side, it is parsed by tbeeptionblock in

Fig. 5, and packets in the burst are stored into the proped FIF

Conflicts among NICs may occur in high load conditions. lIjé@o input NICs
may have data available for the same output NIC. In this dags}s are serialized
and not interleaved. More precisely, treguestmessage is sent by the input as
soon as data arrive in an empty FIFRequesimessages are received and collected
by the outputs asynchronously, and then processed in a Rainid (RR) fashion.

If resources are available,rasponsdor the firstrequestin the RR order is sent
back. Then, the NIC waits to receive tharst Only when theburstis completely
received, the followingequess$ are processed. This mechanism allows each NIC
to wait for at most ondurst at a time, simplifying both the resource allocation
process and the communication protocol. If the input NIGorupeception of a
responsamessage, is unable to send at least one packet ibutst due to size
constraints, an empty burst is sent. The empty burst cantaily the piggy-backed
requestto keep alive the communication channel.

A RR scheduler is also adopted to manage incomasgonsenessages. Each NIC
detects the firstesponsanessage and creates the corresponturgt Only when
thebursthas been completely sent, the NIC examines the mspionsenessage.

Therequestandresponsemnessages are written in the inter-NIC registers described
in Sec. 3.

8 Digital Design Analysis

In the above sections we discussed the main features of tR&OHIEoject mapping
them on the logic design of the HERO core. To better undedstaaphysical level
of our implementation, we describe the results of the logidisesis process.

The project has been synthesized on an Altera Stratix GX FR@Apped with
41250 Logic ElementgLE) and3.3Mbits of embedded RAM. In a FPGA device,
a LE is the basic programmable block. It is composed by a Higp- (FF) and a
LookUp Table (LUT) that can be configured and interconnetdetbmpose a ba-
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LEs % design | % FPGA
PCI 4798 20 12
MAC 4227 18 10
PHY 1541 6 4
HERO | 15605 56 38
TOT 26171 100 63

Table 1
FPGA resource usage break down by core.

sic logic function. The embedded memory is composed by SRAM (SRAM)
blocks distributed on the FPGA area, that are used to impiesiagle-clock or
dual-clock FIFOs or to implement single-port or dual-poNR blocks. The num-
ber of LEs upper-bounds the amount of logic and the numbeagi$ters the design
can use, while the available memory constraints mainly tk©muffer size.

Tab.1 offers the break-down of the resources used for eaclr#®including the
PCI-X core and Ethernet core (including both the MAC and thgsical layers).
The entire design usé&s8% of the available resources on the FPGA. This leaves a
wide possibility to expand the design: i.e. more complegaation policies in the
Fast-Path scheduling protocol or more routing and classifin rules. For the rout-
ing and classification entries, considering that each FHRignphe use of one LE
and that a routing-classification rule consists of 224 lsk®(Sec. 4.1), we estimate
that the available LEs permit to implement up to 100 routthassification rules.
However, the additional resource utilization will certgiaffect HERO’s maximum
clock frequency. The relationship between clock frequesroy FPGA occupancy
is not linear: thus, it is not easy to predict the impact ofiagdew rules on the
HERO core clock speed.

Fig. 8 shows the break-down of HERO resources used by eamhflogtion. Most

of the area is used by the incoming packets management,dlstenefile and the
outgoing packets management. The large percentage of aeehhy the packet
management blocks is due to the complexity to manage packstsh while the
register file area is mainly devoted to the registers. Alleotfunctions require a
minimal resource usage.

Looking at memory utilization, most of the memory is usedupiement the VOQ
system, Indeed, each FIFO queue requii®sBytes and a total of 24 FIFOs is
required to build the VOQ architecture for three NICs. ThE®Iqueue used to
decouple the two clock domains is set2bBytes, because it never holds more
than one packet at a time (the packet arrival rate is lower the extraction rate).
The queue receiving packets from slew pathhas al6k Bytes size, whereas the
FIFO queue receiving packets from tfest pathis larger ¢4k Bytes) to permit
long packet bursts.
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Fig. 8. HERO resource usage break down by function

9 Hardware Equipment

HERO was tested using prototyping boards from PLDApplarai6] designed for
networking applications. The board hosts an Altera St@kxFPGA and provides
two SFP (Small Form-factor Pluggable) transceiver slots &bsupport both op-
tical and copper based network connectivity. Bus connigégtis provided with a
64-bit PCI-X connector.

The Altera Stratix GX family is thought for high-speed commuation applica-
tions, embedding hardware support for connectivity upt@5G H z. In our project,
the target is a Gigabit Ethernet connectivity, which trates$ to a physical signal
frequency ofl.25G H z, due to the&s B /10 B encoding of the Ethernet physical layer.
The maximum clock frequency achievable on the FPGA25M H =. However,
the design maximum clock period is strongly affected by tize sf the circuit.
The clock design requirements dr# M H = for the network side clock and at least
100M H z on the bus side clock.

A commercial core developed by MTIP (More Then IP) [7] is usedhanage the
Ethernet interface. It fully implements both the physi@jdr and the hardware-
related part of the MAC layer. The physical layer managesiobbsynchroniza-
tion, auto-detection and bit transmission/reception ftonthe wire. The MAC

layer buffers packets into internal FIFOs allowing an easianagement of data
flows. Furthermore, it evaluates the Frame Check Sequer@®)(feld of incom-

ing packets and overwrites the source MAC address of oufjgoatkets. It also
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offers support for Jumbo frames, VPN and multicast, whi@hreot considered in
our application.

The PCI-X core is directly provided by PLDA. In master modeprovides 4 in-
dependent DMA channels that are multiplexed in time by thre dself. The core
does not buffer packets, but it simply redirects in realetitihe bus control signals
to the control logic that schedules data transfers, eitbleng for or providing the
packet when the transaction is under progress. For eacimehahne control logic
provides to the core the base address, the data size andtiséetrtype: read or
write.

The NIC’s hostis a high-end PC with a SuperMicro X5SDPE-G2mizoard equipped
with one2.8G H z Intel Xeon processor antlz Byte of PC1600 DDR RAM con-
sisting of two interleaved banks, so as to bring the memosyttansfer rate up
to 3.2G Byte/s. This motherboard has three PCI-X 133 and three PCI-X 108 slo
with peak transfer rates of respectivél) Byte/s and0.8G Byte/ s.

An Agilent N2X RouterTester 900 [8], equipped with GigabihErnet ports, able
to transmit and receive Ethernet frames of any size at ftd| k@as used for sourcing
and sinking the traffic in the tests.

10 Performance Evaluation

The aim of this section is twofold. First, we wish to assegesNKC performance in
terms of forwarding rate and latency on the one hand, and xibflity in dealing
with different priority flows on the other hand. Second, teaéfits provided by the
developed NIC with respect to standard NICs are examinddests are run with
NAPI enabled on the Linux kernel.

10.1 Throughput

We first test the developed NIC as a standard commercial NfGrteard packets
passing through the OS. The achievable throughputs anedmiith those obtained
using commercial Gigabit NICs (e.g., Intel e1000 NICs) wogkunder the same
conditions. The forwarding limit i800M bps when using minimum sized{byte)
Ethernet Frames. This derives from both CPU and memorydgteattienecks, as
shown in [9]. To overcome this limit, the developed NIC udesfast path On the
fast pathit is possible to route all the packets at wire speed, regasdf their size.
Fig. 9 summarizes these results.

The aggregate SR throughput can be increased by adding raais. By using
3 boards plugged into the PCI-X bus, we are able to route areggted traffic
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flow of 3Gbps. Unfortunately, due to the lack of FPGA cards in our lab, iswat
possible to try configurations with more then three NICsnebheugh, theoretically
the PCI-X bus is able to support loads up to the peak val@eaRGops.

To improve the quality of service support with respect toclassical FIFO best-
effort model provided by commercial NICs, the developed M @ble to classify
traffic in two priority classes and treat them differentlyn@n all the traffic can be
routed without losses, the classification has no impact ckeia forwarding. But
in overload, having different priority flows permits to atkte the limited amount
of resources to packets with higher priority. Fig. 10 shomesforwarding perfor-
mances along thslow pathwithout packet classification, like on standard NICs.
All the packets are treated the same, and losses are eqistiiipated between low
and high priority packets. By adding packet classificatwa, obtain the results
shown in Fig. 11. High-priority packets experience a higbewarding rate to the
detriment of low-priority packets.

Packet classification can also be exploited onfés¢ pathwhen an output is over-
loaded by two or more inputs with an aggregate rate higher tha wire speed.

Again, high-priority packets are privileged to the detrithef low-priority packets
obtaining similar results as on tiséow path

10.2 Latency

The fast pathnot only permits to achieve higher forwarding rates, bub dsver
packet latencies. Two main reasons reduce the packetyatenc
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Fig. 10. Traffic forwarding with two different priority flowssing standard NICs
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Fig. 11. Traffic forwarding with two different priority flomssing HERO-based NICs

¢ no additional latency due to the CPU scheduling by the OSdogss the packet;
e only one bus transversal per packet.

Fig. 14 compares the average latencies of the two paths tboseturation for

different packet sizes, The latency is always computedeatrtAximum throughput
with zero losses for each packet size. Fig. 12 and Fig. 13tpélatencies versus
the offered load for the slow and fast path respectively.

First of all, observe that the average latency onfse pathis always at least one
order of magnitude lower than the one on #haw path Taking a closer look at the
slow path the latency increases for smaller packets. This happeraibe the PC
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workload is higher for small packets. Indeed, the througlguvhich the latency
is computed is very close to the maximum effective throughylth larger packet
size, the load on the system decreases and the maximum bipaiigecomes lim-
ited by the wire speed.

When looking at théast path no increase in the latency value for small packet size
is visible, because the throughput is always limited by tle wpeed. The CPU
processing time is mainly linear with the packet size, beeahe FPGA processes
a fixed amount of data per clock cycle. However, around a piatke of256bytes,

a latency drop occurs. The drop is due to a threshold phenem@apending on
the distributed message-passing scheduling algorithmptadon thefast path For
small packets, due to the different transmission speedgseeithe PCI-X bus and
the Ethernet, the probability of being able to piggy-bacekilext request transfer is
lower than with larger packets.

Finally, Fig. 12 shows thelow pathlatency as a function of the offered load, when
using64bytes packets. The latency is constant until the saturation peirgached.
For higher loads, the non discarded packets experiencénddtency when travers-
ing the software router. Thiast pathas shown in Fig. 13, is not affected by this
performance degradation since it permits to run at wire gp€eerefore, the satu-
ration point is never reached.
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11 Conclusions

We presented the implementation choices and the desigo ¢d@g custom NIC,
suitable for SR running Linux. The NIC implements extra teas with respect
to standard, commercial NICs reducing the CPU load and iwipgoboth QoS
support and system throughput. The project is availableagan source IP core
which is interfaced with a PCI-X and an Ethernet IP core t@oba portable NIC
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implementation.

This core is fully compatible with the Linux OS and exploiezy flexible interfaces
toward both the PC bus (PCI core) and the network (Etherne) cdherefore, it is
useful not only for SRs performance analysis, but also iro#pplications need-
ing non-standard network cards. e.g., security enforcéemetwork measurements,
monitoring and analysis, development and testing of new MWd&ocols for new
generation optical or wireless packet networks.
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The design can be modified increasing the number of possibtes and the num-
ber of possible priority classes per route. It is also pdsedi change the module
that allocates resources in the output NIC during the respphase of the schedul-
ing algorithm, to obtain more sophisticate fairness pe#ciThe driver scheduler
used to manage the two priorities on tlew pathcan also be modified. Finally,
different mechanisms that can use the flow/packet staigiidynamically config-
ure the routing entries to better exploit thaest pathare under study.
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