
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Using ER Models for Microprocessor Functional Test Coverage Evaluation / Benso, Alfredo; DI CARLO, Stefano;
Prinetto, Paolo Ernesto; Savino, Alessandro; Scionti, A.. - STAMPA. - (2008), pp. 139-142. (Intervento presentato al
convegno IEEE 11th International Biennial Baltic Electronics Conference (BEC) tenutosi a Tallinn, EE nel 6-8 Oct. 2008)
[10.1109/BEC.2008.4657498].

Original

Using ER Models for Microprocessor Functional Test Coverage Evaluation

Publisher:

Published
DOI:10.1109/BEC.2008.4657498

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1870166 since: 2016-09-16T17:20:25Z

IEEE Computer Society

Using ER Models for Microproc-
essor Functional Test Coverage
Evaluation
Authors: Benso A., Di Carlo S., Prinetto P., Savino A., Scionti A.,

Published in the Proceedings of the IEEE 11th International Biennial Baltic Electronics Conference
(BEC), 6-8 Oct. 2008, Tallin, EE.

N.B. This is a copy of the ACCEPTED version of the manuscript. The final
PUBLISHED manuscript is available on IEEE Xplore®:

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4657498

DOI: 10.1109/BEC.2008.4657498

© 2000 IEEE. Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale

or redistribution to servers or lists, or reuse of any copyrighted component of this work in

other works.

!Politecnico di Torino

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4657498
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4657498
http://dx.doi.org/10.1109/BEC.2008.4657498
http://dx.doi.org/10.1109/BEC.2008.4657498

Using ER Models for Microprocessor Functional
Test Coverage Evaluation

Alfredo Benso, Stefano Di Carlo, Paolo Prinetto, Alessandro Savino, Alberto Scionti
Politecnico di Torino Dipartimento di Automatica e Informatica Torino, Italy

e-mail: {alfredo.benso, stefano.dicarlo, paolo.prinetto, alessandro.savino, alberto.scionti}@polito.it

Abstract—Test coverage evaluation is one of the most critical

issues in microprocessor software-based testing. Whenever the

test is developed in the absence of a structural model of the

microprocessor, the evaluation of the final test coverage may

become a major issue. In this paper, we present a micropro-

cessor modeling technique based on entity-relationship diagrams

allowing the definition and the computation of custom coverage

functions. The proposed model is very flexible and particularly

effective when a structural model of the microprocessor is not

available.

1

I. INTRODUCTION

The complexity of modern microprocessors makes software-
based self-testing techniques very attractive w.r.t costly hard-
ware BIST architectures [1] [2]. Software-based self-testing
starts with a list of faults composed of either structural
faults (e.g., stuck-at faults, delay faults, etc.), or high level
functional faults, and proposes a set of software routines for
their detection. Test routines are generated using different
methodologies (e.g., random generation, graph based, genetic
algorithms, etc.), and the fault detection mechanism relies on
the use of microprocessor instructions only [3], [4], [5].

The evaluation of the test routines final fault coverage
strongly depends on the type of faults the test is designed for,
i.e., structural faults or functional faults. When dealing with
structural faults, a structural model of the target microproces-
sor is usually available, and the fault coverage can be easily
computed by means of fault simulation. The situation is more
complex when considering functional faults. The definition of
functional faults is less formal than the one of structural faults.
Moreover, functional faults are usually considered when, for IP
protection, the internal structure of the microprocessor is not
available and only high level functional models are provided.
In this context, the evaluation of the fault coverage is more
complex and requires the definition of new metrics and models
[6], [7].

This paper addresses the problem of evaluating the func-
tional test coverage of software microprocessor test programs
using an high-level microprocessor model more efficient in
terms of complexity w.r.t. previously proposed ones [8]. In
particular, the proposed methodology is based on the use of
an entity-relationship (ER) diagram [9] to represent the mi-
croprocessor under test (MUT), its instruction set architecture

1This work has been partially funded by Regione Piemonte under grant
#E22 Software-based Solutions for the dependability of digital systems in
space applications

(ISA) and the target test program. The functional coverage
is then computed resorting to a set of interrogations on the
database implementing the ER model.

The paper is organized as follow: Section II summarizes
the basic steps required to set up the proposed test coverage
evaluation methodology. Section III proposes a model for the
target microprocessor and test program, whereas Section IV
maps these models to an ER diagram. Section V introduces the
rules to define new functional coverage metrics based on the
ER diagram. Section VI applies the proposed methodology to a
commercial microprocessor and finally, Section VII concludes
the paper and proposes future extensions.

II. TEST COVERAGE EVALUATION FLOW

The methodology proposed in this paper is organized in the
following steps:

1) Microprocessor and test program modeling: the micro-
processor under test (MUT), the instruction set archi-
tecture (ISA), and the target test program need to be
described according to an high level model highlighting
the main information required to define functional cov-
erage metrics. The main requirement of the proposed
model is the possibility of working even if only user
level information about the MUT is available;

2) Entity-Relationship (ER) model definition: the model
created in the previous step is translated into an entity-
relationship diagram suited for the definition of func-
tional coverage metrics;

3) Coverage Metrics Definition: functional coverage met-
rics are defined resorting to Structured Query Language
(SQL) queries.

III. MICROPROCESSOR AND TEST PROGRAM MODELING

This section proposes the different models used to represent
the MUT and the target test program. They represent the basis
for the proposed test coverage estimation methodology.

A. Microprocessor Model

This subsection introduces our microprocessor model, called
Units-Paths Model (UPM). It tries to represent the micropro-
cessor at a very high level resorting to information usually
available, through the microprocessor documentation, to every
class of users. According to [4], the first step for the definition
of an high-level model for microprocessor software testing

is the identification of the main microprocessor functional
components (e.g., ALU, Register Files, etc.).

The UPM represents a microprocessor as a set of Units

connected through a set of Interconnections, and working on
a set of Resources.

Each Unit U identifies a functionality of the microprocessor
not necessarily associated with an hardware block. It can be
formally defined as a 3-tuple U =< unit id, f set, r set >,
where unit id univocally identifies the Unit, f set is the set
of functionalities implemented by the unit (e.g., arithmetic
operations, memory transfers, logical operations, etc.), and
r set is the set of resources (e.g., registers) involved during
the execution of the functionalities the Unit is designed for.

Each resource R can also be represented as a 3-tuple
R =< resource id, access, type > where resource id is an
identifier for the given resource (e.g., the register name),
access identifies whether the resource is readable, writable
or both of them, and type identifies whether the resource
is accessible through a microprocessor instruction or hidden.
Information about connections of resources, timing, etc. are
not considered in our model since strictly related to the
microprocessor structural model and not always available to
the user.

The Interconnections are defined as a typed high-level
composition of physical connections. Each interconnection
needs to be modeled by specific information:

• The direction of the interconnection: a source (unitS) and
a destination (unitD) Unit are identified;

• The type of the interconnection (e.g. data, address or
instruction).

Each interconnection can be defined as In =< unitS,

unitD,type>. Bidirectional interconnections are modeled as
two distinct interconnections.

B. Instruction Set Architecture and Test Program Model

The microprocessor instructions represent the only instru-
ment available for the test program to access the internal
elements, i.e., Units, Resources, Interconnections (see Section
III-A) of the microprocessor. The Instruction Set Architecture
needs therefore to be modeled in order to have a direct
connection from the software domain to the microprocessor
hardware architecture.

We distinguish among Instruction Types (IT) and Instruc-
tions. An Instruction Type represents a collection of instruc-
tions performing the same type of operation (e.g., an addiction,
a memory store, etc.). Each IT can be therefore represented
by the operation Op it performs, the set of possible source
operands SSO used as input for the computation, and the set
of possible destination operands SDO used to store the results
of the computation: IT =<SSO, SDO, Op>. SSO and SDO
are taken from the set of microprocessor resources tagged as
accessible by the user.

An Instruction I =<IT, SO, DO> is an instance of an IT
where SO 2 SSO and DO 2 SDO represent specific values
of the source and destination operands.

At the programmer’s level, instructions are atomic opera-
tions but, going into more detail each instruction or more
in general each instruction type can be further split into a
sequence of micro-operations. Each micro-operation can be
defined as a 4-tuple MO =< SR, DR, Ins, Op > where Op
defines the performed operation, SR is the set of source
resources and DR is the set of destination resources. SR and
DR in this case include also hidden microprocessor resources.
Finally, at this level Ins is the set of Interconnections activated
by the micro-operation. This second level of description is not
mandatory since it usually requires structural information. In
the most general case each IT can be mapped to a single
micro-operation.

The availability of the MO description allows for each IT
to:

• Distinguish between internal and external resources: since
SO and DO are a subset of SR and DR used by the
MOs, we can easily distinguish between internal and
external resources;

• Inherit a list of activated interconnections which are
defined as the union of the interconnections used by the
MOs composing the instruction.

To conclude, a given test program can be defined as a set
of test routines where each routine is defined as a sequence of

instructions: TestRoutine = {I1, · · · , Ii, · · · , In}. The instruc-
tions are identified by their position (i.e., a unique sequence
position number i).

IV. ER MODEL DEFINITION

This section describes how the models introduced in Section
III can be translated into an Entity Relationship (ER) diagram
used to easily define and compute different test coverage
metrics. Actually the presented models define a set of different
entities (e.g., units, interconnections, instruction types, etc.)
and identify the relationships existing among entities. An ER
is able to capture this information in an very effective abstract
model. The translation may be automated if proper languages
are used for the model descriptions.

Figure 1 shows the ER schema representing all the entities
involved in the microprocessor, ISA, and test program models
as well as the relationships among these entities.

The ER diagram can be easily converted into a relational
database filled with the information regarding the MUT and
the test program. It can then be used to evaluate test coverage
metrics defined by means of Structured Query Language
(SQL) queries.

The resulting database will contain two set of information:
1) Microprocessor & ISA information: loaded only once

for a given MUT. It is thus a static information never
updated once the MUT and ISA models are correctly
defined;

2) Test program information: information concerning the
execution of the target test program. It is a dynamic

information since it requires the actual execution of the
test program and the collection of execution traces. This

Unit
(U)

is Source Of

Resource
(R)

InstructionType
(IT)

is Used By
(UB)

is Part Of

is Activated By
(AB)

(1,n)

(1,1)

(0,n)

(0,1)

(1,n)

(1,n)

UnitID

ResourceID

order

InstructionTypeID

Interconnection
(In)

InterconnectionID
is Destination Of

(1,n)

(1,1)

(0,n)

MicroOperation
(MO)

MicroOperationID

is Controlled By

type

(1,n)

is DR Of

is SR Of

(1,1)

order

order

(0, n) (0,n)

(0,n)

(0,n)

order

is SO Of

is DO Of

order

order

(0, n)

(0,n)

(1,n)

(0,n) (0,n)

is Used By

res_order

Instruction
(I)

InstructionID

is Instance Of
(IO)

n_usage

(0,1)(1,n)

(0,n) (1,n)

TestRoutine

is Present At Line
(PAL)

line_number

TestRoutineID

(0,n)

(1,n)

Fig. 1. Microprocessor ER Schema

TABLE I
SINGLE UNIT ACTIVATION COVERAGE METRIC

1. SELECT COUNT(DISTINCT UnitID)
2. FROM U, MO, I, UB
3. WHERE I.n usage > 0
4. AND UB.InstructionTypeID = I.InstructionTypeID
5. AND MO.MicroOperationID = UB.MicroOperationID
6. AND MO.UnitID = U.UnitID

set of information needs to be recreated every time the
test program is modified.

V. COVERAGE FUNCTIONS DEFINITION

The ER model defined in Section IV can be used to define
different types of functional test coverage metrics. Since we
are working with a very high level model of both the MUT
and the test program, the type of metrics we can define are
not correlated to classical structural faults but in general are
able to measure the amount of microprocessor elements (e.g.,
units, interconnections, resources, instructions, etc.) actually
activated by the given test program. Nevertheless, more tradi-
tional functional tests, e.g., functional patterns, can be mapped
getting rid of the necessary information in the DB.

Test coverage metrics are defined by means of SQL queries
performed on the proposed ER model. In order to understand
this concept, we provide two simple examples of coverage
metrics. Table I proposes a coverage metric evaluating the
percentage of microprocessor units activated by the target test
program.

The query counts how many different units (SELECT
COUNT(DISTINCT UnitID)) are activated by the Instructions ex-
ecuted in the test program. Executed instructions are selected
(row 3, Table I), and the corresponding operations identified
(rows 4-5, Table I). The operations are finally used to identify
the units involved in their execution (row 6, Table I).

Another example of coverage function is the percentage of
interconnections In

activated

activated during the test over the
total set of interconnections In

all

. Table II shows the SQL
queries required to compute this coverage function.

TABLE II
INTERCONNECTIONS ACTIVATION COVERAGE METRIC

In

activated

SELECT COUNT(DISTINCT InterconnectionID)
FROM In

In

operation

SELECT UB.MicroOperationID
FROM I, UB
WHERE n usage > 0 AND

I.InstructionTypeID = UB.InstructionTypeID
GROUP BY I.MicroOperationID

In

all

SELECT COUNT(DISTINCT InterconnectionID)
FROM AB
WHERE AB.MicroOperationID IN (In

operation

)

coverage

interconnections

=
In

activated

In

all

It is very important to highlight that the use of SQL
queries allows the computation of several coverage metrics
just selecting the required information from the database.
Moreover, the SQL also allows to obtain, if required, a detailed
list of undetected functional faults (e.g., list of not activated
units) that can be used to improve the given test program.

VI. EXPERIMENTAL RESULTS

This section shows the application of the proposed meth-
odology to evaluate the functional fault coverage of a test
program designed for the functional self-test of the Motorola
MPC7457 microprocessor [10]. The microprocessor has been
described according to the model of Section III-A and III-B by
simply resorting to the information contained in the micropro-
cessor user manual. It is composed of the following elements:

• 25 Units:
– 9 Execution units (e.g., Integer Unit, etc.)
– 8 Control units (e.g., Branch Processing Unit)
– 7 Hidden units

• 51 Interconnections:
– 22 Data Interconnections.
– 11 Address Interconnections.
– 18 Instruction Interconnections.

• 132 Resources: all programmer accessible registers.
The target test program has been designed by clustering

groups of units based on their functionalities according to the
rules defined in [11]:

TABLE III
COVERAGE METRIC FOR INSTRUCTION USAGE

Used
Instructions (I1)

SELECT COUNT(DISTINCT InstructionID)
FROM IO, I
WHERE IO.InstructionID = I.InstructionID

AND I.n usage > 0

Used
Instruction

Test Routine (I2)

SELECT TestRoutineID,
COUNT(DISTINCT IO.InstructionTypeID)

FROM IO, I, PAL
WHERE PAL.InstructionID = I.InstructionID AND

I.InstructionID = IO.InstructionID
AND I.n usage > 0

GROUP BY TestRoutineID
Total

Instructions (I3)
SELECT COUNT(InstructionTypeID)
FROM IT

cov

ISA

=
I1

I3

cov

ISA

test routine

=
I2

I3

• Branch Prediction Unit (BPU);
• Special Purpose Register (SPR) File;
• Integer Unit (IU);
• General Purpose Register (GPR) File;
• Instruction Cache (ICache);
• Data Cache (DCache);
• Load-Store Unit (LSU);
• Pipeline.
The resulting test program is thus composed of 8 test

routines (one for each testable unit) and it counts about 30,000
assembly instructions. While the entire test design process
required several months, the definition of the UPM and ISA
models, and the population of the database was performed in
only two weeks with a limited amount of automation available.

For the proposed test program we defined three different
coverage metrics:

1) cov
ISA

: the percentage of ISA instruction types acti-
vated by the test program (see Table III);

2) cov
ISA

test routine

: the percentage of ISA instruction
types activated by each test routine (see Table III);

3) cov
Resources Usage

: for each test routine the percentage
of usage of microprocessor resources (see Table IV).

Table V, summarizes the results obtained by computing
the three defined coverage metrics on the proposed test-
bench. Column 1 reports the name of the different MUT
Units, column 2 indicates the number of instructions com-
posing the test routine of each MUT Unit, column 3 re-
ports the cov

ISA

test routine

, and finally column 4 shows the
cov

Resources Usage

.

TABLE IV
COVERAGE METRIC FOR RESOURCES USAGE

Used
Resources

Test Routine (I4)

SELECT TestRoutineID,
COUNT(DISTINCT UB.ResourceID)

FROM I, PAL, UB
WHERE I.n usage > 0 AND

PAL.InstructionID = I.InstructionID AND
I.InstructionID = UB.InstructionID

GROUP BY TestRoutineID
All Available

Resources (I5)
SELECT COUNT(DISTINCT ResourceID)
FROM R

cov

ISA

=
I4

I5

TABLE V
COVERAGE METRICS EVALUATION RESULTS

Unit Length
(# instructions)

cov

ISA

test routine

cov

Resources Usage

BPU 3953 14% 40%
SPR File 5523 10% 45%

IU 2923 64% 46%
GPR File 4260 10% 47%

ICache 8380 13% 43%
DCache 1561 10% 45%

LSU 679 28% 44%
Pipeline 1001 9% 47%

Total 28280 85%
(coverage

ISA

)

VII. CONCLUSION

This paper presented a new methodology to define and com-
pute functional coverage metrics for microprocessor software
test. It is based on the definition of an ER diagram to model
both the microprocessor under test and the target test program.

The main advantage of the proposed approach is its ef-
fectiveness even when a complete structural model of the
microprocessor is not available. The modeling technique was
efficiently applied to the Motorola MPC7457 showing its
applicability on a real microprocessor. Experimental results
show the flexibility achieved in defining different coverage
metrics.

Future works involve the validation of the proposed ap-
proach by analyzing the correlation of the defined coverage
functions w.r.t. traditional structural fault coverage measures.
We also plan to explore the mapping between our models and
a functional description of the microprocessor.

REFERENCES

[1] S. Thatte and J. Abraham, “Test generation for microprocessors,” IEEE

Trans. Comput., vol. C-29, no. 6, pp. 429–441, 1980.
[2] L. Chen and S. Dey, “Software-based self-testing methodology for

processor cores,” IEEE Trans. Comput.-Aided Design Integr. Circuits

Syst., vol. 20, no. 3, pp. 369–380, 2001.
[3] D. Brahme and J. Abraham, “Functional testing of microprocessors,”

IEEE Trans. Comput., vol. C-33, no. 6, pp. 475–485, 1984.
[4] N. Kranitis, A. Paschalis, D. Gizopoulos, and G. Xenoulis, “Software-

based self-testing of embedded processors,” IEEE Trans. Comput.,
vol. 54, no. 4, pp. 461–475, 2005.

[5] E. Sanchez, E. Sanchez, M. S. Reorda, G. Squillero, and M. Violante,
“Automatic generation of test sets for sbst of microprocessor ip cores,”
in Proc. th Symposium on Integrated Circuits and Systems Design, M. S.
Reorda, Ed., 2005, pp. 74–79.

[6] D. Moundanos, D. Moundanos, J. Abraham, and Y. Hoskote, “Abstrac-
tion techniques for validation coverage analysis and test generation,”
IEEE Trans. Comput., vol. 47, no. 1, pp. 2–14, 1998.

[7] P. Mishra, N. Dutt, N. Krishnamurthy, and M. Ababir, “A top-down
methodology for microprocessor validation,” IEEE Design & Test of

Computers, vol. 21, no. 2, pp. 122–131, 2004.
[8] D. Mathaikutty, S. Kodakara, A. Dingankar, S. Shukla, and D. Lilja,

“Mmv: A metamodeling based microprocessor validation environment,”
IEEE Trans. VLSI Syst., vol. 16, no. 4, pp. 339–352, 2008.

[9] R. W. Scamell, Data Modeling and Database Design. Course Tech-
nology Ptr, 2007.

[10] MPC7450 RISC Microprocessor Family Reference Manual, Motorola,
Jan. 2005, rev. 5.

[11] A. Benso, A. Bosio, P. Prinetto, and A. Savino, “An on-line software-
based self-test framework for microprocessor cores,” in Proc. Interna-

tional Conference on Design and Test of Integrated Systems in Nanoscale

Technology DTIS 2006, 2006, pp. 394–399.

