Smooth surfaces with non smooth nullity

Original

Availability:
This version is available at: 11583/1896746 since: 2015-12-01T10:02:18Z

Publisher:

Published
DOI:

Terms of use:
openAccess
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)
As for everything else, so for a mathematical theory: beauty can be perceived but not explained.

A. Cayley

The surface is constructed by gluing the red cone C_1 with the green cone C_2 along a common generatrix (the y-axis). The blue curve c, the generatrix of both cones, is in the xz plane. The vertex of C_1 is the point $(0,1,0)$ while the vertex of C_2 is the point $(0,-1,0)$. The resulting surface is C^∞ near the origin $(0,0,0)$ but is not C^∞-ruled around $(0,0,0)$. See below for more 3D-plots of the surface.

Let $c \in \mathbb{R}^3$ be a curve in the xz-plane given by

\[c(x) = (x,0,z(x)) \]

where the function $z(x)$ is C^∞, $z(0) = 0$ and $\frac{d^n z}{dx^n}|_0 = 0$ for $n = 1, 2, \ldots$. We assume also that $\frac{d^2 z(x)}{dx^2} > 0$ for $x \neq 0$.

Let C_1 be the cone containing c with vertex at the point $(0,1,0)$. The tangent plane $T_0 C_1$ at the origin O is the xy-plane. Since C_1 is a C^∞ surface near O there exist a C^∞-function $f_1(x,y)$ such that near O the cone C_1 is given by the graph $(x,y,f_1(x,y))$.

I thank Fabrizio Catanese who asked to me for an example as in Proposition A. I would like to thank Fabio Nicola and Paolo Tilli for discussions about the issue.

Date: October 25, 2012.
A simple calculation shows that near \((0,0)\)

\[f_1(x,y) = z\left(\frac{x}{1-y}\right)(1-y). \]

So for every \(n,m \in \mathbb{N}\) we have

\[
(1) \quad \frac{\partial^{n+m} f_1}{\partial x^n \partial y^m} \bigg|_{(0,y)} = 0
\]

Let now \(C_2\) be the cone containing \(c\) but with vertex at the point \((0,-1,0)\). The cone \(C_2\) is also given by a graph of a function \(f_2(x,y)\) near \(O\). By the same argument \(f_2\) also satisfy equation (1).

Then the function \(f\) defined as

\[
f(x,y) = \begin{cases} f_1(x,y) & \text{if } x \leq 0 \\ f_2(x,y) & \text{if } x > 0 \end{cases}
\]

is a \(C^\infty\)-function near \((0,0)\).

Claim: The graph \((x,y,f(x,y))\) is an example of \(C^\infty\)-surface with zero Gaussian curvature but is not a \(C^\infty\)-ruled surface near the origin \(O\).

Proof. We already seen that \(f\) is \(C^\infty\). Since the graph is the union of two cones and the Gauss curvature \(\kappa(x,y)\) is smooth it follows that \(\kappa(x,y) \equiv 0\) since \(\kappa\) restricted to each cone is identically zero.

Assume that the graph of \(f\) is ruled near \(O\) i.e. the graph is the image of a map \((s,t) \rightarrow \alpha(t) + s\beta(t)\), with \(\alpha,\beta \in C^\infty\), \(\alpha(0) = O\) and \(\alpha'(0) \wedge \beta(0) \neq 0\). So \(\beta(0) = (0,b,0)\) with \(b \neq 0\). Since \(\alpha'(0)\) is tangent to the \(xy\)-plane it follows that the projection of \(\alpha\) to the \(xy\)-plane is transversal to the \(y\)-axis at \((0,0)\). This imply the existence of \(C^\infty\)-functions \(t(x), y(x)\) such that

\[
\alpha(t(x)) = (x, y(x), f(x, y(x))).
\]

Notice that the hypothesis \(\frac{d^2z(x)}{dx^2} > 0\) imply that the only straight lines contained in the cones \(C_1, C_2\) are the straight lines connecting one of the vertices with the generatrix \(c\). Indeed, the shape operator of the graph in a point \((x,y,f(x,y))\) is not zero if \(x \neq 0\). Hence any segment contained in the graph must be tangent to the kernel of the shape operator i.e. must be part of a straight lines connecting one of the vertices with the generatrix \(c\) as claimed. More precisely, along \(\alpha(t(x))\) we have the following continuous vector field \(R(x)\) pointing in the direction of the rulings:
A FLAT BUT NON-SMOOTHLY RULED SURFACE

\[\begin{align*}
R(x) = \begin{cases}
(x, y(x) - 1, f(x, y(x))) & \text{if } x < 0 \\
(-x, -y(x) - 1, -f(x, y(x))) & \text{if } x \geq 0
\end{cases}
\]

Notice that \(R(x) \) never vanish.

Then there exist a function \(m(x) \) such that

\[\beta(t(x)) = m(x)R(x). \]

Since both \(\beta(t(x)) \) and \(R(x) \) are continuous and never vanish along \(\alpha \) it follows that \(m(x) \) is continuous and never zero. The first component of \(\beta(t(x)) \) is \(-m(x)|x|\) which is not derivable at \(x = 0 \) because \(m(0) \neq 0 \) since \(\beta(0) \neq 0 \). This is a contradiction since \(\beta(t(x)) \) is \(C^\infty \).

Proposition A. The above non-ruled \(C^\infty \)-surface has the property that each of its points is part of a segment included in the surface.
A FLAT BUT NON-SMOOTHLY RULED SURFACE

Dipartimento di Scienze Matematiche,
Politecnico di Torino,
Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
antonio.discal@polito.it
http://calvino.polito.it/~adiscal