
28 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Modern standard-based access control in network services: XACML in action / Scaglioso, PIERVITO GIOVANNI; Basile,
Cataldo; Lioy, Antonio. - In: INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY. -
ISSN 1738-7906. - STAMPA. - 8, no. 12:(2008), pp. 296-305.

Original

Modern standard-based access control in network services: XACML in action

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1872708 since:

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

296

Manuscript received December 5, 2008

Manuscript revised December 20, 2008

Modern Standard-based Access Control in Network Services:
XACML in action

Piervito G. Scaglioso, Cataldo Basile, Antonio Lioy

Politecnico di Torino, Torino, Italy

Summary
Access control in distributed systems is a complex
problem that can be tackled in several ways. The XACML
standard provides a possible solution, with several benefits
and some drawbacks. In this paper we investigate the
concepts behind distributed access control, review the
XACML standard, and provide practical suggestions about
the components to be used in building a XACML-based
distributed access control system.

Key words:
Security Policy, Authorization, Access Control, XACML.

1. Introduction

Access control is the ability to permit or deny to a specific
subject the use of a resource.
In a general scenario the access control process is managed
by an authorization system (AS) that takes decisions
according to some authorization policies.
An authorization policy consists of a set of 4-tuples
(s,r,a,c) stating that the subject s is allowed to perform the
action a on resource r if the set of condition c evaluates to
true. The set of actions a subject is allowed to perform on a
resource are called privileges.
Authorization policies are implemented on resources by
ACA (access control agents). An ACA sends to the AS a
request as a triple (s,r,a) asking if the subject s owns the
necessary privileges to perform action a on resource r. For
example, in the access request "Allow the finance manager
to create a file in the invoice folder on the finance server,"
the subject is the "finance manager," the resource is the
"invoice folder on the finance server," and the action is
"create a file."
In a traditional centralized computing architecture (based
upon mainframe and terminals) the role of AS and ACA
was mainly played by the operating system (OS). Multi-
user OS employ various security features (e.g. password-
based authentication, file-based Access Control List
known as ACL) to identify users and to permit or deny
actions. Additionally, the OS is able to log all the security
relevant events. The assumption was that users interact
with a centralized system through devices having no

autonomous computational capability, being mere I/O
devices (i.e. pure terminals). Therefore all actions are
performed on the hardware controlled by the OS which is
then able to maintain a complete and consistent view of
the system’s state and to enforce privileges and restrictions.
Nowadays this monolithic and centralized approach to
access control is largely infeasible because modern
computing paradigms heavily exploit the concept of
distributed computing. We are surrounded by a growing
number of interconnected entities having increasing
computational power. Peer-to-peer protocols are gaining
ground and already substituted the traditional client-server
approach in various fields (e.g., bit torrent[1]). To better
use resources, grid computing [2] split up programs into
parts that run simultaneously on multiple computers
communicating over a network Computers may also
interact without human intervention, for example using the
Web Service technology. Moreover, mobile software
agents can choose to migrate between computers at any
time during their execution [3]. It is therefore clear that the
access control problem in distributed systems cannot be
simply solved by the OS because there is no way to keep a
complete and consistent view of the global state of the
system. For this reason, many alternative access-control
mechanisms for distributed systems have been proposed in
the literature. The proliferation of independent solutions
led researchers to concentrate on more general schemes
and authorization frameworks (e.g., Akenti [4], Ponder [5],
WS-Policy [6], PERMIS [7]).
All these frameworks specify their own policy languages,
enforcement technique, and data formats. It is evident that
a common standardized method for access control and
policy enforcement it absolutely needed to build
interoperable distributed systems: first of all, because the
administration of different systems may require the usage
of various access control methods, and second because
cooperation between different security domains (e.g.,
merging policies from two different interacting
companies) would otherwise become a nightmare.
XACML [8] (eXtensible Access Control Markup
Language) is the standard proposed by OASIS (the
Organization for the Advancement of Structured
Information Standards) to simplify these problems.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

297

XACML was designed to replace existing access control
mechanisms. It makes possible a simple, flexible way to
express and enforce access control policies in a variety of
environments, using a single language. It has a number of
advantages over other access control policy technologies.
For instance, security administrators can describe an
access-control policy once, without having to rewrite it
several times in different application-specific languages.
On the other hand, application developers don’t have to
invent their own policy language and write code to support
it because they can reuse existing standardized code.
Theoretically, XACML is the definitive solution to access
control problems in a distributed scenario. However its
practical use opens several issues. In this paper we
investigate the concepts behind distributed access control,
review the XACML standard, and provide practical
suggestions about the components to be used in building a
XACML-based distributed access control system.
The paper is organized as follows. Section 2 provides a
clear overview of the XACML standard. After that, in
Section 3 we present more in details the XACML entities
interactions. Section 4 analyses some of the most
interesting XACML implementations, looking towards
their application to the web services and the Service
Oriented Architecture (SOA) [9]. Section 5 presents the
actual interoperability between XACML entities,
highlighting the open issues that according our opinion,
should be take into account to improve XACML. Section 6
gives the conclusions.

2. An overview of XACML

XACML is an XML-based syntax that describes both a
policy language to specify general access control
requirements and request/response formats for the
authorization process.
It provides:
• a way to base access control decisions on attributes of

both a subject and a resource;
• a mechanism for supporting multiple subjects who

have multiple roles (addressed by the XACML profile
for RBAC [10]);

• a method to share policies in a distributed
environment;

• a way to separate policy definition from its
implementation in the applications.

Additionally XACML suggests a management architecture
for the decision-making process. This architecture is
described by a data-flow model based on the ITU
Recommendation X.812 [11] and on the standard ISO/IEC
10181-7 [12][13].
It is worth noting that while the formats are standard and
defined by means of an XML Schema, the usage of
proposed architecture is not mandatory and does not
constitute a standard.

In the next sections we will present basic properties of
XACML language and architecture.

2.1 The XACML Policy language

The policy language model is composed of several
hierarchical objects depicted in Figure 1.
XACML policies are XML documents rooted in a Policy
or PolicySet element. A PolicySet is a container that can
hold other Policy or PolicySet instances.
A Policy represents a single access control object,
expressed through a set of Rule elements.
A Rule is composed by one Target, one or more
Conditions and an Effect.
A Target is basically a set of simplified attribute values to
uniquely identify Subject, Resource and Action. For
example, a username, their group membership, the file
they want to access, and the time of day are all attribute
values.
Policy and PolicySet may be associated to Target elements.
The Target is used both to check the request applicability
and to index the Rule, Policy and PolicySet.
The Condition is an optional Boolean function used to
further refine the applicability of the Rule. For example in
the sentence “Only allow logins from 9am to 5pm” the
conditions serves to indicate the [9am-5pm] interval in
which access must be granted.

Fig 1: XACML Policy Language.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

298

The Effect indicates the rule-writer’s intended
consequence of a “TRUE” evaluation for the Rule. Two
values are allowed: Permit and Deny.
Another element is the Obligation. It defines the
requirements to be satisfied when allowing the requested
Action. For example, a possible Obligation is to send an
email to the administrator when the actual resource is
accessed [14].
Additionally, the Policy contains a
RuleCombiningAlgorithm field and the PolicySet contains
PolicyCombiningAlgorithm field whose meaning is
related to the decision process and will be explained in
Section 2.4.

2.2 General syntax of XACML request and response

XACML also specifies the format used to convey an
authorization request and related decision, i.e., the
response. This format is called XACML Context; it is
defined in a XML Schema (see Figure 2).
A Request Context consists of a set of attributes associated
with the requesting subjects, the resource acted upon, the
action being performed and the environment.
The Subject element specifies the entity making the access
request. Resource element defines the resource to which
the Subject has request access. Action element explains the
action that the Subject wishes to perform on the resource
(e.g., read, write or execute).
The Environment element describes the resource
environment (e.g., date, time, etc.).
Subject, Resource, Action and Environment can contain
multiple attribute values.
A Response Context contains one or more Results. They
are obtained from the evaluation of the decision Request
against the policy. The Decision can be one of the
following strings: Permit, Deny, Not Applicable (if no
applicable policies or rules could be found), or
Indeterminate (if some error occurred during policy
evaluation process). The Status returns optional
information to characterize the error. Response may also
include Obligations, if they are defined in the Policy or
PolicySet evaluated.

2.3 The XACML high-level architecture

The XACML architecture includes four key components:
the PEP (Policy Enforcement Point), the PDP (Policy
Decision Point), the PAP (Policy Administration Point)
and the PIP (Policy Information Point).
The PEP enforces access control by making decision
requests and enforcing authorization decisions.
The PDP evaluates the applicable policy and renders an
authorization decision.
The PAP creates security policies and stores them in an
appropriate repository.
The PIP serves as the source of attributes or data required
for policy evaluation. It manages all the information
related to subject, resource and environment.
A simplified version of this model is depicted in Figure 3.
The typical work flow includes the following steps:
1. The PAP writes policies and policy sets and makes them
available to the PDP.
2. The access requester sends an access request to the PEP.
It may include attribute values of the subjects, resource,
and environment.
3. The PEP constructs a standard XACML request Context
and sends it to the PDP.
4. The PDP asks for any additional Subject, Resource, and
Environment attribute values from the PIP.
5. The PIP obtains the requested attributes and returns
them to the PDP.
6. The PDP asks to the PAP for the policies according to
the request’s target.
7. The PAP returns the request policies.
8. The PDP evaluates the related policy and returns the
standard XACML Response Context to the PEP.
9. The PEP enforces the authorization decision.

2.4 Policy evaluation

According to the previous work flow, the PEP sends the
authorization request to the PDP using the XACML
Context. It should be composed almost exclusively of
attribute values about Subject, Resource and Environment.
The PEP is asking the PDP if a subject is allowed to

Fig. 3: XACML architecture and work flow

Fig. 2: XACML Request/Response syntax

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

299

perform the specified action on the resource in the
environment.
Then, when a request arrives to the PDP, it first locates all
the Policies that matches the Target (by means of the PAP),
after that it compares, using some particular functions,
attribute values in the Request Context against attribute
values contained in the policy.
When a policy is composed by a single Rule, the PDP take
into account the Conditions defined in the actual Rule. If
they evaluate to true, then the Rule’s Effect (Permit or
Deny) is returned to the PEP (in the Decision element of
the Response Context). If the Condition evaluates to false
then the PDP returns to the PEP the value Not Applicable
(in the Decision element of the Response Context).
Otherwise if many Rule instances are contained in a Policy,
PDP needs a method to reconcile the actions specified by
all Rules. This is the meaning of Rule Combining
Algorithm in the Policy element.
Analogously, for PolicySet, the Policy Combining
Algorithm defines a procedure for arriving at an
authorization decision given the individual results of
evaluation of a set of policies.
In the XACML specification the standard combining
algorithms defined are: Deny-overrides, Permit-overrides,
First-applicable and Only-one-applicable.
For instance, the "Only-one-applicable" policy combining
algorithm only applies to Policy elements. The result of
this combining algorithm ensures that one and only one
Policy or PolicySet is applicable.
If no Policy or PolicySet applies, then the result is "Not
Applicable", but if more than one Policy or PolicySet is
applicable, then the result is "Indeterminate" (see the
XACML specification for further details).

3. XACML entities interaction

As we have seen the authorization process involves several
entities (e.g., PDP, PEP, PAP and PIP) that must
collaborate.
Although the XACML specification clearly describes
components, it does not strictly define the interactions
among these entities. This allows administrators or
developers to adapt the system entities according to their
requirements.
In the following sections we present more in details these
entity interactions.

3.1 PDP-PEP

XACML does not define any mechanism for transmitting
requests, responses, and attributes over a network.
It addresses only a configuration where the PDP and PEP
are on the same system.
SAML (Security Assertion Markup Language), another
OASIS standard [15], is traditionally used to this purpose.
How to use SAML 2.0 to carry the XACML messages

between the XACML actors is defined in the SAML
profile for XACML [16].
According to the profile specifications there are two
general elements used to manage the messages exchange:
a Query (an extension of the SAML Request element) and
a Statement (the response to the Query giving one or more
results).
For PEP-PDP interaction the profile defines both a type of
query (for Requests) and a type of statement (for
Response). They are XACMLAuthzDecisionQuery and
XACMLAuthzDecisionStatement.
XACMLAuthzDecisionQuery carries the XACML request
that PEP sends to the PDP to request authorization
decision.
XACMLAuthzDecisionStatement (an extension of the
SAML Statement element) carries the XACML Response
message sent from the PDP to the PEP.
When SAML is used, the PEP converts the XACML
request into a XACMLAuthzDecisionQuery and sends it
to the PDP. The PDP converts the SAML query into an
XACML request and processes the request against the
XACML policy. The XACML response is converted into a
XACMLAuthzDecisionStatement and sent back to the
PEP, which converts it back into an XACML response.
SAML does not provide message confidentiality only
message integrity. If data being transmitted are sensitive, it
must be protected using SSL/TLS or WS-Security.
Otherwise if the SAML protocol is being used without
SSL/TLS, all SAML messages must be signed
appropriately.

3.2 PDP-PAP

The XACML 2.0 Core Specification does not explicitly
address how policies are made available to the PDP or
controlled once they are available.
However, a XACML 2.0 entity, referred to as a PAP is
functionally defined as “a system entity that creates a
Policy or PolicySet”. Additional references are contained
within the XACML 2.0 Core Specification that explains
the responsibilities of the PAP regarding such topics as
composition of PolicySet and maintaining unique
identifiers for Policy.
Two possible mechanisms for policy administration
between a PAP and PDP are available: (1) a SAML-based
request-response protocol and (2) a simple SAML
Assertion-based storage format.
In the first case the PDP queries the PAP for policies using
the mechanism described in [16]. This mechanism
provides both a format to query a policy, and a format to
carry the requested policy (an extension of SAML
Statement). They are XACMLPolicyQuery and
XACMLPolicyStatement.
XACMLPolicyQuery is used for requesting policies from
the PAP. The element is extension of SAML Request
element. For example, this query can be used to retrieve
policies specific to a certain Target.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

300

XACMLPolicyStatement carries the policies requested
from the PAP.
In the second case a PAP may use a simple SAML
Assertion-based storage format, for placing policies in a
generic repository. It may be accessed directly by the PDP.

3.3 PDP-PIP

Attributes contained in a request is compared by PDP
against attribute values in the appropriate policies (referred
to the same request’s Target).
If these attributes are not in the request, the PDP can ask
them to the PIP.
In the XACML specifications are defined two mechanisms
to retrieve attribute values: the Attribute Designator used
to retrieve attribute values from a request (e.g., by
specifying the name, type, and issuer of attributes) and the
Attribute Selector that allow the PDP to look for attribute
values through an XPath [17] query.
Using the Attribute Designator the PDP looks for that
attribute value in the request, otherwise it use other source
(e.g., LDAP directory) to retrieve the needed informations.
This element contains a URN that identifies the attribute.
There are four kinds of Attribute Designator, one for each
type of attributes in a request: Subject, Resource, Action,
and Environment.
Additionally attributes can be divided into different
categories. For example to support the notion of multiple
subjects making a request, subject attributes are
categorized (e.g., the user, the user's workstation, the user's
network, etc.). Then Subject Attribute Designators can
also specify a category to look in.
Otherwise the Attribute Selectors, through an XPath
expression, can be used to resolve some set of attribute
values in the request Context or in other location (e.g., a
XML database).
Since the Attribute Designator and the Attribute Selector
can return multiple values, XACML provides a special
attribute type called a Bag.
Bags are unsorted value collections that allow duplicates,
and are exclusively used by the PDP. It manages Bags by
means of a set of ad hoc functions. If no matches are made,
an empty bag is returned.
As an alternative to the XACML native methods, SAML
Query and Statement extensions can also be used. They
are AttributeQuery and AttributeStatement.
AttributeQuery (a standard SAML Request) may be used
by the PIP to request attributes from Attribute Repositories
(e.g. LDAP, etc). For example, this query can be used to
retrieve administrator’s email address.
AttributeStatement is the response to the attribute query
that can contains one or more values.

4. XACML in action

In order to use XACML for access control in a web service
scenario, all the described entities (PAP, PIP, PDP and
PEP) must be available. The following subsections present
available open source implementation and related issues.

4.1 Policy Administration Point

According to the XACML data-flow model, the first step
to be accomplished is policy creation and storage by the
PAP.
Several tools have been developed to implement this
functionality: UMU XACML policy editor [18]. XACML-
Studio (XS) [19]. Additionally, eXist, an open source
native XML database, supports the creation of XACML
policy [20] by means of a GUI.
Once the policy has been written and stored, it is necessary
to verify its correctness. To this purpose, policy
verification tool are available. These tools are used to
formally check general properties of access control
policies.
Examples of these tools are the ones developed by Hughes
and Bultan [21] e by Fisler et al. [22].
Hughes and Bultan translate XACML policies to the Alloy
language [23] and check their properties using the Alloy
Analyzer.
Fisler et al. developed an XACML policy verification tool
called Margrave [24] that verifies user-specified properties
and performs change-impact analysis.
Additionally Zhang et al. [25] developed a model-
checking algorithm with a supporting tool to evaluate
access control policies written in RW languages, which
can be converted to XACML.
These approaches support only a subset of the XACML
policy specification language because it is challenging to
generalize these verification approaches to support full
featured XACML policies with complex conditions.
Some of these approaches also require the user to specify a
set of properties in some formal language to be verified;
however, these formally specified properties often do not
exist in practice.
To avoid this problem E. Martin et al. [26] propose an
approach for conducting conformance checking of
XACML access control policies synthesizing first of all
the concrete and desirable properties (from the policy
under checking) and then feed the synthesized concrete
properties to a policy verification tool or policy testing
tools available.
At the same time many researchers are working on the
automatic generation of XACML policies from business
process specification such as BPMN [27] and WS-CDL
[28].
Wolter et al. [29] define a mapping between the XACML
and the BPMN meta-models [30] to provide a model-
driven extraction of security policies from a business
process model expressed in BPMN. The translation

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

301

process is done by means an XSLT converter that
transforms modelled security constraints into XACML
policies. Clearly correctness and completeness of
authorization constraints must be verified into BPMN.
In [31] Robinson et al. describe the idea to automatically
derive the minimal authorizations required for the
collaboration starting from WS-CDL specification.
Additionally they aims at enabling and disabling
authorization rules on in a just in time manner that
matches the control flow. Nevertheless, they proved the
effectiveness of their approach only in a well-defined
collaborative scenario.
Actually no “real” tools are available to automatically
create XACML policies starting from business processes
model, although some rough prototypes are available.
Therefore despite the attempts to ease XACML policy
creation, if you want to write your access control policies
you’d better use a XACML policy editor, store them into a
database and check them with a policy verification tool
(e.g., the Margrave tool).

4.2 Policy Decision Point

The core of an access control architecture is the decision
engine, called the PDP. We have therefore analysed the
features and the performance of several available PDP
implementations.
Sun Microsystems Laboratories has provided an open
source implementation of the XACML written in Java and
available from SourceForge [32]. The most important
feature is a set of API to manage the PDP lifecycle. The
API supports basic PDP operations for parsing policies
and request/response documents, for deciding about
applicability of policies and for evaluating requests against
policies. Additionally, the API provides methods to
manage standard attribute types, functions and
combination algorithms, and to add new functionalities
(e.g., new mechanisms for retrieving policies from PAP
and attributes from PIP).
Based on this API, under the Apache License a PAP and a
PDP have been implemented as web services that use
Axis2. The project is called XACMLight [33]. It works
theoretically in any J2EE compliant container but it was
tested only on a native Axis2 server.
Other XACML implementations are XACML.NET 0.7
[34], Parthenon XACML policy engine [35], Enterprise-
java-XACML [36], Herasaf [37] and XEngine[38].
We have exclude from our analysis Herasaf and XEngine
because they are not available for testing.
Our opinion is that it is not possible to highlight a generic
“perfect” choice among the available implementation,
because user requirements must be taken into account.
The Parthenon Policy engine is the best choice if strict
compliance to standard is a requirement, but since it is not
an open source software, we exclude it from our
classification.

The Sun PDP fails in supporting just 3% of the XACML
mandatory functionalities compared to XACML.NET
implementation that fails in supporting 9% of the same
ones [39].
Nevertheless the Sun implementation presents some
shortcomings leading to non optimal performance:
1) it does not have any cache mechanism for policy or
evaluation result and this slows down the policy evaluation
process;
2) it simply matches any new request against each
available policy and for this reason it is not appropriate if
the number of policies increases.
Starting from these considerations, it is clear that the two
important stages in an XACML policy evaluation for
performance analysis are:
1. loading of policy/policies from disk to main memory;
2. evaluation of request against the loaded policies.
Turkmen et al. [40] created an experimental schema to test
performance of any generic PDP implementation. To stay
in close contact with the real world usage patterns for
XACML, they created an experimental schema with
different elements representing various usage scenarios.
Each element provides a different view to the access
control problem on diverse environments. Their policy test
suite is:
• large number of policies (over 1000);
• large number of rules (over 1000 in a single policy);
• 10 policies that have some similar rule inside.

According to the authors’ results, Enterprise-java-XACML
is the best choice in terms of policy evaluation time
because it has many mechanisms for efficient policy
evaluation such as target indexing and policy and result
caching. In particular target indexing significantly speeds
up the policy applicability search process for the given
request. However it was the worst in policy loading.
Otherwise XACMLight inherits from Sun’s
implementation the problem in managing large number of
policies.
According to the authors’ results, XEngine is also an
efficient policy evaluation engine. XEngine first converts a
textual XACML policy to a numerical policy. Then it
converts a numerical policy with complex structures to a
numerical policy with a normalized structure. Finally, it
converts the normalized numerical policy to tree data
structures for efficient processing of requests. The
experimental results show that XEngine is more efficient
than the Sun PDP, and the performance difference grows
almost linearly with the number of rules.

4.3 Policy Information Point

The PIP acts as source of attributes and in a web service
scenario holds information about how to associate HTTP
request attributes and sender information to XACML
subject, resource and environment identifiers according to
the XACML schema.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

302

PIP can be built by using the Sun implementation via the
com.sun.xacml.finder package that provides to the PDP
support for retrieving attributes not already present in the
request. It aims to resolve resource identifiers or to
generate real-time values.

4.4 Policy Enforcement Point

The PEP is the entity that enforces PDP’s decisions. The
main role of this agent is to be the interface between the
managed application and the PDP. Hence, it translates the
requests which are expressed in the application specific
language into the standardized protocol language
understood by the PDP. The PEP can also get additional
information (attributes of subjects, resources and
environments) from the PIP that will help the PDP to take
its decision.
Finally it translates the PDP’s decisions into the
application specific language and enforces the decision.
When using XACML in a Web service or Web application,
PEP can be:
1. embedded in the source code (Figure 5);
2. placed as an additional module between the client

and the web service container (e.g., Apache, JBoss)
(Figure 6).

In the first case the web service must be able to generate
request and process answers according the XACML syntax
for request/response as depicted in figure 5.
Already most of the code that you need for building a PEP
is provided by Sun’s implementation in the
com.sun.xacml.ctx package (which represents the context
schema). More details are available in the SUN’s
Developer Guide.
Otherwise, it is possible to use a module that intercepts the
SOAP messages direct to and from the web service.

The module can maintain the XACML Context and other
information (e.g., the state).
Laborde et al. [41] explain this idea. Their work is inspired
by the Apache HTTP server. Apache provides a basic core
HTTP server that can be enhanced by additional and
configurable modules. In the same way, they propose a
core PEP that calls additional modules to translate requests,
get further information in different locations and
translate/enforce PDP’s decisions.
As an alternative the module can be implemented by
means of a JAX-WS APIs as SOAP handler that
implements the PEP functionality [42].
Actually application independent PEPs are not available
because it must consider web service related attributes.
For usability, ease of maintainability and extensibility, we
suggest to implement a PEP as separated module acting as
SOAP message interceptor that can be integrate in a HTTP
server.

5. Actual PEP-PDP usage

5.1 Interoperability

XACML is an industry accepted standard that provides a
well defined structure to create rules and policy sets to
make complex authorization decisions.
The actual interoperability between XACML entities from
different vendors was demonstrated in two different times.
The first-ever XACML interoperability demonstration was
hosted at the Burton Group Catalyst Conference in June
2007. The demonstration event occurred with eight
vendors showcasing the results of their work.

Fig. 4: PEP integrated in WS code

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

303

There were two particular use cases in this demo, which
required interoperability between vendor implementations
of PEP, PDP and PAP: (1) Authorization Decision and (2)
Policy Exchange.
Here we are interested in first case where four different
scenarios were defined: (1) Customer Access, (2)
Customer Transaction, (3) Account Manager Access and
(4) Account Manager Approval.
The Authorization Decision Interoperability Demo aimed
to demonstrating that XACML version 2.0 requests
generated by the PEP of Vendor A (PEP-A) are properly
evaluated by the PDP of Vendor B (PDP-B), where
Vendor A and Vendor B may be any of the vendors
participating in the Interoperability Demo .
At the RSA Conference 2008 in San Francisco, nine
organizations came together to demonstrate, to the second
time, interoperability simulating a real world scenario
provided by the U.S Department of Veterans Affairs.
Vendors showed how XACML obligations can provide
capabilities in the policy decision making process. The use
of XACML obligations with SAML was also highlighted.
In looking at the two Interoperability Demo scenario
documents [43] [44], it is clear that some specific choices
were made to make the Demo work:
1) Use of the SAML 2.0 Profile for XACML 2.0 which
defines a Request/Response mechanism for Request and
Response Context.
2) Implementation of the XACML Interface of the PDP as
a SOAP Interface which accepts a XACML authorisation
decision query (by means of SAML syntax) and returns a
XACML authorisation decision statement.

5.2 Shortcomings in XACML

XACML is just an access control policy language, thus it
cannot be considered as a basis for a full authorization
infrastructure. Even in the version 2 of the standard there
are some deficiencies that must know and worked around:
• It does not define how user credentials are validated

(the specifications only talks about user attributes).
• It does not specifies how policies are securely stored

and retrieved;
• It does not foresee integration with auditing

mechanisms. In fact if XACML is used, it is hard to
keep track of access rights of users or monitoring what
a user can do in the system.

• It does not say how environmental attributes are
securely obtained;

• It does not specify what an obligation is and how
manage it.

Additionally, current version of the standard does not
cover the concept of delegation and specifically the
delegation of policies, both in static and in dynamic way.
A delegate is defined as “A person authorized to act as
representative for another; a deputy or an agent”.
Delegation of authority is the act of one user with a
privilege giving it to another user (a delegate), in
accordance with some delegation policy.
The delegation concept is used to cater for the temporary
transfer of access rights. However the ability of a user to
delegate (or revoke) access rights to another must be
tightly controlled by security policies. This requirement is
critical in systems allowing cascaded delegation of access
rights. A delegation policy permits subjects to grant
privileges, which they possess (due to an existing
authorization policy), to grantees to perform an action on

Fig. 5: PEP as additional module

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

304

their behalf (e.g., passing read rights to a printer spooler in
order to print a file). This last issue is directly addressed
by the forthcoming XACML version 3.

5.3 Open Issues.

XACML provides a standard, flexible and fine-grained
mechanism for defining and enforcing access controls
across distributed systems but according to our opinion it
is not mature yet. Still, many issues remain to be resolved
before the emergence and adoption of XACML as stable
standard. We propose and present a list of the open issue
to improve XACML:
1. standardizing the attribute values;
2. standardizing the obligations that are returned, along

with a protocol for talking to an Obligations Service;
3. integration with other authorization frameworks that

use different policy languages (e.g. EPAL [45], Ponder,
PERMIS, P3P [46]).

4. retrieving attributes from multiple sources;
5. support for Sticky Policies1 [47];
6. building application independent PEPs and obligation

services.

6. Conclusion

XACML provides a standard mechanism to satisfy
interoperability requirements among the entities of an
access control system. However, it does not address all the
concepts that could be necessary to manage distributed
access control system (e.g., delegation). Most likely it will
be improved in its next version but for current use these
shortcomings should be addressed in other ways.
Several implementations of the basic XACML
components are available. But our analysis showed that
they are not equivalent in terms of functionality and
performance. Therefore a careful selection should be
performed before using them in a practical implementation.
Despite these issues we conclude that XACML is ready for
prime time access-control systems and will likely be the
basis for several future improvements in this area.

References

[1] “Bit Torrent”, www.bittorrent.com.
[2] “Grid Computing”,

 http://en.wikipedia.org/wiki/Grid_computing .
[3] “Mobile Agent”, http://en.wikipedia.org/wiki/Mobile_agent
[4] M. Thompson, A. Essiari, S. Mudumbai, “Certificate-based

Authorization Policy in a PKI Environment,” ACM Trans.
on Information and System Security, August 2003

1 Sticky policies are strictly associated to users’ data and drive access
control decisions and privacy enforcement.

[5] N. Damianou, N. Dulay, E. Lupu, M. Sloman, “The Ponder
Policy Specification Language”. Proc. Policy 2001,
Workshop on Policies for Distributed Systems and
Networks, Bristol, 29-31 Jan. 2001, Springer-Verlag LNCS
1995, pp. 18-39

[6] “The Web Services Policy Framework (WS-Policy)”,
www.w3.org/Submission/WS-Policy/

[7] “PERMIS”, www.permis.org
[8] “eXtensible Access Control Markup Language (XACML)”

Version 2.0, OASIS Standard, 1 February 2005,
http://docs.oasisopen.org/xacml/2.0/access_control-xacml-
2.0-core-spec-os.pdf

[9] “Web Services Architecture”, http://www.w3.org/TR/ws-
arch

[10] “XACML profile for RBAC”, http://docs.oasis-
open.org/xacml/cd-xacml-rbac-profile-01.pdf

[11] “ITU Recommendation X.812”,
http://www.itu.int/rec/T-REC-X.812/

[12] “ISO/IEC 10181-7:1996”,
www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detai
l.htm?csnumber=18200

[13] RFC-2573 “A Framework for Policy-based Admission
Control

[14] C. Bettini, S. Jajodia, X. S. Wang, D. Wijesekera,
Provisions and obligations in policy rule management and
security applications, Proc. 28th VLDB Conference, Hong
Kong, China, 2002

[15] “Security Assertion Markup Language (SAML)”, OASIS
Standard, March 2005,
www.oasis-open.org/committees/security/

[16] “SAML profile for the XACML”, OASIS February 2005,
docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-
saml-profile-spec-os.pdf

[17] “XML Path Language (XPath)”, W3C, November 1999,
http://www.w3.org/TR/xpath [rif]

[18] “UMU-XACML-Editor”, Version 1.2.0, University of
Murcia (UMU), Spain , http://xacml.dif.um.es

[19] “XACML-Studio (XS)”, http://xacml-studio.sourceforge.net
[20] “Open Source Native XML Database”,

http://exist.sourceforge.net
[21] G. Hughes, T. Bultan, “Automated verification of access

control policies”. Technical Report 2004-22, Dept. of
Computer Science, University of California, Santa Barbara,
2004

[22] K. Fisler, S. Krishnamurthi, L. Meyerovich, M. Tschantz,
“Verification of change-impact analysis of access-control
policies”. In International Conference on Software
Engineering, pp. 196–205, 2005

[23] D. Jackson, I. Shlyakhter, M. Sridharan, “A
micromodularity mechanism”. In Proc. 8th ESEC/FSE,
pages 62–73, 2001

[24] “An API for XACML Policy Verification and Change
Analysis”, Margrave, Brown University, Providence (RI),
http://www.cs.brown.edu/research/plt/software/margrave/

[25] N. Zhang, M. Ryan, D. P. Guelev, “Synthesising verified
access control systems in XACML”. In Proc. 2004 ACM

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008

305

workshop on Formal Methods in Security Engineering,
pages 56–65, 2004

[26] E. Martin, V. C. Hu, J. Hwang, T. Xie, “Conformance
Checking of Access Control Policies Specified in XACML”,
Proceedings of the 1st IEEE International Workshop on
Security in Software Engineering, July 23-27, 2007

[27] “Business Process Modeling Notation (BPMN)”,
http://www.bpmn.org

[28] “Web Services Choreography Description Language (WS-
CDL)”, W3C, November 2005, www.w3.org/TR/ws-cdl-10/

[29] C. Wolter, A. Schaad, C. Meinel “Deriving XACML
Policies from Business Process Models”, WISE 2007
Workshops, LNCS 4832, pp. 142–153, 2007

[30] C. Wolter, A. Schaad, “Modeling of Authorization
Constraints in BPMN”. BPM 2007. Proc. of the 5th Int.
Conf. on Business Process Management (2007)

[31] P. Robinson, F. Kerschbaum, A. Schaad, “From business
process choreography to authorization policies”, 20th IFIP
WG 11.3 Working Conference on Data and Applications
Security (2006)

[32] Sun’s XACML implementation, Version 1.3, July 2004,
sunxacml.sourceforge.net/guide.html

[33] “XACMLight”, http://sourceforge.net/projects/xacmllight
[34] “XACML.NET”, http://mvpos.sourceforge.net/
[35] “Parthenon XACML policy engine”,

http://www.parthcomp.com/xacml_toolkit.html
[36] “Enterprise java XACML”,

 http://code.google.com/p/enterprise-java-xacml/
[37] “HERASAF”, http://herasaf.org/xacmlimpl/index.html
[38] F. C. Alex, X. Liu, “Xengine, “A fast and scalable XACML

policy evaluation engine,” Department of Computer Science,
Michigan State University, East Lansing, Michigan, Tech.
Rep. MSU-CSE-08-2, March 2008.

[39] N. Li, J. Hwang,T. Xie, “Multiple-Implementation Testing
for XACML Implementations,” in 11th Workshop on
Testing, Analysis and Verification of Web Software, 2008.

[40] F. Turkmen, B. Crispo “Performance Evaluation of
XACML PDP Implementations”, SWS’08, October 31,
2008, Fairfax (VA, USA)

[41] R. Laborde, M. Kamel, F. Barrere, A. Benzekri,
“PEP=Point to Enhance Particularly”, IRIT, UPS, Toulouse,
POLICY 2008, 2-4 June 2008 , New York (NY, USA)

[42] “JAX-WS APIs as SOAP handler that implement PEP
functionality”,
https://prof.hti.bfh.ch/fileadmin/home/due1/app_sec/Integrar
ting_XACML_into_JAX-WS_and_WSIT-20081127.pdf

[43] Burton Group Conference 2007 Interoperability Demo
scenario document, http://xml.coverpages.org/XACMLv20-
Interop-Burton2007InteropDemo-document.zip.

[44] RSA 2008 Interoperability Demo scenario document,
http://xml.coverpages.org/XACMLv20-Interop-RSA2008-
28011.zip

[45] “Enterprise Privacy Authorisation Language (EPAL)”,
http://xml.coverpages.org/epal.html.

[46] “Platform for Privacy Preferences Project (P3P)”,
http://www.w3.org/P3P/

[47] M. Mont, S. Pearson, P. Bramhall, “Towards Accountable
Management of Identity and Privacy: Sticky Policies and
Enforceable Tracing Services”. TrustBus 2003 workshop,
2003

Piervito Scaglioso received his M.Sc.
degree in 2006. He is a PhD student in
Computer Engineering at the Politecnico
di Torino. His research interests are in
Policy-based Systems and their
application to manage Access Control
systems. Additionally he is interested in
Wireless Sensor Network and he works
on the creation of a novel security

protocol for access control to wireless sensor data.

Cataldo Basile holds a M.Sc. and a Ph.D.
in Computer Engineering from the
Politecnico di Torino where is currently
a research assistant. His research is
concerned with policy-based
management of security in networked
environments, automatic refinement of
policies to device configurations and

general models for detection, resolution and reconciliation of
specification conflicts.

Antonio Lioy holds a M.Sc. in
Electronic Engineering summa cum laude,
and a Ph.D. in Computer Engineering,
both from Politecnico di Torino, Italy. He
is currently Full Professor of Computer
Engineering at the the Politecnico di
Torino and leads the TORSEC security
group. His research interests are in the
area of policy-based security, network

security and PKI. Prof. Lioy is a member of the PSG (Permanent
Stakeholders’ Group) of ENISA (the European Network and
Information Security Agency).

