POLITECNICO DI TORINO
Repository ISTITUZIONALE

Formally Sound Refinement of Spi Calculus Protocol Specifications into Java Code

Original

Formally Sound Refinement of Spi Calculus Protocol Specifications into Java Code / Pironti, Alfredo; Sisto, Riccardo. -
STAMPA. - (2008), pp. 241-250. (Intervento presentato al convegno High Assurance Systems Engineering Symposium
(HASE 2008) tenutosi a Nanjing, China nel 3-5 December 2008) [10.1109/HASE.2008.27].

Availability:
This version is available at: 11583/1868524 since: 2023-09-11T13:27:26Z

Publisher:
IEEE Computer Society

Published
DOI:10.1109/HASE.2008.27

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

20 May 2024

Formally Sound Refinement of Spi Calculus Protocol Specifications into Java
Code

Alfredo Pironti and Riccardo Sisto
Politecnico di Torino
Dip. di Automatica e Informatica
c.so Duca degli Abruzzi 24, I-10129 Torino (Italy)
e-mail: {alfredo.pironti,riccardo.sisto}@polito.it

Abstract

Spi Calculus is an untyped high level modeling language
for security protocols, used for formal protocols specifica-
tion and verification. In this paper, a type system for the Spi
Calculus and a translation function are formally defined, in
order to formalize the refinement of a Spi Calculus spec-
ification into a Java implementation. Since the generated
Java implementation uses a custom Java library, formal
conditions on the custom Java library are also stated, so
that, if the library implementation code satisfies such con-
ditions, then the generated Java implementation correctly
simulates the Spi Calculus specification.

Keywords: Model-based software development, Correct-
ness preserving code generation, Formal methods, Security
protocols

1. Introduction

The Spi Calculus [3] is a formal domain-specific lan-
guage that can be used to abstractly specify security proto-
cols, that is communication protocols that use cryptographic
primitives in order to protect some assets. A Spi Calcu-
lus specification can then be passed to an automatic tool,
usually a model checker (e.g. [12]) or a theorem prover
(e.g. [10]), that verifies some security properties on it [2, 1],
i.e. it verifies that the protocol actually works as it is in-
tended by the designer, and is resilient to attacks performed
by a (Dolev-Yao [11]) attacker.

However, real implementations of security protocols, im-
plemented in a programming language, may significantly
differ from the verified formal specification expressed in
Spi Calculus, so that the real behavior of the protocol differs
from the verified one, possibly enabling attacks that are not
present in the formal specification. For instance, a protocol
implementation may miss to perform a check on a received

nonce, thus enabling replay attacks.

For these reasons, and by taking into account that secu-
rity protocols are usually applied in safety or mission crit-
ical environments, assessing the correctness of a protocol
implementation with respect to its formally verified specifi-
cation is a great challenge for the software engineering com-
munity. By testing the protocol implementation, only few
scenarios are taken into account, and this approach may not
give enough confidence about implementation correctness,
due to two facts: the distributed and concurrent nature of se-
curity protocols, that generates a large (usually unbounded)
number of possible application scenarios, and the presence
of an active attacker, who can behave in the worst way, and
is not under the software developer control.

In principle, in order to ensure that the formal model
is correctly refined by the implementation, two develop-
ment methodologies can be used, namely model extrac-
tion [9, 17, 13, 7] and code generation [24, 21, 26]. By using
the first methodology, one starts by manually developing a
full blown implementation of a security protocol, and au-
tomatically extracts a formal model from it. The extracted
formal model is then verified, in order to check the desired
security properties. By using the second methodology, one
starts from a formal specification of a security protocol, and
automatically generates the code that implements it, filling
user-provided implementation details that are not caught by
the formal model. In order for each methodology to be use-
ful, it must be possible to formally show that a refinement
relation between the implementation code and the abstract
formal model exists and that this relation preserves security
properties.

The work presented in this paper aims to improve the
correctness assurance that can be achieved by using an auto-
matic code generation approach, by formally defining what
was informally described in [24, 21], that is a translation
function from the Spi Calculus specification language, to
the Java implementation language. The translation func-

user
©2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. This is the author's postprint version (i.e. as edited by the author after refereeing but without copy-editing, proofreading and formatting added by IEEE). The final version of this paper can be accessed at http://dx.doi.org/10.1109/HASE.2008.27

Rettangolo

tion relies on a Java library which essentially wraps the
Java Cryptography Architecture library calls that implement
cryptographic primitives in the Java environment. In this
paper it is formally shown that, if it is assumed that the im-
plementation of the library satisfies some conditions that we
formally express, then the generated Java code correctly re-
fines the abstract model.

The remainder of this paper is organized as follows. Sec-
tion 2 describes some works related to the one presented
here. Section 3 briefly describes the Spi Calculus and
presents a type inference system for the Spi Calculus and
a formal translation from the Spi Calculus to Java. Sec-
tion 4 presents the main correctness property of the transla-
tion, i.e. that the generated Java implementation simulates
the Spi Calculus specification it has been generated from.
Finally, section 5 concludes and gives some hints for future
work.

2. Related Work

Up to our knowledge, there are two independent works
dealing with generation of Java code, starting from Spi Cal-
culus specifications, namely [24, 21] and [26]. However,
none of these works provides rigorous formal proofs for the
generated code.

The AGC-C# tool [16] automatically generates C# code
from a verified Casper script. Since in that work a formal
translation function is not provided, it is not possible to ob-
tain soundness proofs.

In [14], a manual refinement of CSP protocol specifica-
tions into JML constraints is described. However, no formal
translation rules from CSP processes to JML constraints are
provided.

In web services, security properties are expressed at a
higher level, as policy assertions [6, 5]. Rather than speci-
fying how security is achieved, through the coordination of
cryptographic primitives inside the protocol specification,
a policy assertion specifies a property that must hold for a
specific set of SOAP messages.

The tool described in [8], checks user given policy as-
sertions, in order to find common flaws. However, it does
not provide any formal proof about the correctness of the
user given policy assertions w.r.t. a specification. Moreover,
there is still the need to verify that the policy assertion im-
plementations are correct. The work presented in [7] gives a
verified reference implementation of the WS-Security [19]
protocol, written in F#. This implementation can be a
starting point in future complete protocol implementations.
However, no tool that verifies an user given implementa-
tion of policies, nor that generates a correct implementation
from user given policies, is, to the best of our knowledge,
currently available for web services policy assertions.

By looking at the model extraction approach, the work

L,M,N ::= terms

n name
(M,N) pair

0 Zero

suc(M) successor

x variable

{M}y shared-key encryption
H (M) hashing

M~ public part

M~ private part

{IM1}y public-key encryption

private-key signature

Table 1. Spi Calculus terms.

in [9] is, up to our knowledge, the only one providing a for-
mally proven correct abstraction from a subset of F# code,
to applied m-calculus. In [9], like in this paper, correctness
of some low level cryptographic libraries is assumed, that
is, the concrete low level libraries are assumed to behave
like the abstract symbolic counterparts. Although promis-
ing, this approach currently uses a starting language that is
not very common in the programming practice, and the con-
straints on the selected subset of F# currently allow only ad
hoc written code to be verified.

3. Formalizing the Translation
3.1. The Spi Calculus

The Spi Calculus extends the w-calculus [18], by adding
a fixed set of cryptographic primitives to the language,
namely symmetric and asymmetric encryptions, and hash
functions, thus enabling the description of the main secu-
rity protocols. Adding more custom cryptographic primi-
tives to the language, so that more security protocols can be
described, is rather straightforward.

A Spi Calculus specification is a system of concur-
rent processes that operates on untyped data, called terms.
Terms can be exchanged between processes by means of in-
put/output operations. Table 1 contains the terms defined by
the Spi Calculus, while table 2 shows the processes. A name
n is an atomic value, and a pair (M, N) is a compound term,
composed of the terms M and N. The 0 and suc(M) terms
represent the value of zero and the logical successor of some
term M, respectively. A variable x represents any term, and
it can be bound once to the value of another term. A variable
that is not bound is free. Names can be regarded as special
kinds of variables that can take only atomic terms as values.
Then, free variables include free names. The term {M } 5
represents the encryption of the plaintext M with the sym-
metric key NV, while H (M) represents the result of hashing

P,Q,R::= processes
M (N).P output

M (z).P input

P|Q composition
P replication
(vn) P restriction
[Mis NP match

0 nil

let (x,y) =M in P

case M of 0: P suc(x) : Q
case Lof {z}y in P
case L of {[z]}y in P
case Lof [{x}]y in P

pair splitting

integer case
shared-key decryption
decryption

signature check

Table 2. Spi Calculus processes

M. The M+ and M~ terms represent the public and pri-
vate part of the keypair M respectively, while {[M]} x and
[{M}]n represent public key and private key asymmetric
encryptions respectively. Informally, the M (N) . P process
sends message N on channel M, and then behaves like P,
while the M (z) .P process receives a message from chan-
nel M, and then behaves like P, with = bound to the re-
ceived value in P. A process P can perform an input or out-
put operation iff there is a reacting process () that is ready to
perform the dual output or input operation. Note, however,
that processes run within an environment (the Dolev-Yao at-
tacker) that is always ready to perform input or output oper-
ations. Composition P|Q) means parallel execution of pro-
cesses P and @), while replication ! P means an unbounded
number of instances of P run in parallel. The restriction
process (vn) P indicates that n is a fresh name (i.e. not pre-
viously used, and unknown to the attacker) in P. The match
process executes like P, if M equals N, otherwise is stuck.
The nil process does nothing. The pair splitting process
binds the variables x and y to the components of the pair
M, otherwise, if M is not a pair, the process is stuck. The
integer case process executes like P if M is 0, else it exe-
cutes like @ if M is suc(N') and x is bound to N, otherwise
the process is stuck. If L is { M } y, then the shared-key de-
cryption process executes like P, with z bound to M, else it
is stuck, and analogous reasoning holds for the decryption
and signature check processes.

For brevity, the formal work presented in this paper is
shown in detail only on a subset of the Spi Calculus, includ-
ing the most significant constructs. More specifically, the
integer case, asymmetric cryptography, hashing and related
terms are not shown. The complete work, that considers the
full Spi Calculus, can be found in [22].

Also note that, when defining the translation function,
we focus on the sequential part of the Spi Calculus only,
i.e. we do not deal with the translation of composition and
replication, and we do not deal with recursive processes.

This is not an important limitation, and it does not prevent
us from dealing with most security protocols, because each
protocol role normally consists of finite sequential behav-
ior, made up of a short sequence of message exchanges,
with checks on the received data. This sequential behavior
can then be instantiated in several concurrent runs, in the
various hosts of the distributed system. Thus, the compo-
sition operator is typically used, in protocol specifications,
only to instantiate different protocol roles that run concur-
rently, and the replication operator is typically used only to
describe the possibility to run an unbounded number of pro-
tocol sessions. Recursion could be useful to describe pro-
tocol runs of unbounded length, but this feature is normally
not allowed by verification tools.

The semantics of the Spi Calculus has been originally
expressed for closed processes, by means of a reaction rela-
tion P — P’ and a reduction relation P > P’ [3]. P — P’
means that P can evolve into P’ after a message exchange
between two parallel components of P, while P > P’
means that P can evolve into P’ by performing some other
(internal) operation. In this paper, instead, we need express-
ing the semantics of open processes, i.e. the possible evolu-
tions of an open process P, regardless of its environment.
For this purpose, we introduce a classical labelled transition
system (LTS). In this system, a 7 transition P - P’ means
P — P or P > P/, ie. P can evolve into P’ without
interaction with its environment. Instead, P MIN P’ and
P ™Y P’ mean that P can interact with its environment
by respectively sending or receiving /N on channel M if the
environment is ready to perform the corresponding opera-
tion. Formally,

PMN P means FVQ. (PIM (2).Q) —
(vy)(P'|Q[N/x])
PMN P means FgVQ. (P|(vg)M (N).Q) —

(vy)(P'|Q)
where % is a possibly empty list of names freshly generated
in the sender process and included in the received message
N.

According to these definitions, it can be shown that the
semantics of Spi Calculus sequential processes can be ex-
pressed by the rules

g

IN

M(N)y.P "= P
M(z).Pp " PPy,
[MisM]P & P
let (z,y) = (M,N)inP = P[M/][N/,]
case{M}y of {z}nyin P 5 P[M/,]

PE P
(vn)P A (vn)P’

where £ ranges over labels.

Message

[A XA,]—L—[ShKeyC<A> }

Name

[Timestamp] [Channel] [Identifier J [ShKey]

)
[| |

[Tcp/lp Channe\] [Key Store Channe\} { File Access Channel }

Figure 1. Type hierarchy for the selected Spi
Calculus subset.

3.2. The Type System

Spi Calculus terms are untyped, which enables, during
formal verification, to find type flaw attacks, i.e. attacks that
are based on type confusion. However, since Java is stati-
cally typed, in order to enable the former language to be
translated to the latter, it is necessary to assign a static type
to every term used in a Spi Calculus specification. Types
can be inferred automatically to some extent, so that the
user work is minimized. However, unfortunately, it is not
possible to reuse existing type systems for the Spi Calculus,
because they have different purposes. For example, in [15],
a generic type system is developed in order to describe some
process behavior properties, such as deadlock-freedom or
race-freedom. It turns out that, for our purposes, the type
system in [15] is even too much expressive about program
behavior, but it does not assign static types to terms, thus
being useless for our purposes.

The type system and associated type inference algorithm
developed in this paper recall some standard type systems
for the A-calculus, such as the one in [20]. Essentially, the
type system allows the type of a term to be inferred by look-
ing at the context where that term is used. The type system
relies on a set of known, hierarchically related (by the sub-
type relation <:) types, depicted in figure 1. Message is
the top type, representing any message, so that every term
has type Message. The types that directly descend from
Message correspond to different forms of Spi Calculus
terms, while the subtypes of Name correspond to different
usages of names. The user is allowed to extend the given
type hierarchy, by adding more specialized types.

In order to formalize the type system, a typing context I'
is defined as a set containing type assignments of the form
x : A, where x ranges over variables and A over types. A
term M is well formed in I iff there exists a valid derivation
tree, that is a tree where all leaves are axioms. The judgment
I' = M : A means that, within the typing context I', which
must contain type assignments for all the free variables of
M, M is well formed and must have type A (it can still have

subtypes of A). The judgment I' = P means that process
P is well formed in the typing context I, that is, a valid
derivation tree exists. Note that the proposed type system
does not explicitly assign types to processes, but only to
terms. Indeed, in order to enable translation into Java, it
is sufficient to assign a static type to each term, because
terms are translated into Java typed data, while this is not
needed for processes, which are translated into sequences
of Java statements. For P to be well formed within T, it
is necessary (but not sufficient) that all of its free variables
appear in I'. Given a generic Spi Calculus process P, it
may not be possible to find I' such that P is well formed.
Since our translation function only translates well formed
processes, it turns out that only the set Spi of well formed
processes, which is a subset of all Spi Calculus processes, is
translated by our function. Note that this constraint does not
alter the Dolev-Yao attacker model. Indeed, during formal
verification of a (well formed) process, the attacker is still
modeled as the (possibly non well formed) environment.

As another approach, it would be possible to assign a
single type, for instance T'erm, to every term, and then to
downcast it to the required specific type at run time. How-
ever, this approach would allow to translate into Java those
processes that we consider non well formed too. These non
well formed processes would be translated into syntacti-
cally correct Java programs, but they would always fail at
run time, because of downcast exceptions. The type system
proposed in this paper avoids such issue.

The typing rules for the Spi Calculus subset considered
in this work are reported in figure 2; this type system uses
the standard subsumption rule (not shown). Note that this
formalization keeps, for each pair, information on the types
of the contained items. A possible Java implementation of
this feature can be obtained by using Java generic types,
introduced in Java 5. Note that the (P-Match) rule does
not require M and N to have the same type: we consider
well formed a process where M and N are matched, even
if they have different, incompatible types (e.g. M is typed
as Name and N as Name x Name). This is not an issue,
because when the desired security properties are checked
against the untyped Spi Calculus, type flaw attacks are taken
into account, so even an erroneous Java implementation that
would consider equal two terms with incompatible types,
would have been considered in the formal verification step.
In the (P-Restr) rule, note that the first premise requires the
name n to be added to the typing context, because n ap-
pears free in P, thus satisfying the necessary condition on
I". Moreover, it is also required that A <: Name holds,
because the restriction process generates a fresh name, and
not a fresh term.

We point out that using Java generic types can save run

time downcasts, when the type of a term is statically known;
if the type is to be discovered at run-time, then a downcast

z:Ael ' M, :A; I+ Ms: Ay

I'EM:A I'HK:ShKey

(T-Var) (T-Pair) T-ShKC
TFa:A T - (Mg, M) : Ay x As I {M}x : ShKeyC(A) ¢)
'+ M : Channel I' - N : Message 'kP I' = M : Channel z: AF P
— (P-Out) (P-In)
T+ M (N).P T+ M(z).P
'HM:M I'FN: M '+P : I''n: A+ P A<:N
essage essage (P-Match) — (P-Nil) n ame (P-Restr)
' [MisN|P 'tk (vn)P
I'+M:ShKeyC(A) ' K:ShKey T,z: AF P T'FM:A; X As T,z:A,y: Ao - P .
(P-ShKD) (P-PSplit)

I'tcase M of {z} K in P

Tt let(z,y) =MinP

Figure 2. Typing rules for the selected Spi Calculus subset.

will be necessary anyway, and it may fail.

Note that this rather standard type system shares some
common properties with other well known type sys-
tems [20]. In particular, the canonical form lemma can be
proven, stating that if a term M has a particular type A, then
it can only assume the particular values of A. Moreover,
it can be shown that a type inference algorithm terminates
finding the principal type for every term, if it is possible to
find one.

Finally, the user can manually refine the type of a partic-
ular term. A user-provided type refinement for a given term
c can be represented by adding a custom downcast rule,
only valid for term c, to the type system. This is needed,
because some types (e.g. the subtypes of Channel) cannot
be inferred automatically only on the basis of their usage.
For example, if the user wants to specify that c is a Tcp/Ip
Channel, then the following rule is added.

'k c: Channel Tep/Ip Channel <: Channel
'k c:Tep/Ip Channel

Note that the properties of the type system are still pre-
served even when custom downcasts are added, thanks to
the premises of the downcast rules. Indeed, the first premise
ensures that the downcast is performed only if the type in-
ference algorithm can infer that ¢ must have type Channel;
the second rule ensures that the downcast required by the
user is coherent with the type hierarchy.

3.3. The Translation Function

The translation from Spi Calculus to Java is formalized
by a set of functions, each dealing with a particular aspect
of the translation. All of these functions operate on well
formed Spi Calculus processes and terms.

Each sequential Spi Calculus process, typically repre-
senting one of the protocol roles, is translated into a se-
quence of Java statements implementing the Spi Calculus
process. These statements are embedded into a t ry block,
followed by a catch block, which are in turn embedded
into a method, that is invoked when a protocol run is re-
quested. All the Java code surrounding the generated state-
ments is called here the “context”. The generated method

will have one input parameter for each free variable of the
Spi Calculus process; for example, the ¢ (M) .c(x).0 pro-
cess has two free variables, namely the channel ¢ and the
message M, so the generated Java method will have two
input parameters, because it is assumed that the user will
provide sensible values for these two variables.

Let Spi be the aforecited set of well formed Spi Cal-
culus processes, SpiTerm the set of well formed terms,
and Java the set of strings representing sequences of Java
statements. Then, the function tr, : Spi x 25PiTerm x
25piTerm . Jaua generates the Java statements for the
Spi Calculus process given as its first parameter. In Java,
all variables must be declared and initialized before they
can be used. The second parameter of tr;,, let us call
it built € 25PiTerm traces the well formed terms that
have already been declared and initialized in the Java code.
Moreover, some value should be returned after a success-
ful protocol run (e.g. a negotiated shared secret, or a se-
cure session id). The third parameter of ¢r,, let us call it
return € 25PiTer™m contains the well formed terms that
must be returned if a protocol run ends successfully. In
order to return the desired values to the user, a Java ob-
ject declared as Map<String,Message> _return is
maintained, that maps the Java name of every term to be re-
turned onto its value (i.e. the Java object that implements it);
the map is filled as long as the values to be returned become
available.

Before showing the definition of ¢r,, some auxiliary
functions are introduced. ub : SpiTerm x 25piTerm _,
29piTerm ypdates the built set taken as second parameter,
by adding to it a term M, taken as first parameter, and its
subterms. Formally, ub is defined as

ub(M, built) = built U subterms(M)

where subterms(M) is the set containing M and all its
subterms.

ret : SpiTerm x 25P1Te™™ _, Jaua generates the Java
code that fills the _return map. It puts the reference to
the Java object that represents the term that is passed as
its first parameter into the map, if it is in the set of terms
that must be returned when the protocol run ends. This
set is the second parameter. For every function that re-

turns Java code, the following typographical conventions
are used: the returned text is quoted by double quotes; in-
side the quoted text, italic is used for functions that return
text, while courier is used for verbatim returned text.
The ret function is formally defined as

ret(M,return) = 7, if M ¢ return
“ return.put ("J(M)",J(M)) ;”, otherwise

where J(M) is a bijection that gives the name of the Java
variable for term M, by mangling it.

try © SpiTerm x 29PiTerm » 9SpiTerm . Jaqq takes
a term M, the built set and the return set, and generates
the Java code that “builds”, that is declares and initializes,
the Java variable J (M) for the given Spi Calculus term M,
if it has not yet been built. Note that our translation re-
lies on a Java library, called SpiWrapper, that offers an ab-
stract Java class for each type depicted in figure 1. Each
abstract class implements the operations that can be per-
formed on the corresponding type. For instance, the abstract
class Pair<A, B> offers the methods A getLeft () ;
and B getRight () ;, that retrieve the first and second
items of the pair, allowing the pair splitting process to be
implemented. Every SpiWrapper class is abstract, because
only the internal data representation is handled, while the
marshalling functions, encoding the internal representation
into the external one that is sent over the network and vice
versa, are declared, but not implemented. This enables the
user to define her own marshalling layer, by extending the
abstract class, and implementing the marshalling and un-
marshalling functions. It could be argued that letting the
user implement the marshalling functions could introduce
security flaws that were not present in the abstract model.
However, as stated in [23], if some static checks on the user-
written code are performed, such possible flaws are avoided.

The tr; function is formally defined in figure 3. All de-
clared Java variables are actually also marked as final,
which however is omitted here for brevity. For every term
M, if M is already in the built set, then no code is gen-
erated, because the Java variable has already been declared
and initialized. The T'(M) function returns the inferred type
for the term M, which corresponds to one of the SpiWrap-
per abstract classes. The T's(M) function returns instead
the name of the concrete user-provided Java class imple-
menting the marshalling functions and extending the class
returned by T'(M). Finally the Param(Ts(M)) function
returns some user-defined parameters needed to make the
protocol interoperable; such parameters depend on the type
of the term. For example, if the type of term M is ShK ey (a
shared key), then the parameters will be the key length, the
key type and the desired JCA provider. The reader should
not be distracted by interoperability details, though; more
details on interoperability can be found in [21].

In the name n case, the code emitted by the ret auxiliary

tri(M, built, return) = 7, if M € built
tre(n, built, return) =
“T(n) J(n) = new Ts(n) (Param(Ts(n))) ;
ret(n, return)”
tri((M, N), built, return) =
“tri(M, built, return) tri(N, ub(M, built), return)
T((M,N)) J((M,N)) = new
Ts((M, N)) (J(M), J(N),
Param(Ts((M,N)))) ; ret((M,N), return)”
tri({M} N, built, return) =
“tri(M, built, return) tri(N, ub(M, built), return)
T({M}n) J({M}n) = new Ts({M}n)(J(M),
J(N), Param(Ts({M}n))); ret({M}n,return)”

Figure 3. Definition of the ¢r; function.

function is appended to the generated code, so that, if n is
to be returned, it is added to the _return map.

In the pair (M, N) case, first ¢r; is invoked on M
and N, to ensure they are built. Note that, by invoking
tri(N, ub(M, built), return), N is built by taking into ac-
count that M and all its subterms have already been built,
so they are not built twice. For example, if M = (a, b) and
N = (b, ¢), then b is built when M is built, and it must not
be built again when NV is built. Once M and N are built,
tr, appends the code that actually builds the pair, and the
(possibly empty) code needed to return the pair. Note that it
is only needed to explicitly call ret on the pair, and not on
its components, because the recursive invocations of ¢r; on
the components already ensure they are added, if needed, to
the _return map as soon as they are built.

Finally, in the shared key ciphered {M } y case, first M
and NNV are built, then the shared key ciphered object is in-
stantiated and assigned to the variable named J({M}),
and the ret function is invoked.

Note that no case is available for variables. Indeed, vari-
ables cannot be “built”, rather, they are declared and as-
signed by the code implementing Spi Calculus processes
that bind variables.

Now that all the auxiliary functions have been defined,
the formal definition of ¢r, is given in figure 4. Like
for try, all declared variables are also marked as final,
though not shown here. When translating the output pro-
cess, first M and N are built, then the send method is in-
voked on the channel referenced by J(M), passing J(V)
as first argument, so that it is sent over the channel. For
the input process, after the channel M has been built, the
T receive (Class<T>, ...); method is invoked. Its
arguments allow this method to create an instance of T's(x),
fill it with the received data, and return its reference, that is
assigned to the Java variable J(z). In the decryption pro-

[132)

trp(0, built, return) =
trp(M (N) .P, built, return) =
“tri(M, built, return) try(N, ub(M, built), return)
J(M).send (J(N), Param(Ts(N))) ;
trp (P, ub(M, built) U ub(N, built), return)”
try(M(z).P, built, return) =
“try(M, built, return)
T(x) J(x) = J(M).receive (T's(x).class,
Param(Ts(x))) ; ret(x, return)
try (P, ub(M, built) U ub(x, built), return)”
trp(case L of {x}n in P,built, return) =
“tre(L, built, return) tri(N, ub(L, built), return)
T(x) J(x) = J(L).decrypt (J(N),
Param(T's(x))) ; ret(x, return) tr,(P,
ub(L, built) U ub(N, built) U ub(x, built), return)
try((vn) P, built, return) =
“try(n, built, return) tr, (P, ub(n, built), return)”
trp(let (z,y) = M in P, built, return) =
“tri(M, built, return)
T(x) J(z)=J(M).getLeft () ; ret(x, return)
T(y) J(y) = J(M).getRight () ; ret(y, return)
try, (P, ub(M, built) U ub(x, built) U ub(y, built),
return)”
try([M is N|P,built, return) =
“tri(M, built, return) try(N, ub(M, built), return)
if (!J(M).equals (J(N)))
{ throw new MatchException(); }
tr, (P, ub(M, built) U ub(N, built), return)”

Figure 4. Definition of the ¢r, function.

cess the decryption key is passed as argument. If ShKC<T>
is the type of J(L), the decrypt method returns a newly
created object of type T containing the decrypted data. In
the restriction process, the name n is built, then the rest of
the process is translated; when n is built, a constructor is
called, which generates the Java implementation of a new
fresh name of the expected type. A note must be made on
creation of restricted channels: since data transmitted on
restricted channels shall not be available to the attacker, it
is only allowed to create restricted channels that communi-
cate over a secure medium (such as IPSec or TLS) or over
the local filesystem (such as the file access channel); it is
not allowed instead to create restricted channels that com-
municate over insecure mediums (such as TCP/IP). This
is enforced by tagging channel types that use an insecure
medium, so that translation is aborted if a restricted channel
of a tagged type is going to be built. With the pair splitting
process, first M is built, then the x and y variables are de-
clared and assigned, which corresponds to the Spi Calculus
binding of a variable. Note that when the following P pro-

cess will then be translated, M, x and y will all have already
been built; indeed, = and y are not built by the new operator,
rather, being variables, they are assigned the value (Java ref-
erence) of another term. When translating the match case,
after having built M and N, if they are not equal, execu-
tion is stopped by throwing an exception, which is handled
by the context, else the match is successful, and execution
can continue with the translation of the P process, where
both M and N are marked as built. The context handles the
exception by setting the _return map to null, thus sim-
ulating a stuck Spi Calculus process (a successful run of a
protocol that does not need to return any value, still returns
an empty map, and not null). Note that when a message
is received from a channel, or a plaintext is reconstructed
from a ciphertext, a new SpiWrapper object holding the ob-
tained data must be created, even if the corresponding Spi
Calculus term is already instantiated in another Java object.
For example, the Java code implementing the Spi Calculus
process ¢ (M) .c(z).0, will store one object for the M term,
and one different object for the received = term. It may hap-
pen, however, that x is assigned the same value of M (sim-
ulating that the Spi Calculus process receives exactly the
M term back), although they are two different objects. For
this reason, equality of objects cannot be checked by means
of reference equality, but the equals method must check
if the value of the two objects is the same. Using single-
ton instances to represent Spi Calculus terms, and thus let-
ting the match case check for reference equivalence, would
also be possible, but it would not be better. Indeed, in the
receive (decrypt) method, it would be necessary to
check the content of received (decrypted) data, to decide if
their representing singleton is already instantiated or not.
Finally, the skeleton of the generated method looks like

Map<String, Message>
generatedSpi (EInputParams@) {
Map<String,Message> _return =
new TreeMap<String,Message> () ;
try { @GeneratedSpiImpl@ }
catch { _return = null; }
return _return;

}

where @InputParams@ gets substituted by the free
variables of the translated Spi Calculus process, and
@GeneratedSpiImpl@ by the generated Java code.

4. Soundness

The formal definitions of the translation functions try,
try, ub and ret allow some properties about the generated
code to be stated. In order for our translation to work, three
minor, reasonable assumptions are made explicit. For any
term M, it is assumed that T's(M) <: T'(M) holds, which

means that the user-provided concrete class implementing
marshalling functions is extending the appropriate abstract
SpiWrapper class. For every constructor c offered by the
SpiWrapper class T'(M), it is assumed that a constructor ¢’
exists in the user-provided class T's(M) that extends 7'(M).
The ¢’ constructor is assumed to have the same parameters
of ¢ and to be implemented only by a call to the super
method. Finally, it is assumed that Param(T's(M)) returns
the correct number and type of user-provided interoperabil-
ity parameters. Given a well formed Spi Calculus process
P, let fu(P) € 25PiTe™™ be the set of the free variables in
P, and t(P) € 29PiTer™ be the set of all the terms in P.
Under the assumptions made, the following theorem can be
proven.

Theorem 1. If T' + P and return C t(P), then
try(P, fu(P),return) is well formed.

By “well formed” we mean a sequence of Java state-
ments that, put in the context, forms a Java program that
compiles, i.e. a Java program that is correct from a syntac-
tic and static semantic point of view. Note that the terms
in fu(P) are the protocol input parameters, so their corre-
sponding Java variables are already declared in the context,
as method input parameters. For brevity, this paper does not
include proofs of theorems. They can be found in [22].

Now, let us go for the semantic properties of the gener-
ated Java code. The main goal is to show that, under some
assumptions on the behavior of the SpiWrapper classes, the
generated Java code simulates the corresponding Spi Cal-
culus process. More precisely, a weak simulation relation
between the generated Java code and the corresponding Spi
Calculus is shown. Note that security properties, such as se-
crecy and authentication, are safety properties of the global
concurrent system, so their preservation in the refinement
from Spi Calculus to Java is implied by the simulation re-
lation. Briefly, a weak simulation relation binds the tran-
sitions between external states of an abstract process to the
transitions between external states of a concrete process, but
each process is still allowed to perform any internal step in
between two external states. More details about the weak
refinement used here can be found, for example, in [25].

In order to state and prove the simulation relation, the
semantics of the Spi Calculus must be written in a slightly
different way. According to the notation introduced in sec-
tion 3, a transition can be in general written as

PEL Py

where L is the transition label, and ¢’ is a (possibly empty)
substitution that binds variables. If we do not apply sub-
stitutions, but we leave them explicitly indicated as postfix
operators, a generic state P of a system run will be written
as Pjo, where P; includes all the free variables of P, as
well as all the bound variables that have been substituted in

the past evolution that has led to P, while o incorporates
such substitutions. Using this representation for processes,
a generic transition can be written as

L
Pio = Ploo’

and a state can be divided into two components: a process
expression followed by a variable substitution.

In the LTS for the Spi Calculus, all states are defined as
external.

An LTS for a Java sequential program obtained by our
transformation function is now defined. In order to relate
the Java behavior with the Spi Calculus behavior, the Java
LTS uses the same abstract labels used for the Spi Calcu-
lus LTS. Let 5 be the Java code that is going to be exe-
cuted, JavaVar the set of identifiers that can be used as
variables in Java programs, and JavaObj the set of ob-
ject identifiers. Then a generic state (j, Val, Res) is de-
fined by the code j that is going to be executed, plus a
partial function Val : JavaObj — SpiTerm, mapping
each Java object that has been created by previously exe-
cuted code to the Spi Calculus term the object is implement-
ing, and a partial function Res : JavaVar — JavaObj
mapping each Java variable in the scope of j to the refer-
enced Java object. For example, Val(o) = {M}y means
that the Java object o implements the {M} 5 Spi Calculus
term; Res(var) = o means that the Java variable var ref-
erences the object o. The intended invariant that should hold
is Val(Res(J(M))) = Mo, where o is the variable sub-
stitution in the corresponding Spi Calculus process. That is,
the object referenced by the Java variable J(M) must im-
plement the M o term, which is the run-time value of the M
Spi Calculus term. A Java state (7, Val, Res) is defined as
external iff j = tr,(P,dom(Val o Res o J), return) for
some Spi Calculus process P that does not begin with a re-
striction and for some return set return. Note that, since
Val o Res o J is a composition of partial functions, the do-
main of J is properly restricted such that its codomain is the
domain of Res; in turn this is restricted so that its codomain
is the domain of Val. The transitions of the form

j,Val, Res £ i, Val', Res'

take from one generic state to another, following an ab-
stract operational semantics for the Java language. In this
work, we formally define an operational semantics that, if
implemented by the SpiWrapper classes, makes it possible
to have a weak simulation relation between the Spi Calcu-
lus process and the generated Java code. The formal se-
mantics for the SpiWrapper classes presented in this work
is reported in table 3. Class names such as PairMarsh
and ShKCMarsh are placeholders for the user provided
classes implementing the marshalling functions, and ex-
tending the corresponding SpiWrapper abstract classes. A

new TMarsh (params), Val, Res N
), (M,M)}UVal, Res = =5
N

c.receive (Ts.class,params),{(¢,c)}UVal, Res = 5

c.send (M), {(c,

0,{(0,n)} UVal,Res N n ¢ codom(Val)
unit, {(¢c,c), (M, M)} UVal, Res
N, {(e; ¢), (AL N)} U Val, Res

M=N = a.equals (6),{(a, M), (6,N)} UVal, Res N true,{(a, M), (6, N)} UVal, Res
M #N = a.equals (6),{(a, M), (6,N)} UVal, Res 5" false,{(a,M),(6,N)} UVal, Res
new PairMarsh (4, B,paranms),{(4,A),(8,B)}UVal, Res 57 0,{(4,A),(B,B),(o,(A,B))} UVal, Res
o.getLeft (), {(o,(M,N)),(M, M)} UVal, Res 5" M, {(o,(M,N)), (M, M)} UVal, Res
0.getRight (), {(o, (M, N)), (N)}UVal, Res 5 A, { (0, (M, N)), (N,N)}UVal, Res
new ShKCMarsh (M, K,params A, M), (x,K)} UVal, Res 5" o, {(M,M),(X,K),(0,{M}x)} UVal, Res
o.decrypt (X, params), {(X, K), (o, {M}K)}UVal,Res 5" M {(M,M),(X,K), (o,{M}x)} UVal, Res

Table 3. Formal semantics for the selected SpiWrapper classes subset.

void method returns the unit value, while true and
false are the boolean values. It is assumed that if a
method cannot succeed (for example, a wrong key is passed
to the decrypt method), it throws an exception, that simu-
lates the stuck process. Standard congruence and computa-
tion semantic rules are assumed for the sequential concate-
nation of statements, and for the other Java statements.

The simulation relation .S, that relates external Spi Cal-
culus states to external Java states, is formally defined as

S((vm)P)o, (j, Val, Res))
j =trp(P,dom(Val o Res o J),return) A

ojfep) = Valo Reso Jjp,py N 0 2 ValoResoJ

for any Spi Calculus process P that does not begin with a re-
striction, and any V'al, Res such that dom(Val o Res o J)
is closed under the subterms function. Informally, a Spi
Calculus state ((¢m)P)o and a Java state (j, Val, Res) are
S-related, iff the Java state is external, and the invariant

= Val(Res(J(M))) holds. Note that it is required
that the domain of Val o Res o J contains all the free vari-
ables in P; however some compound terms may not (yet)
be stored in Java memory (because they will be built by
the code generated by the ¢r;(-) function): it is enough to
require that the invariant holds for the already built terms,
which are stored in Java memory.

Theorem 2. If the SpiWrapper library behaves as specified
in table 3, then, for any external state (j',Val', Res’)

S((vm)Po, (j,Val, Res)) A
j,Val,Res = 557 i Val', Res' =
Po 5 (vm)P'a’ N S((vm)(vm)P'o’, (j',Val', Res'))

Theorem 2 formally expresses the simulation relation be-
tween a Spi Calculus process and its corresponding gener-
ated Java program. If the simulation relation holds between
a state of a Spi Calculus process and a state of its corre-
sponding Java program, and if the Java program can evolve

into a new external state, then the Spi Calculus process can
evolve into a new external state too, and the new external
states are still related by the simulation relation S.

Note that the initial state of a Java program could be an
internal state, if the translated Spi Calculus process P be-
gins with a restriction, however it can be formally shown
that the translation of a restriction process is a Java program
that evolves to an external state where the simulation rela-
tion S holds. So, even the translation of a restriction process
is handled, enabling theorem 2, thus getting to the final re-
sult that the Java code simulates the Spi Calculus process
from which it has been generated.

5. Conclusions

This paper formally defines a provably correct refine-
ment from Spi Calculus specifications into Java code im-
plementations, thus enabling automatic generation of the
implementations, while preserving the security properties
verified on the specifications. This refinement relation has
been obtained by defining a type system, that allows to as-
sign static types to the untyped Spi Calculus terms, and then
to use the same types for Java data representing the Spi Cal-
culus terms. Moreover, a translation function from well-
formed sequential Spi Calculus processes to Java code has
been formally defined, so that it is possible to reason on the
relation between the Spi Calculus source processes, and the
generated Java code. The first result is that the translation
of a well-formed Spi Calculus process always leads to the
generation of well-formed Java code, that is code that com-
piles. Some features, like protocol return parameters and in-
teroperability of the generated application, that is needed to
let the program adhere to existing standards, are also taken
into account by the translation function.

As a further step, we proved that the generated Java code
is a correct refinement of the Spi Calculus specification, if
correctness of an underlying custom Java library, called Spi-
Wrapper, is assumed. In order to achieve this result, the for-

mal definition of the intended behavior of the SpiWrapper
library has been formalized. Then, it has been shown that
the intended behavior of this library can be related to the
formal semantics of the Spi Calculus, so that the generated
Java code, by properly using the SpiWrapper library, can
simulate the Spi Calculus specification.

It is believable that these results can be extended to any
(statically or not) typed sequential object oriented target
language.

The translation function that has been formalized in this
paper has been implemented in the spi2java tool, which
has been used to successfully generate interoperable imple-
mentations of real cryptographic protocols.! For example,
in [21], a description of using spi2java for the implementa-
tion of the SSH transport protocol can be found.

There are still open issues that would improve this work.
One interesting result would be the development of a prov-
ably correct implementation of the SpiWrapper library, that
is an implementation that behaves as defined in this paper.
Another possibility is to link this work to existing propos-
als [4] of cryptographic libraries that offer provably correct
implementations of abstract cryptographic primitives like
the ones used in the Spi Calculus. Finally it would be inter-
esting to collect some metrics, for example efficiency of the
implementation code or size of the formal model, in order
to compare this approach with the model extraction one.

References

[1] M. Abadi and B. Blanchet. Computer-Assisted Verification
of a Protocol for Certified Email. Science of Computer Pro-
gramming, 58(1-2):3-27, 2005.

[2] M. Abadi, B. Blanchet, and C. Fournet. Just fast keying
in the pi calculus. ACM Transactions on Information and
System Security, 10(3):1-59, 2007.

[3] M. Abadi and A. D. Gordon. A calculus for cryptographic
protocols the spi calculus. Research Report 149, 1998.

[4] M. Backes, B. Pfitzmann, and M. Waidner. A composable
cryptographic library with nested operations. In ACM Con-
ference on Computer and Communications Security, pages
220-230, 2003.

[5] S. Bajaj et al. Web services policy 1.2 - attachment (WS-
policyattachment). W3C Recommendation, 2006.

[6] S. Bajaj et al. Web services policy 1.2 - framework (WS-
policy). W3C Recommendation, 2006.

[7] K. Bhargavan, C. Fournet, and A. D. Gordon. Verified ref-
erence implementations of WS-security protocols. In Web
Services and Formal Methods, pages 88—106, 2006.

[8] K. Bhargavan, C. Fournet, A. D. Gordon, and G. O’Shea.
An advisor for web services security policies. In Workshop
on Secure web services, pages 1-9, 2005.

[9] K. Bhargavan, C. Fournet, A. D. Gordon, and S. Tse. Veri-
fied interoperable implementations of security protocols. In

IThe tool is not yet publicly distributed, but can be obtained by con-
tacting the authors.

(10]

(11]

(12]

[13]

[14]

[15]

(16]

(17]

(18]

(19]

[20]

(21]

[22]

(23]

(24]

[25]

[26]

Computer Security Foundations Workshop, pages 139-152,
2006.
B. Blanchet. An Efficient Cryptographic Protocol Verifier

Based on Prolog Rules. In IEEE Computer Security Foun-

dations Workshop, pages 82-96, 2001.

D. Dolev and A. C.-C. Yao. On the security of public
key protocols. IEEE Transactions on Information Theory,
29(2):198-207, 1983.

L. Durante, R. Sisto, and A. Valenzano. Automatic test-
ing equivalence verification of spi calculus specifications.
ACM Transactions on Software Engineering and Method-
ology, 12(2):222-284, 2003.

J. Goubault-Larrecq and F. Parrennes. Cryptographic proto-
col analysis on real C code. In Verification, Model Checking,
and Abstract Interpretation, pages 363-379, 2005.

E. Hubbers, M. Oostdijk, and E. Poll. Implementing a for-
mally verifiable security protocol in java card. In Security in
Pervasive Computing, pages 213-226, 2003.

A. Igarashi and N. Kobayashi. A generic type system for
the pi-calculus. Electronic Notes in Theoretical Computer
Science, 311(1-3):121-163, 2004.

C.-W. Jeon, 1.-G. Kim, and J.-Y. Choi. Automatic gen-
eration of the C# code for security protocols verified with
casper/FDR. In International Conference on Advanced In-
formation Networking and Applications, pages 507-510,
2005.

J. Jiirjens. Verification of low-level crypto-protocol imple-
mentations using automated theorem proving. In Formal

Methods and Models for Co-Design, pages 89-98, 2005.

R. Milner, J. Parrow, and D. Walker. A calculus of mo-
bile processes, parts I and II. Information and Computation,
100(1):1-77, 1992.

A. Nadalin, C. Kaler, P. Hallam-Baker, and R. Monzillo.
OASIS web services security: SOAP message security 1.1
(WS-security 2004), 2006.

B. C. Pierce. Types and Programming Languages. MIT
Press, 2002.

A. Pironti and R. Sisto. An experiment in interopera-

ble cryptographic protocol implementation using automatic
code generation. In IEEE Symposium on Computers and
Communications, pages 839-844, 2007.

A. Pironti and R. Sisto. Correctness-preserving transla-
tion from Spi Calculus to Java, revision 2. Technical
Report, Politecnico di Torino, Aug. 2008. Available at:

http://staff.polito.it/riccardo.sisto/reports/translation2.ps.
A. Pironti and R. Sisto. Soundness conditions for message

encoding abstractions in formal security protocol models. In
International Conference on Availability, Reliability and Se-
curity, pages 72-79, 2008.

D. Pozza, R. Sisto, and L. Durante. Spi2java: Automatic
cryptographic protocol java code generation from spi calcu-
lus. In International Conference on Advanced Information
Networking and Applications, pages 400-405, 2004.

G. Schellhorn. ASM refinement and generalizations of for-
ward simulation in data refinement: a comparison. Theoret-
ical Computer Science, 336(2-3):403—-435, 2005.

B. Tobler and A. Hutchison. Generating network secu-

rity protocol implementations from formal specifications.
In Certification and Security in Inter-Organizational E-
Services, Toulouse, France, 2004.

