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Abstract

A submanifold of Rn whose tangent space makes constant angle with
a fixed direction d is called a helix. Helix submanifolds are related with
the eikonal PDE equation. We give a method to find every solution to the
eikonal PDE on a Riemannian manifold locally. As a consequence we give a
local construction of arbitrary Euclidean helix submanifolds of any dimension
and codimension. Also we characterize the ruled helix submanifolds and in
particular we describe those which are minimal.

Mathematics Subject Classification(2000): 53B25, 53C40 .

Keywords: helix submanifold, constant angle submanifolds, eikonal equa-
tion.

1 Introduction

In our work [6] we give a method to construct locally all the helix hypersur-
faces in the Euclidean space with respect to some constant unitary direction
d . They are always ruled by straight line segments and these segments are the
integral curves of the orthogonal projection of d on TM . In this article we
work with higher codimensional and dimensional immersed helix submanifolds
M in Rn , i.e. submanifolds whose tangent space makes a constant angle with
respect to a constant unitary direction d called a helix direction. We denote
the unitary tangent and normal components of d by T and ξ , respectively.
We called them tangent and normal helix directions, respectively. The inte-
gral curves of T are classic helices in the ambient with respect to the same

∗The first author is supported by the Project M.I.U.R. “Differential Geometry and Global
Analysis” PRIN 2007, Italy.
†The second author was supported by CNPq at IMPA in Brazil, where this work started, and

is supported by Conacyt at MIT in USA.
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direction d , so we call them helix lines. Some properties of helix submanifolds
have been investigated in other Riemannian ambients, see for example [7], [8],
[11]. Some other motivations for the study of helix submanifolds comes from
the physics of interfaces of liquid crystals (see [12] for details), and that they
appear contained in the shadow boundary of a submanifold (see [11], [10]).

In higher codimension the helix lines are just geodesics of the helix sub-
manifold (Proposition 2.4). When we have the condition ∇⊥T ξ = 0 , they are
also geodesics in the ambient, where ∇⊥ is the connection induced in TM⊥

(Theorem 4.3). In Theorems 4.4 and 4.6 we explain how to construct and
reconstruct the helix submanifolds whose helix lines are segments of straight
lines, we call them ruled helix submanifolds. These results are local and they
are the natural extension from codimension one to higher codimension. In
Theorem 7.1, we prove that these kind of submanifolds are minimal if and
only if its non empty intersections with hyperplanes orthogonal to d are also
minimal in the Euclidean ambient. So there are many examples of minimal
ruled helix submanifold, of any codimension greater or equal that one, and
dimension greater or equal than two.

In Theorem 3.3, we proved that a Riemannian product submanifold is a
helix if and only if their factors are also helix. In Section 5 we study the prob-
lem of local construction and reconstruction of an arbitrary helix submanifold
with any dimension and codimension. We solved this by using eikonal func-
tions f on a Riemannian manifold i.e. ‖∇f‖ is constant. In Theorems 5.2
and 5.3, there is a method to find locally any solution of the eikonal PDE in
any Riemannian manifold. By our previous work in [6] we have a concrete
method to construct locally all the helix submanifolds by finding an eikonal
function on a Riemannian manifold.

In Section 6, we classify the class of strong r -helix submanifolds (See
Definition 6.1) which were introduced in our work [6]. There we asked for the
classification of those helix which have r linearly independent (called weak r -
helix) helix directions dj whose normal helix direction ξj are parallel with the
normal connection. The latter condition says that ∇⊥ξj = 0 , which implies
that ∇⊥Tj

ξj = 0 where Tj is the tangent helix direction of dj . So, these class
of helix has a straight line segment for each direction dj . In Theorem 6.5 we
see that these submanifolds are strong r -helix, i.e. they are helix with respect
to any direction in a r -dimensional subspace of Rn . The first author proved
in [5] the existence of helix submanifolds in Euclidean space which are weak
r -helix but not strong r -helix. The aforementioned classification is explained
in Theorem 6.6.
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2 Preliminaries

In this article a manifold M is assumed to be C∞ and connected.

Definition 2.1 Given a submanifold M ⊂ Rn and an unitary vector d 6= 0
in Rn , we say that M is a helix with respect to d if for each q ∈M the angle
between d and TqM is constant.

Let us recall that a unitary vector d can be decomposed in its tangent and
orthogonal components along the submanifold M , i.e. d = cos(θ) T + sin(θ)ξ
with ‖T ‖ = ‖ξ‖ = 1 , where T ∈ TM and ξ ∈ ν(M) . The angle between
TqM and d is constant if and only if the tangential component of d has
constant length ‖ cos(θ)T‖ = cos(θ) .
If θ = π

2 , M is contained in a hyperplane orthogonal to d . In the case
that θ = 0 then M is a Riemannian product with one factor with direction
parallel to d . So, we can assume that 0 < θ < π

2 . Under these conditions we
can say that M is a helix of angle θ .
We will call T and ξ the tangent and normal directions of the helix sub-
manifold M . We can call d the helix direction of M and we will assume d
always to be unitary.

Definition 2.2 Let M ⊂ Rn be a helix submanifold of angle θ 6= π
2 w.r. to

the direction d ∈ Rn . We will call the integral curves of the tangent direction
T of the helix M , helix lines of M w.r. to d .

The helix lines are classical helices. Since d and ξ are orthogonal to
M ∩H so is T . Then the helix lines are orthogonal to the level sets H ∩M ,
where H is any hyperplane orthogonal to d if θ 6= π

2 .

Definition 2.3 We say that a helix submanifold M is a ruled helix, if all the
helix lines of M are straight lines.

Recall that if d = cos(θ) T + sin(θ)ξ is the decomposition of d in its
normal and tangent components, we say that ξ is parallel normal in the
direction T if

∇⊥Tξ = 0.

Here ∇⊥ denotes the normal connection of M induced by the standard co-
variant derivative of the Euclidean ambient. Let us denote by D the standard
covariant derivative in Rn and by ∇ the induced covariant derivative in M .
Since M is full, i.e. not contained in any hyperplane, we have cos(θ) 6= 0 .
Let Aξ and α be the shape operator and the second fundamental form of
M ⊂ Rn .

Taking the covariant derivative D with respect to X in both hands of
the equation

d = cos(θ) T + sin(θ)ξ
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we obtain:
0 = cos(θ)DX T + sin(θ)DXξ.

Introducing the normal component and the tangential one (in M ) we get:

cos(θ)(∇X T +α(X,T)) + sin(θ)(−Aξ(X) +∇⊥Xξ) = 0.

This implies

H =
{

cos(θ)∇X T− sin(θ)Aξ(X) = 0 ,
cos(θ)α(X,T) + sin(θ)∇⊥Xξ = 0 .

Let us observe that the conditions given by these two formulas are also suffi-
cient, i.e. if there exist a constant θ , a unitary tangent vector field T on M
and a normal unitary vector field ξ such that they satisfy these equations,
then the vector field d := cos(θ) T + sin(θ)ξ is constant in Rn . Therefore M
is a helix with respect to d .

Assume sin(θ) 6= 0 . Then the first equation of the system H is Aξ(X) =
cot(θ)∇X T . Notice that if sin(θ) = 0 then T = d

‖d‖ and in this case M
splits since the constant direction d is tangent to M .

Proposition 2.4 The helix lines of a helix submanifold M ⊂ Rn are geodesics
in M .

Proof. The equation Aξ(X) = cot(θ)∇X T implies Aξ(T) = 0 . Indeed, for
any vector field X we have

〈Aξ(T), X〉 = 〈Aξ(X),T〉 = cot(θ)〈∇X T,T〉 = 0,

since T has unit length. So we get that ∇T T = cot(θ)Aξ(T) = 0 . 2

Remark 2.5 Let us observe that for any helix euclidean submanifold M ,
the conditions α(T,X) = 0 and ∇⊥Xξ = 0 are equivalent for every X ∈ TM .
So, in particular α(T, T ) = 0 and ∇⊥T ξ = 0 are equivalent.

Definition 2.6 The relative nullity space of the second fundamental form α
(of M ⊂ Rn ) is the subset

{X ∈ TM | α(X,Y ) = 0, for every Y ∈ TM}.

In the special case when ξ is parallel normal, i.e. ∇⊥ξ = 0 , we can say
more:

Proposition 2.7 Let M be a helix with parallel normal direction. Then the
tangent direction T is in the relative nullity of M

Proof. This is a direct consequence of the second equation of the system H .2
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3 Product of helices

We will use the next well known result of linear algebra.

Lemma 3.1 Let V ⊂ Rn be a linear subspace. Let v1, . . . , vk be any basis of
V . Then the orthogonal projection of Rn onto V is given by π : Rn −→ V ,
π(v) = A(AtA)−1Atvt , where A is the matrix with the vector vtj as j th-
column. Here v = (x1, . . . , xn) ∈ Rn .
In particular, if the basis of V is orthonormal, then π(v) = AAtvt .

An easy consequence of this Lemma is the following corollary.

Corollary 3.2 If Mj is a helix submanifold of Rnj , j = 1, 2 w.r. to the
direction unitary dj , then the Riemannian product M = M1×M2 ⊂ Rn1×Rn2

is a helix submanifold w.r. to the direction d = 1/
√

2(d1, d2) ∈ Rn1+n2 .

Proof. The matrix A (of Lemma 3.1) consist of the 2 × 2 -matrix blocks
A11 and A22 and a zero matrix elsewhere. Each block Ajj is determined
by a frame field (local orthonormal basis) of TMj for j = 1, 2 . The pro-
jection π : Rn −→ TpM1 ⊕ TqM2 is given by the orthogonal decomposition,
π(d1, d2) = A11A

t
11d

t
1 +A2A

t
22d

t
2 , which has constant length. 2

In the next result, we see that the reciprocal of this Corollary 3.2, is valid.

Theorem 3.3 Let M1 ⊂ Rn1 ,M2 ⊂ Rn2 be two submanifolds. If the product
M1 ×M2 ⊂ Rn1+n2 is a helix submanifold then both M1 ⊂ Rn1 ,M2 ⊂ Rn2

are helix submanifolds.

Proof. We will denote by d = d1+d2 ∈ Rn1×Rn2 = Rn1+n2 the helix direction
of M1 ×M2 , where d1 ∈ Rn1 and d2 ∈ Rn2 . Let T as before, the unitary
orthogonal projection of d on T (M1×M2) . Let Tj be the unitary orthogonal
projection of dj on TMj , for j = 1, 2 . We will use the natural identification
T (M1 ×M2) = TM1 ⊕ TM2 . Under this identification, T = T1 + T2 .
First, we will see that T1 does not depend on M2 , i.e. T1(p, y) = T1(p, z) ,
where p ∈ M1 , y, z ∈ M2 . This equality should be interpreted in terms of
the identification of each tangent space of M1×M2 with a linear subspace of
Rn1+n2 .
Let us observe that T1(p, y) is the orthogonal projection of d on T(p,y)(M1×
{y}) and similarly T1(p, z) is the projection of d on T(p,z)(M1 × {z}) . But
M1×{y} is a translation of M1×{z} in Rn1+n2 . Since d is invariant under
translation in Rn1+n2 , T(p,y)(M1×y) is a translation of T(p,z)(M1×z) . Then
T1(p, y) is a translation of T1(p, z) in Rn1+n2 , i.e. they are equal. In par-
ticular T1 has constant length on {p} ×M2 . Analogously T2 has constant
length on M1 × {q} for any q ∈M2 .
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Now, let p ∈ M1 be any point and let us consider the slice {p} ×M2 ⊂
M1 ×M2 . Then the vector field T2 on {p} ×M2 has constant length:
For every y ∈M2 we have the next equality
〈T1(p, y), T1(p, y)〉+〈T2(p, y), T2(p, y)〉 = 〈T1(p, y)+T2(p, y), T1(p, y)+T2(p, y)〉
= 〈T (p, y), T (p, y)〉 . Since M1×M2 is a helix, this sum 〈T1(p, y), T1(p, y)〉+
〈T2(p, y), T2(p, y)〉 does not depend on y . Now, to see that T2 has constant
length on {p} × M2 , just apply the fact that T1 has constant length on
{p} ×M2 .

We deduce that for p ∈M1 the slice {p} ×M2 is a helix with respect to
the direction 0 + d2 ∈ {0} ⊕ TM2 . Therefore, M2 is a helix with respect to
d2 . In the similar way, M1 is a helix with respect to d1 . 2

4 Construction of helices

4.1 Helix curves of Rn

When dimM = 1 , we can describe all the classic helix curves (i.e. the tan-
gent vector of the curve makes constant angle with respect to a fixed direction)
γ ⊂ Rn with respect to d = (0, . . . , 0, 1) as follows. Let α : I ⊂ R −→ Rn−1 ,
then γ(t) = (α(t), at + b) , where a, b ∈ R are constants. The parameter t
of γ should be its arc-length, so, the curve α satisfies ||α′||2 = 1 − a2 and
|a| ≤ 1 .

Let us describe also the Euclidean helices of dimension one in terms of the
Serret-Frenet formulas. Let M ⊂ Rn be an immersed 1 -dimensional sub-
manifold (a regular curve). Let T be an unitary tangent vector field on M
(p ∈M , T (p) ∈ TpM with ||T || = 1 ).

It is well known ([13] pages 30-33) that there exists an orthonormal basis

{T, ξ2 = DTT/||DTT ||, ξ3, . . . , ξn}

of TRn
|M = TM ⊕ TM⊥ such that DTT = k1ξ2 ,

DT ξ2 = −k1T+k2ξ3, . . . , DT ξn−1 = −kn−2ξn−2+kn−1ξn, DT ξn = −kn−1ξn−1 .
Where D is the standard connection of Rn and we are assuming that k1 =
||DTT || 6= 0 , kj 6= 0 for j = 2, . . . , n (This is without loss of generality).
This is equivalent to say that M is full, i.e. it is not contained in a hy-
perplane of the ambient Rn (See Spivak Vol. 4 , [13] page 38, for details).
These equations are called Serret-Frenet formulas and we can call the frame,
a Serret-Frenet frame.
We are going to describe the necessary and sufficient conditions for M to be
a helix.

6



Let h3 := k1
k2

, h4 := 1
k3

(k1k2 )′ (Let us observe that h′3 = k3h4 ) and

hm :=
1

km−1
(h′m−1 + km−2hm−2), for 5 ≤ m ≤ n.

Theorem 4.1 Let M1 ⊂ Rn be a full curve. The following conditions are
equivalent:

(i) M1 ⊂ Rn is a helix ,

(ii) hn 6= 0 and h2
3 + h2

4 + . . .+ h2
n is a nonzero constant c2 with c > 0 .

Proof. Assume that condition (ii) holds. We can define θ := tan−1(c)
which is a constant in the interval (0, π/2) . Let ξ := cot(θ)(h3ξ3+. . .+hnξn) ,
therefore ||ξ||2 = cot2(θ)(h2

3+h2
4+. . .+h2

n) = cot2(θ)c2 = cot2(θ) tan2(θ) = 1 .
Consider the vector field Z := cos(θ)T+sin(θ)ξ = cos(θ)(T+h3ξ3+. . .+hnξn) .
We will verify that Z is constant along M , i.e. DTZ = 0 . Observe that
||Z|| = 1 and 〈T,Z〉 is the constant cos(θ) (this means that the angle between
TM and Z is constant). We know from Section 2, that M is a helix if and
only if cos(θ)∇XT − sin(θ)Aξ(X) = 0, cos(θ)α(X,T)+sin(θ)∇⊥Xξ = 0 . Since
dimM = 1 , ∇TT = 0 and thus DTT = α(T, T ) .
So a 1 -dimensional immersed submanifold M ⊂ Rn is a helix with respect
to the direction Z = cos(θ)T + sin(θ)ξ if and only if

DTT = − tan(θ)∇⊥T ξ. (1)

The next step, is to check that our vector fields T and ξ satisfy this equation
DTT + tan(θ)∇⊥T ξ = 0 . Using the relation 〈∇⊥T ξj , ξi〉 = 〈DT ξj , ξi〉 and the
Serret-Frenet’s formulas we deduce that

∇⊥T ξ2 = k2ξ3, ∇⊥T ξj = −kj−1ξj−1 + kjξj+1, ∇⊥T ξn = −kn−1ξn−1,

where 3 ≤ j ≤ n − 1 . It will be important the above recursive formula
km−1hm = h′m−1 + km−2hm−2 where 5 ≤ m ≤ n . It is convenient the next
equivalent equation: h′m = kmhm+1 − km−1hm−1 where 4 ≤ m ≤ n − 1 to-
gether with h′3 = k3h4 . We need an expression for h′n : since the expression in
(ii) is constant, hnh′n = −h3h

′
3−h4h

′
4−. . .−hn−1h

′
n−1 . From the previous for-

mula we obtain that h3h
′
3 = k3h3h4 and hmh

′
m = kmhmhm+1−km−1hm−1hm

for 4 ≤ m ≤ n− 1 . An algebraic calculus shows that hnh′n = −kn−1hn−1hn .
Since hn 6= 0 , we get the relation h′n = −kn−1hn−1 .

Then

tan(θ)∇⊥T ξ = h′3ξ3 + h3∇⊥T ξ3 +
n−1∑
m=4

(h′mξm + hm∇⊥T ξm) + h′nξn + hn∇⊥T ξn .

Let us calculate the latter summation in two parts. First one:

n−1∑
m=4

(h′mξm + hm∇⊥T ξm) =
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n−1∑
m=4

((kmhm+1 − km−1hm−1)ξm + hm(−km−1ξm−1 + kmξm+1)) =

(k4h5 − k3h3)ξ4 + (kn−1hn − kn−2hn−2)ξn−1+
n−2∑
m=5

((kmhm+1 − km−1hm−1)ξm − h4k3ξ3 − h5k4ξ4

−
n−2∑
m=5

hm+1kmξm +
n−2∑
m=5

hm−1km−1ξm + hn−2kn−2ξn−1 + hn−1kn−1ξn =

= −h4k3ξ3 − k3h3ξ4 + kn−1hnξn−1 + hn−1kn−1ξn

and we get

n−1∑
m=4

(h′mξm + hm∇⊥T ξm) = −h4k3ξ3 − k3h3ξ4 + kn−1hnξn−1 + hn−1kn−1ξn.

Let us observe that we arranged the index in the second and third summation
from 5 to n− 2 . Second part:
h′3ξ3 + h3∇⊥T ξ3 + h′nξn + hn∇⊥T ξn =

k3h4ξ3 − h3k2ξ2 + h3k3ξ4 − kn−1hn−1ξn − hnkn−1ξn−1.

So, by the combination of these two parts, we have that tan(θ)∇⊥T ξ = −h3k2ξ2 =
−k1ξ2 . The latter equality shows that
DTT = k1ξ2 = −(h′3ξ3 +h3∇⊥T ξ3 + . . .+h′nξn+hn∇⊥T ξn) = − tan(θ)∇⊥T ξ (Let
us observe that DTZ = 0 , which proves that Z is constant).
This is the equality (1), which proves that M is a helix with respect to the
direction

Z = cos(θ)(T + h3ξ3 + . . .+ hnξn).

This proves (ii)→ (i) .

To show (i)→ (ii) assume that M1 is a helix with respect to a constant
direction d . Then 〈d, T 〉 = cos(θ) is constant and we have that
d = cos(θ)T + sin(θ)ξ = cos(θ)T + 〈d, ξ2〉ξ2 + . . .+ 〈d, ξn〉ξn . So

〈d, ξ2〉2 + . . .+ 〈d, ξn〉2

is a constant. So, we need to find the relation between 〈d, ξj〉 and the curva-
tures k1, k2, . . . , kn :
0 = T 〈d, T 〉 = 〈d,DTT 〉 = 〈d, ξ2〉k2 , then 〈d, ξ2〉 = 0 . Now we can take the
derivative again, 0 = T 〈d, ξ2〉 = 〈d,DT ξ2〉 = − cos(θ)k1+〈d, ξ3〉k2 . Therefore,
〈d, ξ3〉 = k1

k2
cos(θ) . Taking the derivative of 〈d, ξ4〉 and 〈d, ξ5〉 , we obtain that

〈d, ξ4〉 = 1
k3

(k1k2 )′ cos(θ) , 〈d, ξ5〉 = 1
k4

[( 1
k3

(k1k2 )′)′ cos(θ) + k1k3
k2

cos(θ)] .
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With this process we get the next recursive formula: for 5 ≤ m ≤ n ,
〈d, ξm〉 = hm cos(θ) , where hm is as before,

〈d, ξ2〉2 + . . .+ 〈d, ξn〉2 = cos(θ)(h2
3 + h2

4 + . . .+ h2
n)

is constant.
If hn = 0 then cos(θ)hn = 〈d, ξn〉 = 0 . Thus, 0 = 〈d,DT ξn〉 = −kn−1〈d, ξn〉 =
−kn−1 cos(θ)hn−1 . We deduce that hn−1 = 0 . Continuing this process, we
get that hj = 0 for j = n, n − 1, . . . 4 . Therefore, cos(θ)h4 = 〈d, ξ4〉 = 0 .
Then 0 = 〈d,DT ξ4〉 = −k3〈d, ξ3〉 = −k3 cos(θ)h3 , which proves that h3 = 0 .
Let us recall that h3 = k1/k2 , thus we have a contradiction because all the
curvatures are nowhere zero since M1 was assumed to be full. 2

For example, a full M is a helix in R3 if and only k1
k2

is a nonzero constant.
In R4 the conditions are

(
k1

k2
)2 + (

1
k3

(
k1

k2
)′)2 is constant and

1
k3

(
k1

k2
)′ 6= 0 .

Remark 4.2 For n = 3 , that is to say, for curves in the Euclidean space R3

Theorem 4.1 is a classical result stated by M. A. Lancret, a pupil of Monge,
in 1802 and first proved by B. de Saint Venant in 1845 (see [14] for details).

To finish with curves, let us notice that condition (ii) in Theorem 4.1 is
really necessary since there exist full curves of R4 such that

(
k1

k2
)2 + (

1
k3

(
k1

k2
)′)2 is constant

and
1
k3

(
k1

k2
)′ = 0

which are not helix. Indeed, such curves are constructed by using the existence
theorem with k1, k2, k3 such that k1

k2
is a non zero constant and k3 is an

arbitrary but not zero function.

4.2 Construction and Reconstruction of any Ruled
Helix

Theorem 4.3 Let M ⊂ Rn be a full submanifold which is a helix with re-
spect to the direction d . Let ξ be the normal component of d , i.e. d =
cos(θ) T + sin(θ)ξ . Then M is a ruled helix if and only if ξ is ∇⊥T ξ = 0 .

Proof. Assume that ∇⊥T ξ = 0 . Then the second equation of the system H
implies α(T,T) = 0 since M is full. Then DT T = ∇T T +α(T,T) = 0 by
Proposition 2.4. So we get that the helix lines are straight lines of Rn .
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If M is a ruled helix, by definition its helix lines are (segments of) straight
lines in the ambient Rn , then 0 = DTd = cos(θ)DTT+sin(θ)DT ξ = sin(θ)DT ξ .
So the Weingarten formula implies that 0 = DT ξ = −Aξ(T ) +∇⊥T ξ . In par-
ticular, ∇⊥T ξ = 0 . 2

Now, we will see a method to construct locally all the ruled helix submanifolds
M ⊂ Rn of codimension n− k .

First, we begin with a immersed submanifold Lk−1 ⊂ Rn−1 and an uni-
tary normal vector field η of L ⊂ Rn−1 . Without loss of generality we can
assume that d is the vector (0, . . . , 0, 1) ∈ Rn . We can immerse L in Rn in
a canonical way. That is, L ⊂ Rn−1 × {0} ⊂ Rn = Rn−1 × R .

Now, we define the vector field T(x) := sin(θ) η(x) + cos(θ)d , where
x ∈ L (recall that η is normal to L ). So T is a vector field defined along
the submanifold L .

Finally, we are ready to describe the immersion of M in Rn .
The immersion f =: L× R→ Rn is as follows:

f(x, s) := x+ sT(p).

For −ε < s < ε enough small, f is an immersion.

Theorem 4.4 The immersed submanifold M = f(L × (−ε, ε)) is a helix of
angle θ with respect to d .

Proof. As a first case, we will verify that the immersion is a helix at the points
f(x, 0) . Let Y1, . . . , Yk−1 be a frame field of L at x . Then Y1, . . . , Yk−1, T is
a frame field of f(M) at f(x, 0) . This determine a matrix A = (Y t

1 . . . Y
t
k−1T

t) ,
so by Lemma 3.1, the orthogonal projection of d into T(x,0)M is π(d) =
AAt(dt) = A(0, cos(θ))t = cos(θ)T t .
Now, let s ∈ (−ε, ε) .
Affirmation: T is orthogonal to T(x,s)M . Let Y ∈ TxL any vector field gen-
erated by the frame field Yj ’s of L as before at x ∈ L . Let us denote by D
the standard covariant derivative of Rn , by ∇⊥ the normal connection and
by A the shape operator of L ⊂ Rn . So we can calculate the derivative of
the immersion f at (x, s) as follows:

f∗(Y ) = DY f = Y + sDY T = Y + s∇⊥Y T −AT (Y ) .

Since ||T || = 1 , T ∈ T⊥L and AT (Y ) ∈ TL ,

〈T, f∗(Y )〉 = s〈T,∇⊥Y T 〉 = 0.

Let us observe that if we extend the vector field of L , η , into M by trans-
lation, then

〈η, f∗(Y )〉 = s〈η,∇⊥Y T 〉 = s sin(θ)〈η,∇⊥Y η〉 = 0.
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Let observe that Ls := {f(y, s) ∈ M | y ∈ L} = M ∩ H , where H is a
orthogonal hyperplane to d . So, we have again the same conditions as in
the first case of this proof: the tangent direction T is orthogonal to Ls =
f(L×{s}) and is valid the decomposition T(y, s) := sin(θ) η(y, s) + cos(θ)d ,
where T (y, s) = T (y) , η(y, s) = η(y) . This means that we extend the vector
fields T, η (along L ) into vector fields along M by translation along the lines
generated by the original T . Therefore, η(x, s) and T (x, s) are orthogonal
to Ls . 2

Remark 4.5 A different proof of Theorem 4.4 can be given by showing di-
rectly that the vector field d− 〈d,T〉T = d− cos(θ) T is normal to M .

Let M be a helix obtained by the construction above. If the normal
component ξ of M is not parallel with respect to the normal connection of
L , then it is not necessarily parallel with respect to the normal connection of
M . This is interesting because they are the first examples with such property.

Now we will see that any helix submanifold of angle θ 6= π
2 , such that

their helix lines (See Definition 2.2) are straight lines, has a local structure as
the construction of the last theorem.

Let us denote by Hp,d the orthogonal hyperplane to the direction d
through the point p ∈ Rn . The normalized projection of d onto Hp,d is
just π(d)

||π(d)|| , where π is the orthogonal projection onto Hp,d .

Theorem 4.6 Let M be a ruled helix submanifold of angle θ 6= π
2 with

respect to d = (0, . . . , 0, 1) . Then M is locally as in the latter construction,
using as η the normalized projection of T onto Hp,d .

Proof. If θ = 0 , M is locally the cylinder M×R and we are done. So we can
assume that θ 6= 0 . Let T and ξ be the (unitary) tangent and normal direc-
tion of M . So, d = cos(θ)T + sin(θ)ξ . Let p = (a1, . . . , an) ∈ M ⊂ Rn and
let s := an ∈ R . Finally, let us denote by Ls the submanifold M ∩ H ,
where H = Hp,d . We define the unitary vector field η : M → Rn by
η = sin(θ)T − cos(θ)ξ . Let us observe that 〈sin(θ)η, T − sin(θ)η〉 = 0 ,
〈sin(θ)η, d〉 = 0 . Moreover, we have to that η|Ls

: Ls → Rn is orthogo-
nal to Ls . But this is clear because η can be a linear combination of T and
d ( ξ is a combination of T and d ), which are orthogonal to H ∩M . These
properties proves that sin(θ)η is the orthogonal projection of T onto Hp,d .
So, η is just the normalized projection of T .
Since 〈η, d〉 = 0 , we can conclude that in fact η|Ls

: Ls → Rn−1 × {0} ⊂ Rn .
So Ls is a k−1 -dimensional submanifold of H = Rn−1×{s} ⊂ Rn and η|Ls

:
Ls → T⊥Ls ⊂ H is smooth unitary normal vector field. Here k = dimM .
Finally, let us observe that T = sin(θ)η + cos(θ)d , as in the construction. 2

11



Let d , T and ξ the helix direction, tangent and normal directions respec-
tively of M .

Corollary 4.7 If ∇⊥T ξ = 0 , the helix submanifold M can be locally con-
structed as in Theorem 4.4.

Proof. By Theorem 4.3, M is a ruled helix. Then apply Theorem 4.6. 2

5 Non ruled Helix

In the previous sections we obtained some general properties of an arbitrary
helix submanifold in Euclidean space: Let M be any helix submanifold in
Rn , with respect to the unitary helix direction d and whose tangent and
normal helix directions are T and ξ respectively. Let us consider the next
two basic properties,

• the helix lines of M are orthogonal to H∩M (See the observation after
Definition 2.2),

• the helix lines are geodesics of M (Proposition 2.4).

So, an arbitrary helix submanifold looks like a hypersurface H ∩M in M
with orthogonal classical general helices curves, in Rn , through it (the helix
lines of M which are geodesics of M ).
In this section we will describe the precise way to glue the helix lines to the
hypersurface H ∩M of M orthogonal to d . This will be possible with the
help of eikonal functions which will be constructed by using Fermi coordinates.
In particular, we will know how to construct examples of non ruled helix
submanifolds.

Definition 5.1 Let (N, g) be a Riemannian manifold. Let f : N → R be a
function and let ∇f be its gradient i.e. df(X) = g(∇f,X) . We say that f
is eikonal if ‖∇f‖ is constant.

Theorem 5.2 (A) Let (N, g) be a n -dimensional connected Riemannian
manifold. Let L ⊂ N be an isometrically immersed submanifold of codimen-
sion one. Then around any point of p there exist an open neighbourhood U
and a nonconstant eikonal function f on U .

Proof. Let p ∈ N and let U ⊂ N be a normal neighbourhood of N around
p such that on V := U ∩ L , a neighbourhood of L around p , the map
exp|TV ⊥ : TV ⊥ −→ U ⊂ N is a diffeomorphism.
Let us consider Fermi coordinates on U :
Let Z : V −→ TV ⊥ be an unitary local normal field on V . We define
F (t, x1, . . . , xn−1) = exp(tZ(x1, . . . , xn−1)) . Now we can define a function
f : U −→ R by f(exp(tZ(x1, . . . , xn−1))) = t which is a submersion. Since f
is nonconstant and N is connected, using Proposition 2 of [9] we can deduce
that f is Eikonal. 2
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Theorem 5.3 (B) Let (N, g) be a n -dimensional connected Riemannian
manifold and let f a nonconstant Eikonal function on (N, g) . Then for
every point of x ∈ N , there exist an open neighbourhood U around x and
a hypersurface L ⊂ N isometrically immersed submanifold of U , such that
f|U is given by the Fermi coordinates around a neighbourhood of L .

Proof. In Proposition 2 of [9], A. E. Fischer proved that f is a Riemannian
submersion. so, if s0 := f(x) then L := f−1(s0) is a hypersurface in N .
We give any level hypersurface Ls := f−1(s) the induced Riemannian met-
ric of N . We choose the open neighbourhood U in N around x so that
exp|TV ⊥ : TV ⊥ −→ U ⊂ N is a diffeomorphism, where V := U ∩L . Now we
will prove that for s small, Ls∩U is orthogonal to every geodesic orthogonal
to L ∩ U . Let us observe that the integral curves of ∇f are geodesics of M
and they are orthogonal to the level sets Ls . It follows that the level sets
are equidistant. So, f looks like the distance between level sets. Therefore,
L and the geodesics (integral curves) defined by ∇f are enough to construct
Fermi coordinates of N . 2

Let us recall the next result, see our previous work [6].

Lemma 5.4 Let M be a differentiable manifold. Then M can be immersed
as an helix submanifold with angle θ 6= 0 w.r. to a direction d of some
Euclidean space if and only if M admits a Riemannian metric g and an
eikonal function f : M → R w.r. to g such that:

cos(θ) =
−1√

1 + ‖∇f‖2

Half of this last result is based on the next Theorem, also from [6].

Theorem 5.5 Let i : M → Rn be a submanifold and let f : M → R be an
eikonal function, where M has the induced metric by Rn , i.e. the metric of
the image i(M) ⊂ Rn . Then φ(M) is a helix, where φ : M → Rn ×R is the
immersion given by

φ(p) := (i(p), f(p)) .

The direction is d = (0, 1) and the angle θ between d and ν(M) (normal
space) is determined by the equality

cos(θ) =
−1√

1 + ‖∇f‖2
.

Example 5.6 Here we construct a non ruled helix. Let N2 be the following
surface in R3 :

N2 = {(x, y) ∈ R2 | (x, y, y(x2 + y2))}.

13



Let us take L as the curve L := {(0, y, y3) : y ∈ R} ⊂ N2 . By using the
constructions of Theorems 5.2 and 5.3 to these N and L , we get a helix
surface in R4 with only one straight line segment helix line. Because N itself
contains only one straight line: {(x, 0, 0) : x ∈ R} . Thus, N2 ⊂ R4 is a non
ruled helix submanifold.

Remark 5.7 We can also construct ruled helix of codimension k in Rn :
Take as M the Euclidean space Rn−k and as L any immersed hypersurface
in M . So, the geodesics of M which are orthogonal to L are straight line
segments.

Example 5.8 Here is another example of a non ruled helix. First we will
construct an eikonal function in the upper half-space model of the hyperbolic
space Hm = {(x1, . . . , xm) ∈ Rm | xm > 0} . Let ∂j := ∂xj the canonical
vector fields of Rm restricted to Hm . Then the Riemannian metric in Hm

at the point y = (y1, . . . , ym) is determined by g(∂i, ∂j) = 1
y2m

. So, the basis
ym∂1, . . . , ym∂m is a orthonormal basis of TyHn . We need also the distance
between two points x, y ∈ Hn . It is given by

d(x, y) = cosh−1(1 +
|x− y|
2xmym

).

For example the function f(y) = ln ym is eikonal on Hm . In this case
the solution can be constructed by taking global Fermi coordinates of Hm

around the hypersurface L = {(x1, . . . , xm) | xm = 1} , which is a horosphere.
In order to find such Fermi coordinates, it is necessary to find the distance
from any point y ∈ Hm to L : it is given by ln ym . Let us observe that L is
isometric to the standard m− 1 -dimensional euclidean space. The level sets
of this function are parallel horospheres (with the same infinity point). The
horospheres are flat with respect to the induced metric.

But let us find another eikonal function, where L will be isometric to an
m − 1 -dimensional upper half-space hyperbolic space. More exactly, let us
consider L = {x ∈ Hm | x1 = 0} , which is a totally geodesic hypersurface.
Let y = (y1, . . . , ym) ∈ Hm , then the geodesic orthogonal to L through y
intersects L at the point p = (0, y2, . . . , ym−1, y

2
1 + y2

m) . So the distance
between this point p and y is given by

f(y1, . . . , ym) = cosh−1(
(y2

1 + y2
m)1/2

ym
).

Let us verify that this function f : Hm −→ R is eikonal. A direct calculus
shows that

∂1f =
1

(y2
1 + y2

m)1/2
and ∂mf =

x

ym(y2
1 + y2

m)1/2
.
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The gradient of f at the point y in the upper half-space model of the hyper-
bolic space is ∇f = (ym∂1f)ym∂1 + (ym∂mf)ym∂m . So

||∇f ||2 = (ym∂1f)2 + (ym∂mf)2 = 1.

The level set f−1(a) ⊂ Hm , with the induced metric, is isometric to a (m−1) -
dimensional hyperbolic space Hm−1 (up to multiplication by a constant of the
standard metric of Hm−1 ). These level sets, f−1(a) , are called equidistant
hypersurfaces (See Spivak [13], page 22).

Let i : Hm −→ Rn be an isometric immersion of the upper half-space
model of the hyperbolic space into Rn with the standard metric (for some
n ). Let us consider the immersion φ : Hm −→ Rn+1 , φ(x) = (i(x), f(x)) .
Then by Theorem 5.5, the immersed M = φ(Hm) is a helix submanifold with
the induced metric and the helix direction is d := en+1 = (0, . . . , 0, 1) . Let us
observe that the set levels f−1(a) ⊂ Hm of f are isometrically immersed in
M . In others words, if H is an orthogonal hyperplane to d in Rn+1 , then
the intersection H ∩M is isometric to the set levels f−1(a) ⊂ Hm for every
a ∈ R . So, the helix M intersects any such hyperplane H in a submanifold
isometric (up to a constant) to a (m− 1) -dimensional hyperbolic space. The
helix so constructed can not be ruled. This is so since an isometric immersion
i : Hm −→ Rn of the hyperbolic space can not be ruled. Indeed, a ruled
immersion i : Hm −→ Rn of the hyperbolic space produce a Jacobi vector
field Y along the rule whose length |Y | contradicts a Theorem of Rauch [2,
p.86, Theorem II.6.4].

5.1 Constant angle surfaces in S2 × R
As an application of the above Theorem 5.5, and Theorem 3.4 of [6] we get
the following theorem of [8].

Theorem 5.9 (Dillen et al, [8]) A surface M immersed in S2 × R is a
constant angle surface if and only if the immersion F : M → S2 × R is (up
to isometries of S2 × R ) locally given by

F (u, v) = (cos(u cos(θ))f(v) + sin(u cos(θ))f(v)× f ′(v), u sin(θ)) ,

f : I → S2 is a unit speed curve in S2 and θ ∈ [0, π] is the constant angle.

Explanation. By definition (see [8, pag. 91]) a constant angle surface
M ⊂ S2 × R ⊂ R3 × R is a helix with respect to d = (0, 0, 0, 1) .

Notice that the map i : M → S2 ⊂ R3 locally given by

i(u, v) = cos(u cos(θ))f(v) + sin(u cos(θ))f(v)× f ′(v)

is an immersion. Then the coordinate u regarded as a function u : M → R
is an eikonal function with respect to the metric induced by i . Actually,
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u is constructed as in Theorems 5.2 and 5.3 by using the unit speed curve
f : I → S2 as the submanifold of codimension one i.e. as the zero level set of
u .2

It is interesting to notice that equation (28) in [8, pag.93] show that the
above helix M2 ⊂ R4 is ruled if and only if θ = π

2 and in this case the helix
is a Riemannian product of a curve in S2 and R .

6 Helix with parallel normal direction

Let us recall that if M ⊂ Rn is a helix of angle θ with respect to the
unitary direction d , then the normal direction of M is the unitary direction
ξ : M −→ TM⊥ , where sin(θ)ξ is the orthogonal projection of d onto TM⊥ .
We say that M is a helix with parallel normal direction if ∇⊥ξ = 0 , where
∇⊥ is the normal connection of the isometric immersion M ⊂ Rn .

6.1 Strong r -helix submanifolds

It can happens that a given submanifold M ⊂ Rn is a helix w.r. to two or
more independent directions. For an hypersurface M notice that if M is an
helix w.r. to d and d′ then M is also a helix w.r. to any direction in the
linear span of d and d′ . This gives a motivation for the following definition.

Definition 6.1 A submanifold M ⊂ Rn is a weak r -helix if there exist
r linearly independent directions d1, . . . , dr , such that M is a helix with
respect to every dj . We say that is a strong r -helix if there exist a linear
subspace H ⊂ Rn of dimension r = dim(H) such that M is a helix w.r. to
any direction d ∈ H . The subspace H will be called the subspace of helix
directions .

Remark 6.2 A characterization of a strong r -helix in terms of the orthogo-
nal projections πp : Rn → TpM .
The submanifold M ⊂ Rn is a strong r -helix if and only if there exist a
r -dimensional lineal subspace H ⊂ Rn , such that: For all v ∈ H , ‖πp(v)‖
does not depends of p ∈M .

Remark 6.3 Notice that if a submanifold M ⊂ Rn , of any codimension, is
a weak helix w.r. to the directions d1 and d2 then M is not necessarily a
strong 2 -helix.

Let now M be a weak r -helix with respect to the linearly independent
directions (d1, d2, · · · , dr) . We can decompose each vector dj in its tangent
and normal components:

dj = cos(θj) Tj(p) + sin(θj)ξj ,
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where each θj is constant. Taking derivative with respect to X ∈ TM we
obtain (See Lemma 2.7):

0 = cos(θj)∇X Tj(p)− sin(θj)Aξj (X) and (2)
0 = cos(θj)α(X,Tj(p)) + sin(θj)∇⊥Xξj . (3)

Definition 6.4 The second normal space of M ⊂ Rn consist of the normal
vectors, ξ ∈ ν(M) , such that the shape operator in its direction is zero, i.e.
Aξ = 0 .

We will consider the following problem raised in [6]:

Problem. Classify weak r -helices so that the normal components, ξj , of
the directions dj satisfy:

∇⊥ξj = 0 ,

i.e. every ξj is parallel with respect to the normal connection.

Lemma 6.5 Let M be a weak r -helix with respect to the directions dj , j =
1, . . . , r . If the normal component ξj of dj is normal parallel then M is a
strong r -helix with respect to the subspace generated by d1, . . . , dr .

Proof. Since ∇⊥ξj = 0 , the functions 〈ξj , ξk〉 are constants. The first author
proved (Proposition 2.4 in [5]), that if such functions are constant, then M
is a strong r -helix. 2

Theorem 6.6 Let M be a weak r -helix with respect to the directions dj ,
j = 1, . . . , r . Let us assume that the normal component ξj of dj is normal
parallel. Then M is locally immersed at x ∈ M as y + s1T1 + . . . + srTr ,
where Tj is the normalized projection of dj onto TM , y ∈ M ∩ (

⋂
jHx,dj

)
and sj ∈ (−εj , εj) ⊂ R .

Proof. By Lemma 6.5, M is a strong helix submanifold. It means that M is a
helix with respect to any direction in the vector space generated by d1, . . . , dr .
Moreover, by Theorem 4.3, each helix line with respect to any helix direction
is a straight line segment in the ambient.
Let us consider any x ∈ M and the direction d = a1d1 + . . . + ardr , with
|d| = 1 . The orthogonal projection T of d on TM is given by: T = a1T1 +
. . .+ arTr . So, if s is small, M contains the straight line segment defined by
x + sT = x + sa1T1 + . . . + sarTr . This implies that M contains a relative
open piece of an affine subspace of dimension r , which is generated by the
Tj ’s. Finally, let us observe that x ∈M ∩ (

⋂
jHx,dj

) and y ∈M ∩ (
⋂
jHx,dj

)
if and only if M ∩ (

⋂
jHy,dj

) = M ∩ (
⋂
jHx,dj

) .
So we can parametrize M with the data given by M∩(

⋂
jHx,dj

) and the Tj ’s
as this Theorem implies. In fact, we can parametrize M with the alternative
data M ∩ (

⋂
jHx,dj

) , dj ’s and the ηj ’s, where each ηj is the orthogonal
projection of Tj in the hyperplane Hx, dj . With these conditions Tj is a
linear combination of dj and ηj . 2
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7 Minimal ruled helices

Now, we are going to characterize minimal ruled helix submanifolds of arbi-
trary dimension and codimension of Euclidean spaces.

Let M as before, i.e. a helix submanifold w.r. to d and with angle θ ,
such that the helix lines are straight lines.

Given p ∈ M , Hp will denote the hyperplane through p and orthogonal
to d . As before we can assume that θ 6= {0, π

2 } Otherwise we are done.
Hence, d is transversal and nonorthogonal to M . So, L := Hp ∩M is a
submanifold.

Theorem 7.1 A ruled helix submanifold M is minimal if and only if L :=
Hp ∩M is also minimal in Rn , for every p ∈M .

Proof. Let T and ξ be the tangent and normal helix directions of M . The
Weingarten’s formula for L ⊂ Rn implies that DXZ = −AZL(X) + ∇L⊥XZ ,
for every tangent vector field X on L and Z ∈ TL⊥ . Here, AZL is the shape
operator of L (as submanifold of Rn ) in the direction Z . The corresponding
formula for M ⊂ Rn is DXZ = −AZ(X) + ∇⊥XZ , for every tangent vector
field X on L and Z ∈ TM⊥ .
We deduce from these formulas that for every X ∈ TL and Z ∈ TM⊥ ,

〈AZ(X), X〉 = −〈DXZ,X〉 = 〈AZL(X), X〉. (4)

Let k = dimM and let X1, X2, . . . , Xk = T be a local orthonormal basis
of M around p , where X1, X2, . . . , Xk−1 is a local orthonormal basis of
L = Hp ∩M .
For every Z ∈ TM⊥ , we have the relation.

k−1∑
j=1

〈α(Xj , Xj), Z〉 =
k−1∑
j=1

〈AZ(Xj), Xj〉 =

k−1∑
j=1

〈AZL(Xj), Xj〉 =
k−1∑
j=1

〈αL(Xj , Xj), Z〉,

where α , αL are the second fundamental forms of M ⊂ Rn and L ⊂ Rn

respectively.
So, we have, for every Z ∈ TM⊥ , the relation.

k−1∑
j=1

〈αL(Xj , Xj), Z〉 =
k−1∑
j=1

〈α(Xj , Xj), Z〉. (5)
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Let us observe that TL⊥ = TM⊥ ⊕ 〈T 〉 .
Also, we have the relation

k−1∑
j=1

〈αL(Xj , Xj), T 〉 = c

k−1∑
j=1

〈α(Xj , Xj), ξ〉, (6)

where c 6= 0 is a constant. It follows from the next calculus:
Since d = cos(θ)T + sin(θ)ξ and αL ∈ TL⊥ ∩ THp (Hp is a hyperplane), we
obtain

〈αL(Xj , Xj), T 〉 = c〈αL(Xj , Xj), ξ〉 = c〈AξL(Xj), Xj〉 .

Now applying (4), we get

〈αL(Xj , Xj), T 〉 = c〈Aξ(Xj), Xj〉 = c〈α(Xj , Xj), ξ〉 .

Now, if M is minimal and since α(T, T ) = 0 , the right hand side of (5) and
(6) are equal to zero. Which implies that L is minimal in Rn .
Finally, in the case that L is minimal in Rn , it is enough to use that the left
hand side of (5) is zero to deduce that M is minimal. 2

Let Hp as before, where p is any point of a helix submanifold M .
The next result completes the result that given a helix submanifold M , if
we assume any two conditions in {M ruled,M minimal, Lp minimal in Rn },
then we can deduce the third condition.

Proposition 7.2 Let M be a minimal helix submanifold such that, for every
p ∈M , L := Hp ∩M is minimal in Rn . Then M is a ruled helix.

Proof. Let us observe that the equality (5) holds for every immersed hy-
persurface L in any Euclidean submanifold M . In particular it is true for
L := Hp ∩M . Since M and Lp are minimal in Rn , then

k−1∑
j=1

α(Xj , Xj) + α(T, T ) = 0,
k−1∑
j=1

αL(Xj , Xj) = 0.

Using (5), we conclude that α(T, T ) = 0 . Which is equivalent for M to be a
ruled helix. 2
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