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Abstract

The tools for cryptographic protocols analysis based on state exploration are de-
signed to be completely automatic and should carry out their job with a reasonable
amount of computing and storage resources, even when run by users having a lim-
ited amount of expertise in the field. This paper compares four tools of this kind
to highlight their features and ability to detect bugs under the same experimental
conditions. To this purpose, the ability of each tool to detect known flaws in a uni-
form set of well-known cryptographic protocols has been checked. Results are also
given on the relative performance of the tools when analysing several known-good
protocols with an increasing number of parallel sessions.
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1 Introduction

In the last years, researchers devoted much e↵ort to develop techniques to
formally analyse cryptographic protocols. Their e↵orts have been stimulated
by a widespread, increasing interest in security issues, and have led to the
development of several prototypes of formal analysis tools. Such prototypes
have enabled finding out new attacks, not only on new cryptographic protocols
being proposed, but even on old protocols which for long had been considered
secure.

Tools are usually developed with the aim of implementing and automating
analysis techniques, so as to help finding out possible vulnerabilities with
minimal e↵ort. Of course, the degree up to which this objective is achieved by
each tool may vary, depending on both the di↵erent analysis techniques used
and the particular implementation choices made.

In this paper attention is focused on completely automatic tools, which are
based on state space exploration. The main goal of the paper is to compare
some features of a number of publicly-available tools in this class.

After discussing related work in Sect. 2, in this paper we compare four fully
automatic state exploration tools for cryptographic protocol analysis, focusing
on both qualitative and quantitative experimental issues. In particular, Sect. 3
presents the specification language and the kind of analysis performed by each
tool.

Then, in Sect. 4, the results of our experimental comparison of the tools on a
suitable set of protocols taken from [23], an online repository of security pro-
tocols based on the work of Clark and Jacob [11], are presented. The reported
results measure both the ability of each tool to find out known vulnerabilities
on the test protocols, and the time taken to completely analyse the test pro-
tocols that are considered free of bugs. Last, Sect. 5 draws some conclusions.

2 Related Work

A cryptographic protocol is usually developed in a sequence of phases, from
conceptual design down to its practical implementation. Although it is possible
to check a cryptographic protocol for vulnerabilities during any of its stages of
development, in this paper we focus only on the high-level, conceptual design
phase. Working at this level is advantageous because it is possible to keep the
analysis technique independent of a number of cumbersome aspects such as,
for example, message encodings, cryptographic algorithms and communication
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channel peculiarities.

On the other hand, any protocol flaw that depends on these aspects will not
be detected, but experience shows that defining an attack-free protocol is a
challenging task even if they are neglected for a moment. It may therefore be
convenient to concentrate at first on creating a conceptually secure protocol
built on an idealised model of the underlying cryptographic primitives, and
then analyse these lower-level elements. This is also the route taken by most
previous papers on the same subject. As as example, one common instance of
this idealisation, namely perfect encryption, will be presented in Section 4.

A few main classes of formal analysis techniques have been introduced in the
past:

(1) Deductive methods such as, for example, those described in [8,22,26] de-
rive a formal theory that faithfully represents the protocol being analysed
and prove one or more theorems — corresponding to the protocol prop-
erties of interest — in that theory. Theorem provers are used to partially
automate the proof process, but a certain amount of human intervention
is still needed and termination is not always guaranteed.

(2) Static analysis methods such as [5] apply compiler-like techniques, like
type checking and data/control flow analysis in order to verify the prop-
erties of the protocol being analysed. However, they still do not solve
the problem in general terms and usually deal only with authenticity
properties.

(3) State exploration methods model the protocol being analysed as a finite
state system of reasonable size and systematically explore the states of
the model looking for violations of the properties of interest. For instance,
the methods described in [4,6,12,16,19–21,25,27] belong to this category.

With respect to the others, state exploration methods promise complete au-
tomation and, for this reason, research is currently very active in this area.
Several tools of this kind are available as well and can nowadays be applied to
the analysis of protocols of practical relevance, and no longer only to synthetic
case studies.

Even if they are still to be looked at as prototypes — namely, they are still far
from the level of maturity required to promote their own standardisation and
widespread, systematic adoption — they can nevertheless be used to validate
existing standard cryptographic protocols or new protocols being considered
for standardisation. Within the context of wireless network standards this has
been shown, for example, in [10].

Among state exploration methods, on which this paper is focused, one of
the main design trade-o↵s to be considered is between the sophistication and
power of the properties to be checked and the complexity of the analysis.
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A, B, S : principal

Na, Nb : number

Kab, Kbs, Kas : key

1. A -> S : A, B, Na

2. S -> B : {A, B, Na, Kab}Kas, {A, B, Na, Kab}Kbs

3. B -> A : {A, B, Na, Kab}Kas, {Na}Kab, Nb

4. A -> B : {Nb}Kab

Fig. 1. An Informal Specification of the Kao Chow Protocol

For instance, among the tools being considered in this paper, the secrecy
concept adopted by [17] is stronger than the other ones, because it is based
on testing equivalence. This feature makes the tool more capable, but often
hinders its performance because the analysis technique is more complex and
prevents the applications of state-space reduction techniques.

Unfortunately, to the best knowledge of the authors, not much work has been
published on comparing tools for cryptographic protocol analysis. In general,
each author provides experimental data about his/her own tool, but results
obtained for one tool are often not directly comparable with the ones given for
others. This happens mainly because each protocol comes in many di↵erent
versions, which can be formalised in several slightly di↵erent ways. Thus, the
sets of protocols used to test di↵erent tools are not the same. Moreover, when
execution times are considered, di↵erences in the hardware used to test the
various tools are a further element that prevents comparisons.

In [18], four state exploration tools are compared, but this comparison is based
only on some of the tool features, and in no way on experimental data. Another
work [2] is based on a case study, and compares the use of two languages,
namely Haskell and Maude, for modelling and reasoning about cryptographic
protocols.

3 The Tools

In this section, several tools for cryptographic protocol analysis based on state
exploration are discussed, namely Casper/FDR, STA, S3A, and OFMC. As a
running example, we use the first version of the Kao Chow protocol described
in [23].

Figure 1 describes this protocol using the so-called Alice&Bob-style notation
commonly used to informally specify cryptographic protocols. In the descrip-
tion, agents A and B are supposed to share symmetric keys Kas and Kbs,
respectively, with server S, Kab is a fresh session key generated by S and dis-
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tributed to A and B, and Na and Nb are nonces. The goals of the protocol are
to ensure the secrecy of Kab and to mutually authenticate A and B.

3.1 Casper/FDR

One of the first state-exploration automatic tools used to analyse crypto-
graphic protocols is based on the FDR model checker, a tool marketed by
Formal Systems [24]. The FDR input consists of a description of the model to
be analysed and a specification representing the desired properties.

Both the model description and the specification are expressed in a machine-
readable dialect of the process algebra CSP. FDR can generate the state spaces
of the model and of the specification and check whether the model satisfies
the specification, i.e., whether the model is a refinement of the specification.

The flexibility of the CSP language makes it possible to describe cryptographic
protocol models and related security specifications in an accurate way. How-
ever, since the task of writing such CSP descriptions is quite di�cult and
error-prone, a front-end called Casper [19] has been developed, which takes
protocol models and security properties expressed in a simpler language and
translates them into CSP.

Figure 2 shows a sample input to Casper, which describes the Kao Chow

authentication protocol. The specification is divided into several sections:

• The Free Variables section declares the types of variables and functions
used in the description (in the example, A, B, S, na, nb, kab are variables
and SKey is a function). In the same section, an InverseKeys declaration
specifies which keys are inverses of which others. Although data are typed,
multiple types for variables or constants can be specified, thus enabling the
search for certain type-flaw attacks. All type-flaw attacks can be searched
for, in principle, but this usually leads to cumbersome descriptions. A further
drawback is also that non-atomic keys are not allowed.

• The Processes section declares each protocol role with its formal parame-
ters, and specifies the initial knowledge that each role has at the beginning
of a protocol session. The first formal parameter identifies the agent imper-
sonating the role.

• The Protocol description section describes the sequence of message ex-
changes a protocol session consists of. Protocol roles are identified by the
first identifier of the role declaration (A, B and S in the example), and
only the exchanged messages are represented, leaving unspecified how each
message is processed by the receiver, because Casper assumes that all the
possible decoding, decryption, and check operations are performed at mes-
sage reception. This feature simplifies protocol descriptions but prevents
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#Free variables

A, B : Agent

S : Server

na, nb : Nonce

kab : SessionKey

SKey : Agent -> ServerKey

InverseKeys = (kab, kab), (SKey, SKey)

#Processes

INITIATOR(A, na, S) knows SKey(A)

RESPONDER(B, nb) knows SKey(B)

SERVER(S, kab) knows SKey

#Protocol description

0. -> A : B

[A != B]

1. A -> S : A, B, na

[A != B]

2a. S -> B : {A, B, na, kab}{SKey(A)}%v

2b. S -> B : {A, B, na, kab}{SKey(B)}

3a. B -> A : v%{A, B, na, kab}{SKey(A)}

3b. B -> A : {na}{kab}, nb

4. A -> B : {nb}{kab}

#Specification

Agreement(A, B, [kab])

#Actual variables

Alice, Bob, Mallory : Agent

Sam : Server

Na, Nb, Nib, No: Nonce

Kab, Kold : SessionKey

Kas, Kbs, Kms : ServerKey

InverseKeys = (Kab, Kab), (Kold, Kold)

#Functions

SKey(Alice) = Kas

SKey(Bob) = Kbs

SKey(Mallory) = Kms

#System

INITIATOR(Alice, Na, Sam)

RESPONDER(Bob, Nb)

SERVER(Sam, Kab)

#Intruder Information

Intruder = Mallory

IntruderKnowledge = {Alice, Bob, Mallory, Sam, \

Skey(Mallory), No, Kold, {Alice,Bob,No,Kold}{SKey(Alice)}, \

{Alice, Bob, No, Kold}{SKey(Bob)}}

Fig. 2. A Casper Specification of the Kao Chow Protocol
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the analysis of scenarios where only some of the possible operations are
performed at message reception. Instead, if %v is appended to the message,
the message is simply stored into variable v, with no investigation of its
contents.

• The Specification section lists the security properties that have to be
checked. Casper o↵ers a set of authentication and secrecy parametrised
properties that can be specified and verified.

• The Actual variables and Free variables sections are similar, but the
former specifies constants rather than variables.

• The System and Intruder Information sections describe how the proto-
col model is composed. In particular, the System section lists the instanti-
ations of the various protocol roles, with their actual parameters, and the
Intruder Information section specifies both the intruder identity and ini-
tial knowledge.

Casper models the intruder according to the Dolev-Yao model and in a way
which is completely transparent to the user. The analysis performed by FDR
is a classical explicit model checking, and it is not performed on-the-fly, i.e.
the checks are executed only after the whole state space has been built. FDR2,
the last revision of FDR, has some built-in reductions to limit the size of the
state space. No symbolic technique is used to represent messages. In order
to keep the model finite, Casper limits the length of messages built by the
intruder as well as the number of agents operating in parallel.

3.2 S3A

S3A (Spi calculus Specifications Symbolic Analyser) [17], is a fully automatic
software tool for the formal analysis of cryptographic protocols that reduces
the verification of secrecy and authenticity properties to checks of testing
equivalence between specifications. S3A performs such checks automatically,
by exhaustive state exploration.

The input language of S3A is a machine-readable version of the spi calcu-
lus [1], a process algebra that derives from ⇡ calculus, with some simplifica-
tions and the addition of cryptographic primitives. The spi calculus has two
basic language elements: terms, to represent data, and processes, to represent
behaviours. Terms are elements of a free term algebra and are untyped, in
order to provide the maximum expressive power and enable, among the other
things, the specification of non-atomic keys.

The spi calculus process operators let specify the input and output operations
carried out by each process, as well as the operations performed on the received
data (decomposition and decryption of messages, and equality tests).
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The intruder is modelled implicitly and, being represented by a spi calculus
specification, has the same expressive power as the language itself. It can be
shown that this includes the Dolev-Yao intruder model [13,17].

Figure 3 shows the spi calculus specification of the Kao Chow authentication
protocol ready to be processed by S3A. The specification consists of a process
definition for each role (Init, Resp, and S), and of another process definition
describing the model to be analysed (Inst).

Let us consider the first process definition, namely, the definition of Init:

• The notation (@NI) specifies that NI is a new, fresh nonce.
• c<I, N, NI> is an output on channel c of the triple (I, N, NI).
• c(x_kIS, x_NIkIR, xNR) is an input from channel c of a triple. The three

received messages are stored into the three specified variables.
• The next two statements are decryption operations. They are followed by

equality comparisons and other output operations.

The Inst process in the example includes exactly one instance of each role
process. Instances have their own actual parameters that substitute the formal
parameters used in the process description. The | operator means parallel
composition of instances. In the example, the Inst process starts with an
output operation, which has been introduced to make some terms initially
known to the intruder. It can be noted that the intruder behaviour is not
explicitly described, but it is implicitly assumed when analysing the protocol.

Two kinds of security properties can be specified: secrecy and authenticity.
To specify secrecy, it is just necessary to specify which terms are expected to
be kept secret. The secrecy concept adopted by S3A is stronger than the one
normally adopted by other tools, because it is based on testing equivalence.
If Inst(M) is the specification of an instance of the protocol, parametrised
by a data term M which should remain secret, the secrecy property can be
formally expressed as:

Inst(M) ' Inst(M 0) if F (M) ' F (M 0) 8M, M 0 (1)

where ' means testing equivalence and F (M) is the final action the protocol
accomplishes on the secret M . It is worth noting that this way of expressing
secrecy, besides capturing the fact that an intruder must not be able to acquire
knowledge of M , also requires that an intruder must not be able to infer

anything about M . In other words, this secrecy specification requires that
each intruder who knows M and M 0 must be unable to distinguish between
two sessions where M and M 0 are transmitted, respectively.

With respect to authenticity, S3A requires that two specifications be written:

8
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Init(I, R, kIS) :=

(@NI)(

c<I, R, NI>.

c(x_kIS, xNIkIR, xNR).

case x_kIS of {xI, xR, xNI_1, xkIR}kIS in

case xNIkIR of {xNI_2}xkIR in

[xI is I] [xR is R] [xNI_1 is xNI_2] [xNI_2 is NI]

c<{xNR}xkIR>.

(@M)(c<{M, M}xkIR>.

0

)

)

Resp(R, kRS) :=

c(x_kIS, x_kRS).

case x_kRS of {xI, xR, xNI, xkIR}kRS in

[xR is R]

(@NR)(

c<x_kIS, {xNI}xkIR, NR>.

c(xNRkIR).

case xNRkIR of {xNR}xkIR in

[xNR is NR]

c(xSkIR).

case xSkIR of {xM_1, xM_2}xkIR in

c<xM_1,xM_2>.

0

)

S(I, R, kIS, kRS) :=

c(xI, xR, xNI).

[xI is I] [xR is R]

(@kIR)(

c<{xI, xR, xNI, kIR}kIS, {xI, xR, xNI, kIR}kRS>.

0

)

Inst() :=

(@kAS)(@kBS)(

c<A, B, Kold, Nold,

{A, B, Nold, Kold}kAS, {A, B, Nold, Kold}kBS>.

Init(A, B, kAS)

| Resp(B, kBS)

| S(A, B, kAS, kBS)

)

Fig. 3. A S3A Specification of the Kao Chow Protocol

the first one is the description of the protocol while the second one is a reference
specification, which is similar to the protocol specification, except for the fact

9
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DeclLabel $ a1,a2,a3, b1,b2,b3, s1,s2, disclose,acceptBA $;

DeclVar $ xKab,xNb, yToA,yNa,yKab, zNa, z $;

DeclName $ A,B,S,Kab, Na,Kas, Nb,Kbs, Kold,Nold $;

val prA = (Na new_in (a1!(A,B,Na) >>

a2?({A,B,Na,xKab}Kas,{Na}xKab,xNb) >>

a3!({xNb}xKab) >>

stop));

val prB = (b1?(yToA,{A,B,yNa,yKab}Kbs) >>

(Nb new_in (b2!(yToA,{yNa}yKab,Nb) >>

b3?({Nb}yKab) >>

acceptBA!({Nb}yKab) >>

stop)));

val prS = (s1?(A,B,zNa) >>

(Kab new_in (s2!({A,B,zNa,Kab}Kas,{A,B,zNa,Kab}Kbs) >>

stop )));

val KaoChow =

( [disclose!(A,B,S,Nold,Kold,

{A,B,Nold,Kold}Kas,

{A,B,Nold,Kold}Kbs)]

@ (prA || prB || prS ) );

val Auth1 = (a3!(z) <-- acceptBA!(z));

Fig. 4. A STA Specification of the Kao Chow Protocol

that the authenticity of the messages is enforced. Testing equivalence of the
two specifications implies that authenticity holds.

S3A deals with the whole spi calculus, with the only exception of the replica-
tion operator, which introduces an unbounded number of processes. Leaving
replication out, models are kept finite thanks to symbolic representations of
messages. When checking for authenticity, S3A does not work on-the-fly: it first
generates the whole state space of the two specifications to be compared and
then checks for equivalence. Instead, when checking for secrecy, S3A can work
on-the-fly. If the testing equivalence check fails, S3A is capable of synthesising
the spi calculus specification of an intruder that can discriminate between the
checked specifications, thus possibly leading to an attack. To overcome the
issue of state explosion, inherent in exhaustive state exploration methods, S3A
exploits state space symmetries and a limited form of partial order.

10
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3.3 STA

STA (Symbolic Trace Analyser) [6,7] is a model checker for cryptographic
protocols relying on symbolic techniques that avoid the explicit construction
of the infinite messages that an attacker can send to protocol agents when
they carry out an input action.

Also in this case, protocols are described by means of a dialect of the spi
calculus [1] but, unlike in the language described in [1], the authors of [6,7]
assume a single public channel over which data are exchanged, and no integers
are allowed. In STA, according to the underlying theory, terms are untyped
and their free-term algebra allows them to be arbitrarily nested, but all keys,
either shared or public/private, must be atomic; the implementation of STA
provides limited support for non-atomic keys.

The intruder is modelled implicitly and conforms to the well-known Dolev-Yao
model [14], with the additional ability (that has to be specified explicitly) for
the intruder to assume the role of a legitimate protocol participant.

STA allows to express and verify authentication properties based on corre-
spondence assertions: in any protocol trace a certain action � must follow an
action ↵ in the same trace. Moreover, secrecy properties about certain values
are verified by means of ad-hoc actions in the specification, designed so as to
check that the intruder does not learn secrets at any interaction point between
the intruder and the protocol.

For example, Fig. 4 shows the STA specification of the Kao Chow authenti-
cation protocol. The specification is made up of several sections, in which:

• The DeclLabel keyword introduces labels, which are useful in helping the
user to read the sequence of events leading to an attack;

• DeclVar gives the whole set of variables which bind terms in input actions;
• DeclName specifies the objects’ identifiers, e.g. agents’ identities and keys;
• Val <agent_name> introduces the behaviour of each agent where:

· <identifier> new_in establishes a fresh name, known in the current
scope only (e.g. a nonce);

· a!M is the output action, labelled as a, of term M;
· a?M represents an input action where M is a message pattern with variables.

Any (intruder-generated) message matching it is allowed as input. As an
example, b1?(yToA,{yA,yB,yNa,yKab}Kbs) matches any pair of terms,
where the first term in the pair is bound to yToA, while the second is a tuple
encrypted with shared key Kbs, whose elements are bound respectively to
yA, yB, yNa and yKab after the input;

· (M is N) is a guard that enables the following action only if a match
between terms M and N exists;

11
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· >> is the sequencing operator;
· || is the parallel composition operator;
· stop labels the end of the agent’s activity;
· disclose is the special label which introduces the intruder’s initial knowl-

edge elements. In the example they consist of the agents’ names, a nonce,
a session key and two protocol messages exchanged in a previous session;

· @(...) instantiates agents;
· Auth1 = (a3!(z) <-- acceptBA!(z)) establishes a correspondence be-

tween the last output action of agent A and the corresponding message
read by B in any protocol session: B must publish z after A has sent the
same value. Any violation detected is an authentication flaw.

The lack of parametrisation in this language leads specification sizes to grow
rapidly as more instances of a role are needed.

Roles must be finite in number and behaviour. On the other hand, the sym-
bolic representation of terms allows to replace the infinite set of messages
the intruder can send to the legitimate participants on each input action of
the protocol with a finite one. Variables provide a finite representation of the
infinite set in the first place, and can subsequently be constrained to either
assume or not assume specific values and syntactic forms during the course of
the analysis, in order to satisfy tests and requirements posed on them by the
receiving agents as they check and use them.

In order to simplify the symbolic trace generation system, some symbolic
traces may not have, in general, a corresponding concrete one. Thus, when
a flaw is detected by the on-the-fly analysis, some kind of refinement is needed
to determine if there really exists at least one concrete trace to exploit it.

The analysis stops when a violation is detected, and the protocol steps leading
to it are then shown.

3.4 OFMC

OFMC (On-the-Fly Model Checker) [4] is a model-checker for cryptographic
protocols relying on lazy techniques to reduce the computational e↵ort re-
quired to carry out the analysis.

Protocols are described by means of HLPSL (High-Level Protocol Specifica-
tion Language) that, in an untyped free-term algebra context, supports both
symmetric and asymmetric non-atomic keys, one-way functions and inequali-
ties. Moreover, some kind of support is provided for operators with algebraic
properties, for example exponentiation.

12
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Protocol KaoChow;

Identifiers

A, B, S: user;

Na, Nb: number;

Kas, Kbs, Kab: symmetric_key;

Knowledge

A: S, B, Kas;

B: A, S, Kbs;

S: A, B, Kas, Kbs;

Messages

1. A -> S: A, B, Na

2. S -> B: {A, B, Na, Kab}Kas, {A, B, Na, Kab}Kbs

3. B -> A: {A, B, Na, Kab}Kas, {Na}Kab, Nb

4. A -> B: {Nb}Kab

Session_instances

[ A: a; B: b; S: se; Kas: kas; Kbs: kbs ];

Intruder divert, impersonate;

Intruder_knowledge a, b, se;

Goal Short_Term_secret Kab;

Goal B authenticate A on Nb;

Fig. 5. A HLPSL Specification of the Kao Chow Protocol

HLPSL specifications are then translated into an intermediate language, IF
(Intermediate Format), which is used to carry out the analysis by means of a
software tool written in Haskell.

The intruder is modelled implicitly and conforms to the well-known Dolev-Yao
model [14], with the additional ability (that has to be specified explicitly) for
the intruder to assume the role of a legitimate protocol participant.

For example, Fig. 5 gives the HLPSL specification of the Kao Chow authen-
tication protocol. The specification is made up of several sections, in which:

• the Protocol keyword introduces the protocol name;
• Identifiers gives the set of identifiers used by the specification and their

type, which determines their properties;
• Knowledge specifies what atomic messages a protocol agent must initially

know in order to execute the protocol;
• Messages lists the sequence of exchanged messages in the commonly-used

Alice&Bob-style notation;
• Session_instances specifies the scenario to be used in the analysis; in this

case, we specify a single session where agents a, b, and se play the roles of
A, B, and S respectively, with their proper keys.

The last statements of the specification define the abilities of the intruder,
its initial knowledge and the security goals that the protocol should achieve,
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respectively.

In this case, the intruder is able to send messages under the identity of any
other legitimate agent (as indicated by the impersonate keyword) and inter-
cepts all messages sent by one agent to another (divert). The initial intruder
knowledge is made up of the names of the legitimate protocol agents a, b, and
se.

Moreover, we require that the intruder does not get hold of the session key
Kab and that the agent playing role B, at the end of its session, believes that
the agent playing role A also terminated its own session, and both of them
agree on the value of Nb.

OFMC is based on two complementary techniques: the lazy demand-driven

search and the lazy intruder. The former provides a finite representation of an
infinite state space, because each portion of the state space is really computed
only when it is being analysed. As a consequence, there is not any a priori

limit set on the depth of the state space exploration, although such a limit is
still needed to ensure the termination of the analysis on a protocol with no
flaws.

On the other hand, the lazy intruder technique replaces the infinite set of mes-
sages the intruder can send to the legitimate participants on each input action
of the protocol by symbolic variables. Variables provide a finite representation
of the infinite set in the first place, and can subsequently be constrained to
either assume or not assume specific values and syntactic forms during the
course of the analysis, in order to satisfy tests and requirements posed on
them by the receiving agents as they check and use them.

Recent work on OFMC has been focused on the integration of reduction tech-
niques based on partial-order reduction [3], and the eventual introduction of
heuristics is foreseen to further improve the e�ciency of the analysis.

4 Experimental Results

In order to assess their error-detection capabilities, the tools described in
Sect. 3 have been tested on a subset of the security protocols described in [23].
The subset has been chosen so as to specify each protocol with all the for-
malisms adopted by the tools under test, that is, we discarded those protocols
that were based on the use of either algebraic operators that go beyond the
free-term algebra assumption (for example, exponentiation or exclusive or), or
cryptographic algorithms that do not satisfy the following perfect encryption

assumptions:
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Table 1
Error-Detection Capabilities of the Tools, Tested on a Subset of the Security Pro-
tocols Open Repository [23]

# Protocol Attack Type S
3 A

O
F
M

C

S
T
A

C
a
s
p
e
r

1 Andrew Secure RPC Freshness Y Y Y Y

2 BAN mod. Andrew Sec. RPC Parallel session Y Y Y Y

3 BAN concrete Andrew Sec. RPC Parallel session Y Y Y Y

4 CCITT x509 (3) Parallel session Y Y Y Y

5 Denning-Sacco shared key Freshness Y Y Nh
Y

6 Kao Chow authentication 1 Freshness Y Y Y Y

7 KSL (rep. part) Parallel session Y Y Y Y

8 Parallel session Y Y Y Y

9 KSL Parallel session Y Ne
Y Nr

10 Parallel session Y Ne Nf Nr

11 Neumann Stubblebine (rep. part) Parallel session Y Y Y Y

12 Neumann Stubblebine Type-flaw Y Y Y Nh

13 Needham-Schroeder Public Key Parallel session Y Y Y Y

14 Needham-Schroeder Symmetric Key Freshness Y Y Y Y

15 Otway Rees Type-flaw Nh
Y Nh N

16 Type-flaw Nh
Y Nh N

17 Type-flaw Nh Nf Nh N
18 SPLICE/AS Parallel session Y Y Y N
19 Binding Y Y Y Y

20 Parallel session Nr
Y Y Nr

21 Hwang/Chen mod. SPLICE/AS Parallel session Y Y Y Y

22 Clark/Jacob mod. Hwang/Chen Freshness Nr
Y N Nr

23 TMN Other Y Y Y Y

24 Other Y Y Y Y

25 Parallel session Nr Nf Nf N
26 Woo/Lam mutual authentication Parallel session Y Y Y N
27 Type-flaw Y Y Y Nh

28 Woo/Lam ⇧ Parallel session Y Nf Nf N
29 Parallel session Y Y Y Y

30 Parallel session Y Y Y Y

31 Woo/Lam ⇧1 Type-flaw Y Y Y Nh

32 Woo/Lam ⇧2 Type-flaw Y Y Y Nh

33 Woo/Lam ⇧3 Type-flaw Y Y Y Nh

34 Yahalom Type-flaw Nh
Y Nh N

35 BAN simplified Yahalom Type-flaw Y Y Y N
36 Parallel session Y Y Y Y

37 Type-flaw Y Y Y N
Total 30 32 28 18
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• an encrypted message can be decrypted only if the right decryption key is
known,

• there is enough redundancy in the cryptosystem to prevent encryption col-
lisions and to make the decryption algorithm able to determine whether the
decryption succeeded or not,

• it is impossible to guess or forge any secret data item.

Regarding timestamps, we took into account only protocols that either do not
use them, or use them in a way trivial enough to handle them as if they were
nonces, even if this assumption could weaken the correctness (or reliability)
of the analysis to some extent.

For each protocol, the analysis has been limited to the known flaws explicitly
mentioned in [4,11,23]. However, to make the results meaningful even when
looking for undocumented bugs, we wrote the protocol specifications without
using any “a priori” knowledge of the bugs.

We also kept the specifications as simple and close to the Alice&Bob-style
notation as possible, according to the widely-accepted statement that these
tools should require little expertise to be used proficiently. As a consequence,
in a small number of cases where we assert that a tool does not detect a flaw,
it might indeed be possible to find it by an appropriate, ad-hoc manipulation
of the specification, hence we will spot this occurrence in the results.

For example, STA is unable to easily detect the replay attack in the Denning-
Sacco shared key protocol, number 5 in Table 1, unless the intruder’s knowl-
edge is enlarged with messages exchanged in a previous run of the protocol,
even though that run is not included in the specification to limit the com-
plexity of the analysis itself. Similarly, S3A and STA are unable to find the
type-flaw attacks 15–17 and 34 in Table 1, without forcing a suitable associa-
tivity on several tuples, and Casper, being based on a typed theory, cannot
detect a type-flaw attack unless the types of the data items involved in the
type flaw are explicitly enumerated in the specification, as also stated in [15].

Table 1 shows the results of the tests, carried out on a total of 37 distinct
flaws and fully documented in [9]. The left-hand side of the table briefly de-
scribes each flaw and the a↵ected protocol; in analogy to the classification
given in [11], we assume that:

• A freshness attack occurs when a message captured by the intruder in a
previous protocol session is replayed, possibly as a message component, in
the current protocol session; to exploit this kind of attack, the protocol
sessions shall not necessarily run in parallel.

• A type-flaw attack involves the malicious replacement of a message compo-
nent with another message of a di↵erent type by the intruder. In turn, this
replacement leads the recipient and the principal, that created the compo-
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nent, to di↵erent interpretations of the message itself.
• A parallel session attack requires the parallel execution of more than one

protocol sessions to be exploited, and the intruder uses messages coming
from one session to synthesise messages in the other(s).

• In a binding attack, the intruder exploits the protocol’s failure to establish
a proper binding between a public key and its owner.

When an attack may be assigned to multiple categories, the last matching
category in the list prevails. It is also worth noting that several protocols
listed in the table are made up of two parts: the initial part, performed once
per session, is usually concerned with the generation and exchange of a session
key, while the final part, that can be repeated several times, performs a mutual
authentication. During the tests, the tools have been used to check both the
full-fledged protocol and the mutual authentication part on its own. In the
table, the latter case has been marked “rep. part”.

On the right-hand side, Table 1 summarises the behaviour of the tools, namely,
information is given on whether the tools were successful in discovering the
flaw or not, and on any problem they encountered during the analysis.

Table 2 presents the results in aggregate form, by giving their distribution for
each tool, and gives more details on the keys being used to represent the test
results. In particular, the symbol Nh means that the tool was unable to find
a given flaw unless it was given some help by means of a custom specification
that somewhat reflected an “a priori” knowledge of the flaw itself, while Nr

means that the tool was unable to complete the analysis because it ran out of
system resources (more than 2 hours of CPU time, 2 GB of disk or 512 MB of
RAM). Finally, the symbol Ne is used when the tool was unable to complete the
analysis because either it encountered an internal error, or gave no meaningful
result.

The symbol Nf is used only for those protocols a↵ected by multiple flaws and
for the tools which stop immediately after the first flaw is detected. It means
that the tool was not able find out a flaw because it was “masked o↵” by
another bug that was detected first and caused the tool to stop. In this case
indeed, the tool might find the second bug if the specification were amended to
fix the one detected first. However, this possibility has not been investigated
further.

OFMC appears to be the best tool among those considered, both because it
is able to find out the vast majority of known flaws without any help from the
user (it has no failures in the Nh class) and because its resource requirements,
due to the e↵ectiveness of the lazy evaluation techniques it is based on, are
quite small, as remarked by the absence of failures due to resource exhaustion
(Nr). The only weakness is its impossibility to fully analyse a protocol with
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Table 2
Distribution of the Test Results by Type

Key Meaning of the Test Result S
3 A

O
F
M

C

S
T
A

C
a
s
p
e
r

Y Flaw detected with a standard specification 30 32 28 18

N Flaw undetected — — 1 10
Nh Flaw detected only with a custom specification 4 — 5 5
Nr Resources exhausted. 3 — — 4
Nf The tool stops when it detects the first flaw — 3 3 —
Ne Internal error or no result — 2 — —

multiple flaws in a single run, because OFMC stops immediately when it finds
an attack. From this point of view, tools like S3A and Casper, that perform an
exhaustive enumeration of the state space, behave better and, in fact, have no
failures in the Nf class. The other side of the medal is a greater consumption
of CPU, memory and disk resources, which leads to several failures belonging
to the Nr class. STA requirements in terms of resources are similar to those
of S3A, but STA also stops the analysis when it finds out a flaw.

The limited performance of S3A can be partially justified if we observe that
this tool carries out a testing equivalence check that is more powerful, but
also more expensive, than the checks based on reachability analysis, because
it limits the applicability and e�cacy of the state-space reduction techniques
based on symmetries or partial order reductions. An additional point in favour
of S3A is that it can be used to check also other kinds of security properties
such as secrecy, while the other tools considered in this paper are able to verify
only authentication.

With respect to type-flaw attacks, both S3A and STA often need some help
to explicitly describe the associativity of tuples in order to exploit the attack,
when it di↵ers from the default, while OFMC is able to find out type-flaw
attacks without any intervention. On the other hand, the design of Casper
makes it weak in this area; in fact, most failures in the Nh class as well as
several failures in the N class can be attributed to this limitation.

Instead, other failures of Casper are probably due to its lack of symbolic data
representation capabilities. In turn, this limitation forces the tool to artificially
place an upper limit on the length of the messages synthesised by the intruder,
thus possibly neglecting a portion of the state space containing an attack trace.

Last, it should be noted that the joint usage of OFMC and S3A covers the
maximum number of flaws, and that flaws detected by STA and Casper are a
proper subset of them.
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Table 3
Execution Times on Protocols Without Flaws
Protocol Scenario S

3
A OFMC STA Casper

BAN modified 1A 1B 0.04 s 0.01 s 0.15 s Nr

CCITT X.509 (3) 2A 1B 2.11 s 0.02 s 1218.33 s
2A 2B Nr 0.07 s Nr

3A 2B 0.24 s
3A 3B 1.61 s
4A 3B 5.62 s
4A 4B Nr

Lowe modified 1A 1B 1S 0.07 s 0.01 s 0.03 s 76.8 s
Denning-Sacco 2A 1B 1S 1.50 s 0.03 s 1.48 s 154.26 s
shared key 2A 2B 1S 611.20 s 0.03 s 109.21 s 168.52 s

2A 2B 2S Nr 0.11 s 2289.59 s Nr

3A 3B 3S 3.93 s Nr

4A 4B 4S Nr

Kao Chow 1A 1B 1S 0.15 s 0.02 s 0.12 s 15.20 s
Authentication 2A 1B 1S 1.70 s 0.03 s 0.44 s 21.82 s
v.2 2A 2B 1S 21.20 s 0.03 s 7.71 s 29.35 s

2A 2B 2S Nr 0.36 s 1162.87 s Nr

3A 3B 3S Nr Nr

Kao Chow 1A 1B 1S 0.04 s 0.03 s 0.40 s 216.10 s
Authentication 2A 1B 1S 2.09 s 0.03 s 1.33 s 260.30 s
v.3 2A 2B 1S 26.46 s 0.04 s 14.11 s 416.49 s

2A 2B 2S Nr 0.45 s Nr Nr

3A 2B 2S 1.42 s
3A 3B 2S 12.70 s
3A 3B 3S Nr

Amended 1A 1B 1S 0.69 s 0.06 s 0.40 s Nr

Needham 2A 1B 1S 307.10 s 0.16 s 97.20 s
Schroeder 2A 2B 1S Nr 0.47 s Nr

Symmetric Key 2A 2B 2S 3.58 s
3A 2B 2S Ne

Lowe modified 1A 1B 1S 0.07 s 0.06 s 0.03 s 11.46 s
Yahalom 2A 1B 1S 4.33 s 0.20 s 0.37 s 12.76 s

2A 2B 1S 3906.00 s 2.88 s 74.90 s 14.25 s
2A 2B 2S Nr Nr 1534.90 s 20.96 s
3A 2B 2S Nr 385.60 s
3A 3B 2S Nr

Paulson’s 1A 1B 1S 0.06 s 0.02 s 0.07 s 99.19 s
strengthened 2A 1B 1S 2.95 s 0.03 s 0.62 s 124.25 s
Yahalom 2A 2B 1S 1858.10 s 0.21 s 73.20 s 154.28 s

2A 2B 2S Nr 1.89 s Nr 377.13 s
3A 2B 2S Ne Nr
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The tools have also been used to analyse several other protocols to extend the
comparison to the performance point of view. The analysis has been carried
out with an increasing number of instances for each role, to give an idea of how
the execution time grows when the number of instances of each role increases.
As mentioned before, some of the considered tools stop immediately when
they detect a flaw, while others continue the analysis until they find all the
flaws they are able to. For this reason tests were restricted to those protocols
without known flaws; this enables a quite fair evaluation and forces all the
tools to analyse protocols completely. All the tools have been run on the same
machine, namely, a conventional personal computer equipped with an AMD
Athlon XP 2600+ CPU and 512 MB of RAM.

Table 3 summarises the obtained results. Protocols are listed on the left, along
with the scenarios being analysed, namely the number of parallel instances
of the protocol roles. The right portion of the table gives the corresponding
execution times for each tool. The same keys already introduced in Table 2
have been used to indicate when a tool was unable to finish the analysis and
why. Clearly, when a tool failed on a scenario, it was not run on more complex
scenarios of the same protocol any longer.

It is worth noting that, although [4,15] report the detection of a flaw in versions
2 and 3 of the Kao Chow protocol, they take as a reference the protocol
descriptions of [11], which are not the same as those taken in [23]. When
adopting the specifications in [23], all the tools considered in this paper agree
on the absence of flaws and [23] does not report any known bug indeed.

In general, experiments show that the best performance levels are reached by
OFMC, followed by STA, S3A, and Casper in that order. One notable excep-
tion is the analysis of the two bug-free variations on the Yahalom protocol,
where Casper behaves very well, even better than OFMC in at least one case.
One explanation of this “anomaly”, can be found, bearing in mind that the
Yahalom protocol involves complex messages and that Casper was unable to
find some of the bugs in a buggy version of this protocol (cases 35–37 in Ta-
ble 1). In fact, the reason may lie, once again, in the upper bound enforced by
Casper on the length of the messages generated by the intruder; this approach
shrinks the portion of the state space the tool actually explores significatively
in this case. This behaviour a↵ects the accuracy of the analysis undoubtedly,
but can also make the analysis time considerably shorter.

5 Conclusions

The use of analysis and verification automatic tools based on formal meth-
ods is becoming more and more pervasive in the community of cryptographic

20



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT

protocols. This paper has presented some results obtained by testing some
popular publicly available tools on an experimental basis. In particular, it has
been aimed at evaluating and comparing the tools on a common ground from
both the designer and user points of view.

To our knowledge, in fact, no work has still appeared in the literature, that
o↵ers the reader results collected by testing di↵erent tools on a (quite) large
shared protocol basis, as each author usually provides di↵erent tests in di↵er-
ent conditions for his/her own tool.

The work described in this paper should be considered as a first step to get
information on the tool behaviours when they are run to analyse the same
protocols in the same configurations. We have tried to set up a fair testing
environment for all the tools considered in the paper. This has led to the
selection of a suitable set of cryptographic protocols for the analysis and to
some choices in the way specifications have been written.

With respect to the comparison, attention has been focused on two main as-
pects: first the ability of each tool to discover known flaws has been checked.
Second, we have also obtained some performance figures by running the tools
on a number of protocols that are considered bug-free, and by exploring dif-
ferent configurations.

Obtained results are encouraging and show that the automatic tools we con-
sidered can be of significant help in analysing protocols, even though they are
still available only in a prototype version. Moreover, their performance are
not totally unsatisfactory. However, in a number of situations some tools were
unable to complete the analysis in a reasonable time.

Finally, we are conscious that our work cannot be considered exhaustive, but
rather as a preliminary contribution to a deeper comparative evaluation of
automatic tools. In fact, much work has still to be done, for instance to extend
the experiments to other tools, to enlarge the protocol basis and to take into
account other performance indices. In addition, the ability of the di↵erent
tools to discover unknown bugs should also be tested and this will be one of
the goals of our next researches in this area.
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