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Abstract—Systolic array network processors represent an ef-
fective alternative to ASICs for the design of multi-gigabit packet
switching and forwarding devices because of their flexibility,
high aggregate throughput and deterministic worst-case per-
formances. However such advantages come at the expense of
some limitations, given both by the specific characteristics of the
pipelined architecture and by the lack of support for portable
high-level languages in the software development tools, forcing
software engineers to deal with low level aspects of the underlying
hardware platform.

In this paper we present a set of techniques that have been
implemented in the Network Virtual Machine (NetVM) compiler
infrastructure for mapping general layer 2-3 packet processing
applications on the Xelerated X11 systolic-array network pro-
cessor. In particular we demonstrate that our compiler is able
to effectively exploit the available hardware resources and to
generate code that is comparable to hand-written one, hence
ensuring excellent throughput performances.

I. INTRODUCTION

Handling packets at wire-speeds in the order of tens of
gigabits per second and more, while still ensuring some degree
of flexibility, cannot be afforded without relying on massively
parallel architectures because the processing cost in network
processing is usually dominated by the high latency of memory
operations. In fact, memory technology has not kept the pace
with the speeds required on backbone networks. For example,
on an OC-768 line at 40 Gbps, a 40 bytes packet should be
processed in at most 8 ns, i.e. the time needed for performing
at most a couple of memory accesses to an off-chip SRAM.
In order to reduce the impact of the latency of memory on the
processing time, some kind of task parallelization should be
put in place, e.g. by pooling several processing elements and
connecting them by one or several high-speed interconnection
devices, or by arranging them in a linear pipeline [1].

Systolic-array network processors extend such considera-
tions to the extreme by giving new life to the concept of
pipelined dataflow architectures, which have already been
proved successful in the field of Digital Signal Processing.
Essentially, systolic architectures include a deep pipeline com-
posed of hundreds of processors, each one usually able to
perform a single VLIW operation. A packet entering the
pipeline is processed by the first stage, then it moves to the
second stage while another packet is ready to be processed by

the first one; therefore packets progress synchronously at fixed
intervals, until they reach the end of the pipeline. In particular,
for a pipeline composed of n stages, the maximum allowed
throughput is proportional to 1

t , where t is the time needed
for performing a single VLIW operation, while the overall
latency (i.e. the time needed for a packet to traverse the entire
pipeline) is proportional to nt, which is usually a negligible
value at line rates in the order of tens of gigabits per second.

The major advantages of using systolic array network
processors come as a consequence of the previous consider-
ations, i.e. the deep pipeline allows high throughput, while
the synchronous advance of packets in the pipeline guarantees
deterministic worst-case performances. In fact, commercial
NPUs based on such kind of technology, like the Procket PRO/
Silicon [2], the Bay Microsystems Chesapeake [3] and the
Xelerated X11 [4] ensure wire-speed processing at line-rates
ranging from 10 to 40 Gbps, or even 100 Gbps, while still
operating at clock rates in the order of hundreds of megahertz.

However, the promised advantages come at some costs
in terms of ease of development of software applications.
In particular, the difficulties are mainly tied to the inherent
characteristics of the pipelined architecture and the lack of
tools providing a high level abstraction of the hardware.
Indeed, software engineers usually have to program the packet
processors using some kind of assembly language, and even
when higher level tools are available, such as a modified
flavour of the C language, they are forced to deal with the
details of the target architecture.

In this paper we present the architecture of a compiler
based on the NetVM [5] model, which is able to generate
code for the X11 NPU, as well as a set of techniques for
exploiting the available hardware resources, with results that
are comparable to hand-written code. This result is especially
interesting because it denies the common belief that achieving
high performances with network processors requires writing
programs by hand using assembly language. In addition, this
result helps demonstrating the benefits of the NetVM model,
which provides a flexible, efficient, and hardware-independent
framework for writing packet processing applications. More
specifically, applications written using this model can be
executed on different hardware, can support data-link to



application-layer processing, yet are capable of high speed.
The paper is structured as follows: Section II reports the

available related work, while Section III gives an overview on
the architecture of the Xelerated X11 network processor and
on the characteristics of the NetVM programming model, in
Section IV the architecture of the compiler is described, while
Section V outlines the implemented mapping techniques. Ex-
perimental results are reported in Section VI, and conclusions
are drawn in Section VII.

II. RELATED WORK

The compilation of computation-intensive programs on sys-
tolic array processors was first explored in [6], however
the problem of mapping packet processing applications on
systolic array network processors is novel and still relatively
unexplored.

The programmability of network processor architectures is a
topic that has been widely discussed by the research in recent
years. In [7] a C compiler for an industrial network processor
was proposed, showing that exposing low level details in the
language through intrinsics and compiler known functions al-
lows an efficient exploitation of the available hardware features
without relying on assembly language, while [8][9][10] de-
scribe novel domain specific languages, programming models
and compilers for automatically partitioning packet processing
applications on multi-core based network processors.

The proposed solutions are very target-specific because they
tend to expose the features available on the target hardware
to the programmer; while they are proven to work well with
the chosen architecture (e.g., a multi-core network processor),
it is not clear how effective they would be when applied to
the generation of code for systolic array network processors.
The Network Virtual Machine (NetVM) [5] improves previ-
ous solutions because it provides an abstraction layer based
on a sequential programming model in which hardware is
virtualized, with the result of completely hiding the target
architecture to the programmer, while still allowing an efficient
mapping.

III. BACKGROUND

A. The X11 Network Processor

The Xelerator X11 network processor is based on a systolic
array (actually a pipeline) with a synchronous dataflow archi-
tecture, which shares the concept of a systolic pipeline with
its predecessor X10q [11].

Figure 1 shows an overview on its internal architecture.
The processing elements are either VLIW processors called

Packet Instruction Set Computers (PISCs) or I/O processors
called Engine Access Points (EAPs). As shown in Figure 1a
PISCs are arranged in blocks while EAPs are placed at fixed
points between PISC blocks. EAPs essentially dispatch the
computation to special purpose devices that can be used to
offload part of the computation off the PISC pipeline. Such
devices include TCAMs, counters, hardware for computing
hash values, external SRAM, etc.

When a packet enters the pipeline, it is first partitioned
into fixed size fragments. Thereafter, the pipeline processes
the packet fragments using iterations of (1) PISC processing
interrupted by (2) actions and look-ups orchestrated by EAPs.
As a fragment traverses the pipeline, it carries an individual
execution context containing the fragment itself, a register
file, status registers, and other information that constitute the
complete state of a program. Figure 1b shows the details of a
PISC block. It is important to understand that one PISC acts
on one packet fragment during exactly one cycle. During this
cycle, the PISC can perform a set of parallel instructions on
the fragment, before passing it on to the next element in the
pipeline.

The parallelism of the pipeline is hardwired in the archi-
tecture itself. From one perspective, this makes the software
handling of concurrency easy, since the execution contexts and
PISCs are effectively isolated from each other. No explicit
mechanisms such as threads or mutexes need to be adopted to
protect accesses to these local resources. It is also easy to ac-
cess external resources as long as this is made in a constrained
fashion, primarily limited by the look-up bandwidth towards
external engines.

However, generic update of shared state is difficult to realize
due to pipeline hazards, including Read-After-Write, Write-
After-Write, etc. [12]. The reason is that the non-stalling nature
of the synchronous pipeline makes it impossible for a program
to wait indefinitely for an asynchronous mutex. However, for
the X11, a mutex mechanism can be achieved by looping or
by controlling the traffic scheduling into the systolic pipeline.
If no hardware-provided mechanisms exists, all such shared
accesses need to be scheduled in advance when configuring
the pipeline for a specific application. Fortunately, the X11
architecture offers some means for providing more elaborate
accesses to shared resources. This includes support for atomic
read-and-increment operations both on the on-circuit counters
engine as well as external RAM locations.

From the compiler perspective, a X11 packet program
consists of a number of instruction sequences that are laid
out in the instruction memory of the pipeline. This memory
is actually a two-dimensional matrix with rows and columns
where the control flows unidirectionally and synchronously be-
tween columns, and branching occurs between rows. Because
of the unidirectional execution flow, loops are not possible by
definition; branches, however, are allowed. The layout of code
in the instruction memory can be seen as a two-dimensional
optimization problem, where a vertical column constitutes the
instruction space of a single PISC, and the horizontal rows are
instruction sequences. The execution context contains a row
instruction pointer so that PISCs know which instruction to
execute. Branching modifies the row instruction pointer but
does not affect the horizontal flow of the program.

The drawbacks to this programming model are tied to its
advantages. First, looping is not allowed: programs requiring
loops need to be unfolded to some limit that fits the pipeline.
The X11 also provides a loopback path to let packets re-
enter the pipeline if the program is longer than the number
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of pipeline stages allows. The number of pipeline passes, k,
is statically configured at link-time and is limited since the
throughput is proportional to 1

k . The operating frequency of
the X11 systolic pipeline is dimensioned to allow a specific
number of loops while still providing wire-speed. Moreover,
in order to avoid reordering, all packets coming from the same
input interface always undergo the same number of pipeline
passes, even if the processing could terminate earlier for some
of them.

Second, there are few methods to share state between pack-
ets. In particular, it is difficult for information from one packet
to influence the processing of another. This includes programs
that adapt to traffic contents traffic, e.g., stateful packet filters.
To provide for shared state between packets, one can use the
support from the existing counter engine or implement some
other, more elaborate mechanisms in the general-purpose look-
aside engines. It is also possible to communicate with the
control plane, which in turn can re-program the pipeline by
altering the state of look-up tables, but this approach has the
obvious drawbacks of being limited in bandwidth and also
may introduce race-conditions.

B. The Network Virtual Machine

The Network Virtual Machine is a programming model for
writing packet processing applications, e.g., the ones running
on the data plane of a network device. This model provides
an abstraction layer that hides the differences among hardware
devices (e.g., network processors), thus enabling the paradigm
”write once, run anywhere” for packet processing applications
as well. Notably, flexibility (the model supports applications
that range from data-link to application layer) and portability
are not obtained at the expense of performance.

The NetVM model does not define any high-level program-
ming language because these are usually tailored to specific
applications; instead, it defines a mid-level abstraction layer
(called the Network Intermediate Language, NetIL) that can be
employed as a target for several high-level programming lan-
guages, either declarative (e.g. rule-based packet filtering and
classification languages) or imperative (e.g. C-like languages).
This allows the NetVM to be general enough to support several
classes of packet processing applications (possibly written

in different languages) while still allowing the generation of
efficient code.

In the NetVM model packet-processing programs are ex-
pressed through the interconnection of a set of modules called
Network Processing Elements (NetPEs), virtual processors that
execute NetIL instructions. A NetPE is composed of a set of
private registers and a hierarchy of memories, such as a local
memory for storing state information local to a processing
engine and an exchange memory for storing the packet buffer
along with additional metadata.

Since NetPEs are programming abstractions, the execution
of a NetVM program on real platforms relies on the existence
of a full optimizing compiler (either JIT or AOT) that maps the
abstract resources of the NetVM model onto the ones available
on the real platform, i.e., a translator of NetIL instructions into
native machine code of the target hardware architecture.

Packet processing applications are usually built upon a core
set of primitives that are often implemented directly in hard-
ware on many network processor architectures (e.g. Content
Addressable Memories for fast table look-ups) so the NetVM
model includes the concept of virtual coprocessors, a way for
making such features available to the programmer through a
well-defined interface. A coprocessor is seen by the application
as a black box providing specific operations; although its
coherent interface guarantees the portability of the software
using it among different platforms, its implementation varies
from platform to platform. In particular, coprocessors must
be emulated in software by the run-time environment of the
NetVM on architectures that do not provide any hardware
acceleration, while they are mapped directly on architectures
that provide the required special purpose features.

The intrusion detection sensor presented in [13] (a Snort
clone) demonstrates that the NetVM model supports complex
applications; particularly, that example uses 11 interconnected
NetPE modules and 3 virtual coprocessors. More details on
the NetVM abstraction can be found in [5].

IV. NETVM COMPILER INFRASTRUCTURE

The architecture of the compiler for the NetVM platform,
depicted in Figure 2a, follows the classical design of a multi-
target optimizing compiler, apart from operating on a bytecode
representation of the application instead of using a high level



source language. Besides, in order to support different target
architectures, the compiler is structured so that most of the
phases involved in the compilation process are common to all
the targets, while the phases involved in the generation of code
for a specific platform are isolated in different back-ends. The
overall compilation process is structured as follows: (1) the
program is first translated into a more manageable tree-based
intermediate representation (IR) and its formal correctness
is verified, (2) a set of target-independent optimizations are
applied on the IR, then finally (3) the optimized program is
transferred to the selected back-end, which handles all the
subsequent target-specific transformation tasks.

The mid-level optimizations are mostly classical ones, such
as constant folding, constant propagation, dead code elimi-
nation, control-flow simplification and algebraic reassociation
[14]; they have the twofold purpose of reducing the impact
of redundant and useless code on the program size, as well
as enabling further optimizations and special purpose transfor-
mations, as will be detailed in Section V.

A. A Back-end for the X11 NPU

In order to provide a mapping for NetVM applications on
the X11 processor, a new back-end for the NetVM compiler
has been developed. Its architecture is depicted in Figure 2b.

The back-end translates the tree-based intermediate repre-
sentation generated by the upper layers of the compiler into a
low-level IR (i.e. a representation of the program very close
to the assembler of the target machine), while mapping the
accesses to virtual coprocessors on instructions that make
use of the special purpose hardware features (e.g. TCAMs)
available on the target architecture. This task is performed
by a Bottom Up Rewriting System [15], which executes a
tree-matching algorithm driven by architecture-specific rules
that specify how a portion of the intermediate representation
(i.e. an expression subtree) should be translated into target
instructions. If multiple rules relate to overlapping tree patterns
the BURS is able to chose the best (i.e. less expensive)
combination that covers the most extended expression tree. As
will be detailed in Section V-D, this enables the deployment of
advanced optimizations because recognizing specific patterns
of instructions that represent macro functionalities allows their
mapping directly to hardware coprocessors or special purpose
instructions.

In contrast to traditional processors, the X11 NPU com-
pletely lacks the concept of function call; therefore a NetVM
application composed of multiple NetPEs must be transformed
into a single compilation unit to be laid out as a linear code
sequence throughout the PISC pipeline. The X11 back-end
compiler addresses this problem by performing an inlining
step in the compilation process, where the code belonging to
different NetPEs is linked together by replacing inter-module
calls with jump instructions. This inlining operation is possible
only if the NetPE interconnection graph is acyclic, however
this property is intrinsically ensured by the NetVM model.

Afterwards, the intermediate representation is further op-
timized by removing redundant instructions that might have

been generated during the instruction selection phase, then the
resulting code is examined to detect independent instructions
that are suitable to be merged in VLIW blocks. At the end of
the compilation process, a resulting assembly file is created
which can be used as an input for the X11 SDK tools that
create the proper binary files for loading and execution.

V. THE MAPPING PROCESS

Compiling a packet processing program for the X11 NPU
does not differ significantly from compiling it for any other
kind of processor, as long as only the generation of sequences
of target instructions from high level constructs is considered.
However, some constraints that are specific to systolic archi-
tectures, along with some characteristics of the X11 processor,
suggest the adoption of specific compilation techniques in
order to best exploit the available hardware resources and to
improve the chance of a program to be correctly and efficiently
compiled.

This section explores the major problems related to the
efficient mapping of NetVM applications on the X11 architec-
ture and presents the most innovative aspects of the NetVM
compiler infrastructure.

A. Handling Loops

Since backward pointing branch instructions are forbidden,
systolic array processors are characterized by an ”upstream
to downstream” execution model, where the control flow is
driven by data flowing through the pipeline and cannot be
redirected to a previous stage. This translates to the impos-
sibility of mapping generic loops on a systolic array, unless
their maximum number of iterations is bounded and known
at compile time, so that they can be completely unrolled and
laid out as a linear sequence of instructions. However, even in
this case some practical problems arise: the theoretical upper
bound on the number of iterations may be so large that the
resulting overall instruction count could exceed the number
of available stages even when using the loopback path as
described in Section III-A.

If such considerations apparently pose a strong limitation
on the kinds of applications that can be successfully and
efficiently mapped onto a systolic array network processor,
it should be noted that uncontrolled loops are not frequent
in standard forwarding programs (either L2 or L3) with the
exception of some protocols (e.g., MPLS stacking or IPv6
extension headers [16]). In such cases the problem can be
overcome by limiting the maximum number of loop iterations
in the source program to a fixed value. Such considerations
point out that the theoretical limitation of systolic arrays in
handling loops may not be so relevant in practice.

B. Keeping the State of the Application

The NetVM model uses different memories to keep the
state of an application. In particular, state information local
to a NetPE is stored in the NetPE local register file and local
data memory, the former keeping temporary values while the
latter is used for static values as well as complex structures.
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Vice versa, the state that is local to a packet is stored in the
packet buffer and a special buffer called the ”info memory”,
i.e. a memory segment that allows subsequent NetPEs to
communicate between them.

On the X11 side, the execution context is represented by
the packet memory and a register file, while persistent state
must be kept in externally attached memories that are accessed
through the EAPs. As a matter of fact there happens to be
a significant parallelism between the NetVM model and the
X11 processor when it comes to data associated with a packet.
In particular, the X11 packet memory and register file allow
indirect addressing and can be used to map the NetVM packet
buffer and the info memory. Besides, a portion of the register
file can be allocated for keeping intermediate results as they
are computed in the NetPEs, as well as local register values.

On the other hand, the two platforms differ in the way
permanent data (i.e. the state that survives across different
packets) is treated. As detailed in Section III-A, there are
constraints on how multiple, concurrent accesses to the same
external memory location can be made. Section V-D reports
how in very specific cases the compiler is able to handle this
problem while still ensuring the safe update of shared memory
locations.

C. Mapping NetVM Coprocessors

The NetVM model allows complex operations and function-
alities to be represented as invocations to virtual coprocessors.
The back-end maps them on the corresponding hardware
features (if available on the physical device) in order to
maximize the efficiency of the resulting code. In particular,
on the X11 processor this usually translates to generating
instructions that send and receive data to/from the EAPs and
declaring which engine operation should be performed.

A look-up coprocessor that allows the programmer to asso-
ciate 32-bit keys to 32-bit values was considered as a proof of
concept. On the X11 the requested operation can be performed
by the integrated TCAM module. Since the same hardware
unit must possibly be shared with other instances of the same
coprocessor (in a different NetPE) or contain other unrelated

content, the compiler provides a thin hardware abstraction
layer to split the TCAM into multiple tables. This is achieved
by dedicating a portion of the look-up key space to hold a
table number.

NetVM coprocessors wrap a well-defined interface around a
usually complex algorithm; the compiler has the twofold task
of translating the algorithm itself and adapting the interface to
the actual hardware units employed. While the latter task is
achieved by the compiler, the former might prove impossible
due to possible limitations of the hardware platform. In par-
ticular, if the target architecture does not provide the specific
functionalities exposed by a virtual coprocessor, a software
emulation must be performed. However, this might not always
be possible due to restricted amount of primitives provided by
the hardware and limitations imposed on the instruction count.

D. Exploiting the Features of the Hardware Architecture

The previous section explored the problem of mapping a
virtual coprocessor (i.e., a specialized macro-functionality)
defined by the NetVM model on real hardware. This section
presents the dual problem, i.e., mapping generic NetIL code
to some specialized modules provided by the hardware.

Apart from the case where the source language exposes
high level constructs that find a natural mapping on specific
hardware functionalities, the problem is in general extremely
complex: hardware modules usually implement complex algo-
rithms that, in order to be efficiently translated, must first be
recognized in the source program.

The switch-case provides a simple example of an easily
recognizable high-level construct. The instruction count of
a traditional implementation based on a linear search might
grow in complexity with the number of possible destinations,
potentially using an extensive portion of the pipeline. However,
on the X11 the same behaviour can be obtained by performing
an associative look-up that uses the on-board TCAM, costing
effectively one pipeline stage only, independently from the
number of possible alternatives.

An unintended consequence of extensively using this map-
ping technique might be the over-subscription of limited



hardware resources. In particular, there are limitations in look-
up bandwidth and also the fact the EAPs are present at specific
stages in the pipeline. In this case the compiler should emit
code that uses other pipeline resources such as the PISC
processors or different external units. Although deciding when
to do this is a complex optimization problem, the compiler
tries to solve it through a simple heuristic that works well in
the average case.

Making the specialized functionalities provided by the X11
hardware automatically available to the program requires in
the general case more effort than mapping the switch-case
construct. A good example derives from the problems related
to the concurrent update of shared information mentioned
in Section V-B. If the state to be updated is an integral
value, the compiler can make good use of the X11 support
for atomic increment instructions, thus becoming able to
overcome concurrency issues in a limited set of cases. A
common example is keeping counters in external memory, e.g.
for statistical purposes.

A counter increment operation in itself is not atomic as
it is necessary to fetch the old value, increase it and store
the newly computed result at the same offset. However if
this procedure is not performed atomically by the hardware
it becomes possible for two consecutive packets to read the
same value from memory with the net effect of incrementing
the counter once instead of twice. To overcome this issue the
compiler uses the BURS-based instruction selector which is
able to recognize if specific locations of the data-memory are
accessed through this pattern of operations, and to map them
on the special purpose atomic increment instructions provided
by the hardware.

Depending on how the source code is written, it can happen
that a pattern ends up split across different statements. Since
the BURS operates on a single IR expression tree at a time,
in this case the recognition mechanism does not work. No
control on the source code form can be assumed, so this issue
would result in low reliability of the compilation process if
left unchecked. Vast improvements can be made by processing
the intermediate representation with appropriate optimization
algorithms, such as algebraic reassociation. These algorithms
can rearrange subtrees in the IR so that the semantic meaning
of the program is preserved, but providing the instruction
selector with deeper trees that are more likely to contain recog-
nizable patterns. This way the BURS can operate successfully
even if the related instructions were originally scattered across
a region of the source listing.

In any case, it must be pointed out that even though such
techniques work well in very specific cases, their general
validity still needs to be proven, since they are tuned on
patterns of instructions and not on algorithms. In particular,
even for the simple example of counters, the programmer
could update a specific memory location in several exotic
ways, preventing the BURS to recognize the sequence of
instructions as a predefined pattern. We believe that in order
to deploy a general algorithm recognition technique, more
specialized analyses of the code should be performed.

E. VLIW Instruction Merging

Being VLIW processors, PISCs allow up to four indepen-
dent operations to be executed at the same time, in order to
exploit instruction-level parallelism. These can be (1) an ALU
operation, (2) a move for copying words of up to 32 bits
between different locations of the register file and the packet
memory, (3) a load offset operation for indirectly accessing
the register file or packet data, and (4) a branch.

When generating assembly code, the compiler should try
to merge multiple instructions in single VLIW words, taking
care appropriately of data and control dependencies. Several
algorithms are described in literature for handling such task
in an optimal way, e.g., trace scheduling [17]. The compiler
currently implements a simple algorithm that works only
on straight-line code fragments (i.e., basic blocks) and does
not perform any instruction reordering before merging. This
provides good results, even though it is a widely known
result that the amount of instruction-level parallelism present
in a program is limited when considering only basic blocks,
even more if instructions are never reordered. It is likely that
implementing a more aggressive strategy would improve the
emitted code quality significantly.

F. Automatic Computation of Data Size

While the NetVM model allows to fetch and store any
data size (≤ 32 bits), registers are 32-bit words. This is a
problem for the X11 processor that works natively on 16-bit
words because of the larger overhead required to perform 32-
bit operations, while often these can be correctly carried out
using only 8 or 16 bits.

Although this is clearly a limitation of the NetVM model
that does not explicitly support different data sizes, we decided
to implement an heuristic algorithm in the X11 back-end that
tries to assign to each NetVM register the optimal, minimum
size while preserving the program semantics. In the long term,
this issue points out the necessity of a revision of the NetVM
model that will involve the addition of new NetIL opcodes to
provide the NetVM with hints about the appropriate data size.

VI. EXPERIMENTAL RESULTS

The X11 architecture presents many properties that make
it predictable, allowing to exactly determine the behaviour of
a program through off-line statical analysis, without runtime
benchmarking. The reason is that throughput is constant and
proportional to 1

t , as long as the code fits into the instruction
memory of the systolic pipeline. Therefore, if the code is
proven correct, a useful evaluation metric is the amount of
instructions generated by the compiler. With a fixed size
pipeline and a given number of passes, translating a program to
fewer instructions allows more features to fit in the program
with the same deterministic throughput. Additionally, if the
instruction count is comparable to the one of hand-written
code, the compiler proves to be useful and claims that systolic
arrays NPUs must be hand-coded can be rejected.

In the evaluation, two test programs were used: (i) a
Snort [13] module that performs L2-3-4 packet inspection and



saves data for subsequent modules, and (ii) a simple packet
filter that demultiplexes and counts TCP packets directed to
port 80. Although these applications are small, we claim that
the operations they perform are rather common in packet
processing programs and stress several NetVM capabilities,
using coprocessors and several kinds of memory.

Since there are currently no other optimizing compilers for
the X11, it is hard to the get the baseline results needed to
evaluate the performance of the NetVM compiler. To get rele-
vant results the source programs were first translated with all
optimizations turned off. A second compilation was performed
on the same source files, with all the automatic optimizations
enabled. Afterwards the code, as already optimized by the
compiler, was further processed by hand to apply a wider
range of transformations, using standard optimization guide-
lines used by Xelerated. The same procedure was repeated
keeping the VLIW merging algorithm disabled in order to
better appreciate its impact on the resulting code size.

Results are shown in Figure 3: the ones related to the IDS
module are on the left (Figure 3a), while the ones related to
the filter application are on the right (Figure 3b). Both the total
number of instructions are shown, as well as the number of
resulting VLIWs after instruction merging. As it can be seen,
the number of instructions for the Snort application is 87/76
for the automated and hand-written cases respectively, while
the corresponding numbers for the filter application is 23/19.
After instruction merging, the results were 68/48 for the Snort
module and 22/17 for the filtering.

Current results are encouraging: even with a prototype
compiler and small applications, the instruction count obtained
with the compiler is within 20% of the size of hand-optimized
code before VLIW merging. Moreover, this was obtained by
a proof-of-concept code that often used simple algorithms to
speed up the implementation. We believe production-quality
code can push this result even more. The differences between
manual and automatic optimizations can be mainly ascribed
to the simple VLIW merging algorithm employed, that does
not perform instruction reordering, and to some missed copy
folding opportunities. Both these issues can be addressed with
standard techniques described in literature that do not require
a redesign of the compiler framework to be implemented.
Finally, it is worth noticing that the VLIW merging is not
a fundamental module for the objectives of this paper.

A second evaluation objective is to identify what kinds of
packet processing applications can be compiled into X11 code.
In this area it is more difficult to present tangible results.
However, we have focused on the primitives that the NetVM
and its compiler make available on the X11 platform, trying
to ascribe any limitations to either the NetVM model itself
or to the target architecture, that in turn limit the class of
applications that can be compiled.

The result is that simple L2-L3 applications can be imple-
mented since all the required primitives are supported by the
compiler. The range of supported applications can be extended
to L4 if the application is stateless.

On the contrary, it is more difficult to translate applications

that need to keep complex state information such as those
using data memory in the NetVM model. Simple cases (e.g.
counters) can be handled directly because there are appropriate
provisions in the X11 processor but others, including TCP
session tracking tables, are more difficult to map, although
it is still possible to implement these more complex applica-
tions using other mechanisms. Choices range from performing
updates in a control-plane context where it is possible to
ensure that no concurrent conflicting operations happen to
introducing more elaborate special-purpose external engines.
However, such solutions are beyond the scope of this paper.

VII. CONCLUSIONS

This paper presents a compiler that is able to generate packet
processing code for the Xelerated X11 network processor.

The primary objective of this work was to address the
problem of mapping L2/L3 packet processing applications
on a systolic array processor, without using native assembly
and without penalties in flexibility and performances. The
secondary aim was to investigate the generality of the NetVM
model and its capability to represent an adequate abstraction
layer for porting applications on different network processors.
Particularly, the synchronous systolic pipeline architecture of
the X11 NPU is radically different from the ones of more
traditional processors, therefore the ability of successfully
mapping on it the NetVM abstraction gives a good insight
about the validity of the model.

In this work, we extended the NetVM compiler infrastruc-
ture with an X11-specific back-end, so that existing packet
processing programs expressed in NetIL can be compiled
into low-level code that can run on the X11 processor. In
our results, we have proven that several, although simple,
programs can be generated with only about 20% overhead
compared to hand-coded methods.

Among the problems encountered in the mapping, a general
issue concerns loops. Due to its structure, the systolic pipeline
disallows the presence of generic loops in a program, although
our approach provides a method for dynamically detecting
a sub-class of loops whose number of iterations is known
at compile time and unfolding them within the PISC stages.
Unbounded loops, or loops with a high iteration count are not
supported. Moreover, we claim that for the packet forwarding
applications at hand, this limitations may actually not be so
serious as it might appear; for instance [13] demonstrates that
it is possible to write a complete L7 application without loops.
Furthermore, it is often possible to impose a practical limit
to the loop unrolling also in case of theoretically unbounded
loops.

A second issue concerns accessing shared state. The non-
stallable nature of systolic pipelines makes the implementation
of mutual exclusion mechanisms different from traditional
architectures. Certain types of atomic operations on shared
resources are made available by the X11 hardware, and are
successfully exploited by the compiler in order to enhance
the probability of source programs being mapped to the target
processor.
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Fig. 3. Code size for the test programs.

From a programmability viewpoint, it is still an open issue
what packet processing applications can be executed by a
systolic array such as the X11. The work presented in this
paper focused on relatively straightforward L2/L3 applications.
However, in order to be able to manage functions such as TCP
session tracking, the back-end would have to be extended e.g.
with the capability to generate code for the X11 control plane,
or to make use of ad-hoc external engines.

The NetVM model showed a problem in handling variables
with different data sizes. In particular the X11 is a 16-bit
processor, while the NetVM abstraction relies on 32-bit vari-
ables. The compiler uses an heuristic in order to infer the size
of variables and registers, but a more robust approach would
involve an extension of the NetVM model itself. Another issue
was related to the by-design limit of modelling data-plane
functionalities only, which left some operations performed by
the control plane out of the mapping.

An interesting result is related to the BURS system, which is
shown to be able to recognize patterns of instructions and map
them appropriately. However it can hardly cope with the more
general problem of recognizing whole algorithms in the source
code. In this respect some more investigations are needed and
may be objective of future work.

On the positive side, the compiler was able to map the
NetVM model nicely, including virtual coprocessors, and it
was able to efficiently exploit the hardware resources (e.g., on-
circuit TCAM and native counters) not originally envisioned in
the NetVM model, guaranteeing performance and portability,
thus disproving the common belief that NPUs must be coded
in assembly by hand.

Concluding, given the limitations that we have detected we
consider our work a success in showing that (1) it is possible to
construct a compiler that generates efficient code for a systolic
array network processor; (2) with some modifications, the
NetVM model is general enough to be mapped on a radically
different packet processing architecture.
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