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With the advent of new global navigation satellite systems (GNSS), such as the European Galileo, the Chinese Compass and the
modernized GPS, the presence of new modulations allows the use of special techniques specifically tailored to acquire and track
the new signals. Of particular interest are the new composite GNSS signals that will consist of two different components, the data
and pilot channels. Two strategies for the joint acquisition of the data and pilot components are compared. The first technique,
noncoherent combining, is from the literature and it is used as a comparison term, whereas the analysis of the second one, coherent
combining with sign recovery, represents the innovative contribution of this paper. Although the analysis is developed with respect
to the Galileo E1 Open Service (OS) modulation, the obtained results are general and can be applied to other GNSS signals.
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1. INTRODUCTION

With the advent of the new global navigation satellite
system (GNSS), such as the European Galileo and the
Chinese Compass, new signals and new modulations have
been introduced in order to guarantee the coexistence and
interoperability with existent systems, like the American
GPS, and to fully exploit the technologies currently available.

An example of those new signals is the coherent adaptive
subcarrier modulation (CASM) that will be used for the
transmission of the Galileo signal on the E1 frequency.
CASM combines three different signals in a constant ampli-
tude modulation that allows the use of efficient class C
amplifiers [1, 2].

The three signals combined in the CASM are denoted as
the A, B, and C channels. The first one is used for public-
regulated service (PRS), whereas the latter two will provide
the open service (OS). The B and C channels have two
different roles: the first one, denoted data channel, will carry
the navigation message whereas the second one, denoted
pilot channel, will be used for determining the pseudoranges
between the satellites and the receiver. The B and C signals
will be transmitted at the same time, at the same frequency,
and they will be separated only by different codes [3]. The
A signal is not completely defined by the galileo interface

control document [1] but will probably be separated in
frequency as for the A signal emitted by Giove-A [4], the first
experimental satellite of the Galileo constellation.

The presence of new modulations allows one to adopt
special techniques specifically tailored to acquire and track
new signals.

One solution, when acquiring composite GNSS signals
such as the Galileo E1 OS modulation, consists in ignoring
the data channel and processing only the pilot signal. In this
way only half of the useful power is employed and the GNSS
receiver could not be able to acquire and track signals that
would be easily processed if all the useful power were used.
Pilot and data channel combining allows recovering all the
available power improving the acquisition performance and
providing more reliable signal detection. For these reasons
the design of signal combing techniques is critical for the
efficient acquisition of the new GNSS signals.

In this paper, Galileo E1 OS signals are considered
and in particular two acquisition strategies for the efficient
combining of data and pilot channels are analyzed. In the
first strategy, called noncoherent combining, the received
signal is correlated separately with the pilot and data local
replicas. The correlation outputs are then squared and
summed. This strategy essentially exploits the principle
of noncoherent integration [5–7] employed to extend the

mailto:daniele.borio@polito.it


2 International Journal of Navigation and Observation

integration period over the bit duration. Its use for data and
pilot combining is reported by [8], however its performance
in terms of false alarm and detection probabilities has been
only marginally investigated.

The second strategy consists in multiplying the received
signal by two new signals, obtained by summing and
subtracting the data and pilot local replicas, respectively.
Then, the maximum of the two correlations is adopted as
decision variable. This strategy can be seen as an extension
of the (b–c) technique proposed by [9, 10] in which only
the correlation with the difference between data and pilot
codes was considered. This second strategy implements the
Maximum Likelihood estimator for the code delay, the
Doppler frequency, and the relative phase between data and
pilot channels, and, to the best of our knowledge, has never
been applied to the E1 OS signals. This strategy allows
the coherent combining of data and pilot channels and it
will be denoted as coherent channel combining with sign
recovery. The proposed method is the adaptation of the
acquisition strategy proposed in [11] to the Galileo E1 OS
signal. In particular [11] considered the case of data and pilot
components transmitted with a±90 degree phase difference.
Moreover, [11] only proposed the method without providing
any analytical characterization of its performance.

Both strategies have been analyzed in terms of false alarm
and detection probabilities and closed-form expressions for
the probabilities of coherent channel combining with sign
recovery have been derived. To the best of our knowledge
these expressions have never been derived before and repre-
sent one of the innovative contributions of this paper. More-
over, these formulas are general and can be easily adapted to
the case of other modulations, for example, for the GPS L5
case that has been analyzed only by simulations [11].

In the analysis the coherent integration time is limited
to a single code period. In this way the acquisition block
has not to deal with the problem of bit transitions that
can occur every 4 milliseconds. Moreover, an integration
time of 4 milliseconds should be sufficient to acquire GNSS
signals in high to moderate C/N0 conditions. The problem
of bit transitions can be overcome by using noncoherent
integrations. The integration time can be also increased
by considering the pilot channel alone and exploiting the
structure imposed by its secondary code [11]. These issues
are however out of the scope of this paper.

Monte Carlo techniques have been used for supporting
the theoretical analysis: simulations and analytical expres-
sions agree well proving the effectiveness of the developed
theory.

From the analysis it emerges that the coherent combining
always outperforms noncoherent combining and thus it
should be adopted for the joint acquisition of data and pilot
channels.

This work is organized as follows: Section 2 introduces
the CASM and provides a model for Galileo E1 OS signals.
In Section 3 the noncoherent and coherent combining
algorithms are described and the expressions for false alarm
and detection probabilities are derived. In Section 4 the
derived formulas are validated by Monte Carlo simulations.
Finally, the conclusions are presented in Section 5.

2. SIGNAL AND SYSTEM MODEL

The signal at the input of a Galileo receiver, in one-path
additive Gaussian noise environment, can be written as

rRF(t) =
L∑

i=1

√
2PR,i yi(t) + ηRF(t) (1)

that is the sum of L useful signals, emitted by L different
satellites and with power PR,i, and of a noise term ηRF(t). Each
signal yi(t), in the Galileo E1 band, is given by [1, 2]:

yi(t)

=
√

2
3

[
eB,i
(
t − τ0,i

)− eC,i
(
t − τ0,i

)]
cos

(
2π
(
fRF + fd,i

)
t + θi

)

− 1
3

[
2eA,i

(
t−τ0,i

)
+eA,i

(
t−τ0,i

)
eB,i
(
t−τ0,i

)
eC,i

(
t−τ0,i

)
]

× sin
(
2π
(
fRF + fd,i

)
t + θi

)
,

(2)

where

(i) eA,i(t), eB,i(t) and eC,i(t) are the three useful signals
emitted on the E1 frequencies and corresponding to
the A, B, and C channels, respectively, and eA,i(t) is
a restricted access signal for PRS whereas eB,i(t) and
eC,i(t) are the data and pilot signals for OS;

(ii) τ0,i, fd,i, and θi are the delay, the Doppler frequency,
and the phase introduced by the transmission chan-
nel;

(iii) fRF = 1575.42 MHz is the E1 central frequency.

eA,i(t), eB,i(t), and eC,i(t) are real binary sequences that
assume value in the set {−1, 1}. These three signals are
combined according to the CASM in order to obtain a
constant envelope signal yi(t). This result is achieved by
introducing the term proportional to the three useful signals
in (2).

The input signal (1) is recovered by the receiver antenna,
downconverted, and filtered by the receiver front end. A
low-IF receiver is assumed. In mass-market receivers the
bandwidth of the front-end filter is generally limited to a few
MHz and thus the components depending on the PRS signal
in (2) can be considered eliminated by the filtering process.
This is due to the fact that a BOC(15,2.5) modulation [2, 4]
is employed for the PRS signal. This modulation splits the
PRS signal power far from the E1 central frequency where
the power spectral densities (PSD) of the OS signals are
concentrated. In this way, the received signal, before the
analog-to-digital (AD) conversion, is given by

rIF(t) =
L∑

i=1

√
2PR,i yi(t) + ηIF(t)

=
L∑

i=1

√
2PR,i

√
2

3

[
eB,i
(
t − τ0,i

)− eC,i
(
t − τ0,i

)]

× cos(2π
(
fIF + fd,i

)
t + θi

)
+ ηIF(t),

(3)
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where fIF is the receiver intermediate frequency and ηIF(t)
is the downconverted and filtered noise component. In (3)
the effect of the front-end filtering on the OS components is
considered negligible.

Finally, (3) is sampled and AD is converted, obtaining,
by neglecting the quantization impact, the following signal
model:

rIF(nTs) =
L∑

i=1

√
2PR,i yi

(
nTs

)
+ ηIF

(
nTs

)

=
L∑

i=1

√
2PR,i

√
2

3

[
eB,i
(
nTs − τ0,i

)− eC,i
(
nTs − τ0,i

)]

× cos
(
2π
(
fIF + fd,i

)
nTs + θi

)
+ ηIF

(
nTs

)
.

(4)

In the following, the notation x[n] = x(nTs) will indicate
a discrete-time sequence x[n], obtained by sampling a
continuous-time signal x(t) with a sampling frequency fs =
1/Ts. For this reason (4) can be rewritten as

rIF[n] =
L∑

i=1

√
Ci

(
eB,i

[
n− τ0,i

Ts

]
− eC,i

[
n− τ0,i

Ts

])

× cos
(
2πFiD,0n + θi

)
+ ηIF[n],

(5)

where Ci = (4/9)PR,i and FiD,0 = ( fIF + fd,i)Ts. Ci represents
the total power of the i th received signal since the term

(
eB,i

[
n− τ0,i

Ts

]
− eC,i

[
n− τ0,i

Ts

])
cos

(
2πFiD,0n + θi

)
(6)

has unitary power. The spectral characteristics of ηIF[n]
depend on the type of filtering along with the sampling and
decimation strategy adopted in the front end. A convenient
choice is to sample the IF signal with a sampling frequency
fs = 2BIF, where BIF is the one-sided front-end bandwidth.
In this case, it is easily shown that the noise variance becomes

σ2
IF = E

{
η2

IF(t)
} = E

{
η2

IF

(
nTs

)} = N0 fs
2

= N0BIF, (7)

whereN0/2 is the Power Spectral Density of the IF noise. The
autocorrelation function

RIF[m] = E
{
ηIF[n]ηIF[n +m]

} = σ2
IFδ[m] (8)

implies that the discrete-time random process ηIF[n] is a
classical independent and identically distributed (iid) wide-
sense stationary (WSS) random process, or a white sequence.
δ[m] is the Kronecker delta. From now on, this signal model
is adopted and the system performance is expressed in terms
of Carrier-to-Noise Ratio Ci/N0.

Both data and pilot signals in (5) can be represented as
the product of three terms

eB/C,i[n] = cB/C,i[n]sB[n]dB/C,i[n], (9)

where cB/C,i[n] is a spreading code of length Nc = 4092, sB[n]
is the subcarrier signal that in the Galileo OS signal is the
BOC(1,1), and dB/C,i[n] is the navigation message for the
data signal and the secondary code in the pilot case. dB/C,i[n]
is constant over one code period. Hereinafter the product
between the code and the subcarrier will be denoted as

eB/C,i[n] = cB/C,i[n]sB[n]. (10)

As a result of code orthogonality, the different Galileo codes
are analyzed separately by the receiver, and thus hereinafter
the case of a single satellite is considered and the index i is
dropped. Thus the resulting signal is

rIF[n]

=
√
C
(
eB

[
n− τ0

Ts

]
−eC

[
n− τ0

Ts

])
cos

(
2πFD,0n+θ

)
+ηIF[n].

(11)

3. OS SIGNALS ACQUISITION

In traditional GPS receivers the delay and the Doppler
frequencies of received signals are estimated by using the
correlation with local signal replicas opportunely delayed
and modulated. In the acquisition stage, the code delay and
Doppler frequency are estimated as the ones that make the
correlation with the local replica pass a fixed threshold. In
the Galileo E1 case however this strategy cannot be directly
employed since two different signals are present. Moreover,
due to the navigation message on the data channel and to the
secondary code on the pilot channel, these two components
can be either summed or subtracted.

In this Section, we analyze two possible strategies for
signal acquisition for Galileo OS signals. The performance
of the two algorithms is evaluated in terms of false alarm
and detection probabilities that are the probabilities that the
decision variable passes a fixed threshold under two different
hypotheses:

(H0) the signal is present and correctly aligned with the
local replica;

(H1) the signal is absent or not correctly aligned with local
replica.

The plot of the detection probability versus the false alarm
probability is called receiver operating characteristic (ROC)
and it completely defines the system performance [12]. The
ROCs are usually employed for comparative analysis, as
effective metric for characterizing an acquisition system [5,
6]. For these reasons they are adopted in this work and used
as basis for the analysis of the two acquisition algorithms
considered in the paper.

3.1. Pilot and data noncoherent combining

The conceptual scheme for the acquisition of Galileo E1
signals, with the noncoherent combination of data and pilot
channels, is depicted in Figure 1. The received signal is
multiplied by two orthogonal sinusoids at the frequency FD,
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Figure 1: Conceptual scheme of the Galileo OS signals acquisition with noncoherent combining.

leading to the in-phase (I) and quadrature (Q) components.
These signals are then split in two different branches
where the correlations with the data and pilot codes are
evaluated. The cross-correlations from the two branches are
noncoherently combined leading to the decision variable

Snc(FD, τ) = ∣∣RB
(
FD, τ

)∣∣2
+
∣∣RC

(
FD, τ

)∣∣2
, (12)

where

RB
(
FD, τ

) = 1
N

N−1∑

n=0

rIF[n]eB

[
n− τ

Ts

]
exp

{
j2πFDn

}
,

RC
(
FD, τ

) = 1
N

N−1∑

n=0

rIF[n]eC

[
n− τ

Ts

]
exp

{
j2πFDn

}

(13)

are the cross-correlations of the received signal with the data
and pilot replicas delayed by τ and modulated by FD. In
(13) N denotes the number of samples used to integrate the
received signal over one-code period. More specifically, N is
given by �Tc· fs�, where Tc = 4 milliseconds is the duration
of one code period, fs is the sampling frequency, and
�·� denotes the floor operator. Since the cross-correlations
RB(FD, τ) and RC(FD, τ) have been obtained from the input
signal rIF[n], they also depends on τ0, FD,0, and θ, the
parameters that characterize rIF[n]. The dependence on these
parameters has not been explicitly reported in (13) for the
ease of notation.

The multiplication by the complex exponential in (13) is
implemented in Figure (1) by the multiplication with the two
orthogonal sinusoids.

In Appendix A it is shown that RB(FD, τ) and RC(FD, τ)
are two complex Gaussian random variables that, due to the
orthogonality properties of Galileo codes [3], are approx-
imatively independent. Thus |RB(FD, τ)|2 and |RC(FD, τ)|2

are two χ2 random variables with 2 degrees of freedom.
From this consideration and (12), Snc(FD, τ) is a χ2 random
variable with 4 degrees of freedom.

In order the determine the ROC, the two following
probabilities have to be evaluated:

Pnc
fa (β) = P

(
Snc
(
FD, τ

)
> β|H1

)
,

Pnc
d (β) = P

(
Snc
(
FD, τ

)
> β|H0

)
.

(14)

When the signal is not present or not correctly aligned it is
possible to assume [5, 6] that both RB(FD, τ) and RC(FD, τ)
are zero mean. Thus Snc(FD, τ) is a central χ2 random vari-
able, whose distribution is completely characterized by the
variance of RB(FD, τ) and of RC(FD, τ). From (13) we have

Var
{
RB
(
FD, τ

)}

= Var
{
RC
(
FD, τ

)}

= Var

{
1
N

N−1∑

i=0

rIF[n]eB

[
n− τ

Ts

]
exp

{
j2πFDn

}
}

= 1
N2

N−1∑

i=0

Var
{
rIF[n]

} = 1
N2

N−1∑

i=0

Var
{
ηIF[n]

}= N0 fs
2N

= N0BIF

N
.

(15)

Equation (15) directly derives from the noise model reported
in Section 2. In this case it is assumed that the input noise
is a white sequence. In a real GNSS receivers the front end
can introduce some correlation among the different noise
samples. This correlation causes a correlation loss [13] that
would affect both noise and signal components. This effect
could be included in the analysis but it would introduce
no further insight and thus, for the sake of clarity, it is not
considered in this context.
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Since both RB(FD, τ) and RC(FD, τ) are complex random
variables with iid real and imaginary parts, the variance (15)
is equally divided between the two components and thus we
can define

σ2
n =

N0 fs
4N

= N0BIF

2N
, (16)

σ2
n is the variance of the real and of the imaginary parts of
RB(FD, τ) and RC(FD, τ). Given these premises and exploiting
the fact that Snc(FD, τ) is a central χ2 random variable it is
possible to derive the false alarm probability [14]

Pnc
fa (β) = exp

{
− β

2σ2
n

}(
1 +

β

2σ2
n

)
. (17)

When the signal is present and correctly aligned Snc(FD, τ)
is a noncentral χ2 random variable with noncentrality
parameter

λ=∣∣E{RB
(
FD, τ

)}∣∣2
+
∣∣E
{
RC
(
FD, τ

)}∣∣2=2
∣∣E
{
RB
(
FD, τ

)}∣∣2

(18)

that assumes the following expression [13, 15]:

λ = C

2
sin2(πNΔF)

(πNΔF)2 K2(Δτ) ≈ C

2
, (19)

where

(i) ΔF = FD,0−FD is the difference between the Doppler
frequencies of the received signal and of the local
replica;

(ii) Δτ = (τ0 − τ)/Ts is the difference between the
delays of the received signal and of the local replica,
normalized with respect to the sampling interval;

(iii) K(·) is the correlation between the incoming code,
filtered by the frontend, and the code generated at the
receiver.

When the Doppler frequency and the delay of the local
replica match the ones of the received signal, the loss
(sin2(πNΔF)/(πNΔF)2)K2(Δτ) can be assumed negligible
and λ ≈ C/2.

From these considerations it is possible to evaluate the
detection probability [14, 16]

Pnc
d (β) = Q2

(√
λ

σ2
n

,

√
β

σ2
n

)
≈ Q2

(√
2CN
N0 fs

,

√√√
4
βN

N0 fs

)
,

(20)

where Q2(·, ·) is the Generalized Marcum Q function of
order 2 [16, 17], defined as

QK (a, b) = 1
aK−1

∫ +∞

b
xK exp

{
− x2 + a2

2

}
IK−1(ax)dx

(21)

where IK−1(·) is the modified Bessel function of first kind
and order K − 1 [18].

3.2. Pilot and data coherent combining with
sign recovery

By considering (11) and by collecting the navigation message
of the data channel, it is possible to rewrite the received signal
rIF[n] as

rIF[n]

=
√
CdB

[
n− τ0

Ts

]

×
(
eB

[
τ0

Ts

]
− dC

[
n−(τ0/Ts)

]

dB
[
n−(τ0/Ts)

]eC
[
n− τ0

Ts

])
cos

(
2πFD,0n+θ

)

+ ηIF[n].
(22)

Expressed in this form, (22) indicates that the navigation
message dB[n] is spread by the equivalent pseudorandom
sequence

eeq[n] = eB[n]− dC[n]
dB[n]

eC[n]. (23)

Since the navigation message dB[n] and the secondary code
dC[n] are constant over one code period and since they
can assume only two values, −1 and 1, only two equivalent
spreading sequences are possible

eeq[n] =
{
eB[n]− eC[n],

eB[n] + eC[n].
(24)

In the coherent combining scheme, the received signal is
correlated with both equivalent codes: the equivalent code
that maximizes the cross-correlation is likely the correct one.
Based on this principle the decision variable is given by

Sml(FD, τ) = max
{∣∣R+(FD, τ

)∣∣2
,
∣∣R−

(
FD, τ

)∣∣2}
, (25)

where

R+(FD, τ)

= 1
N

N−1∑

n=0

rIF[n]
{
eB

[
n− τ

Ts

]
+ eC

[
n− τ

Ts

]}
exp

(
j2πFDn

)
,

R−(FD, τ)

= 1
N

N−1∑

n=0

rIF[n]
{
eB

[
n− τ

Ts

]
− eC

[
n− τ

Ts

]}
exp

(
j2πFDn

)
.

(26)

This kind of algorithm is based on the Maximum Likelihood
estimator for the code delay, Doppler frequency, and relative
sign between data and pilot channels, since, as shown in
Appendix B, the maximization of the correlation function,
with respect to the delay τ, the frequency FD, and the
ratio dC[n]/dB[n], corresponds to the maximization of the
likelihood function evaluated for the received signal rIF[n].
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Figure 2: Conceptual scheme of the Galileo OS signals acquisition with coherent combining.

The acquisition scheme with coherent combining is
reported in Figure 2: the received signal is correlated with the
two equivalent codes and the decision variable is obtained by
choosing the maximum of the two cross-correlations. It has
to be noted that the variables R+(FD, τ) and R−(FD, τ) can be
obtained by opportunely combining the cross-correlations
with the data and the pilot codes

R+(FD, τ) = 1
N

N−1∑

n=0

rIF[n]eB

[
n− τ

Ts

]
exp

(
j2πFDn

)

+
1
N

N−1∑

n=0

rIF[n]eC

[
n− τ

Ts

]
exp

(
j2πFDn

)

= RB
(
FD, τ

)
+ RC

(
FD, τ

)
,

(27)

R−(FD, τ) = 1
N

N−1∑

n=0

rIF[n]eB

[
n− τ

Ts

]
exp

(
j2πFDn

)

− 1
N

N−1∑

n=0

rIF[n]eC

[
n− τ

Ts

]
exp

(
j2πFDn

)

= RB
(
FD, τ

)− RC
(
FD, τ

)
.

(28)

In this way the coherent combining algorithm can be
implemented with a computational load similar to the one
required by the noncoherent combining strategy.

From (28) and (27) it clearly emerges that R+(FD, τ)
and R−(FD, τ) are linear combinations of RB(FD, τ) and
RC(FD, τ). Thus, since RB(FD, τ) and RC(FD, τ) are complex
Gaussian random variables, R+(FD, τ) and R−(FD, τ) are also
complex and Gaussian.

The ROC for the coherent combining strategy can be
easily obtained by determining the false alarm and detection
probability of the variables |R+(FD, τ)|2 and |R−(FD, τ)|2.
In fact it can be easily shown that the false alarm and the
detection probabilities of the decision variable Sml(FD, τ) are
given by

P
(
Sml(FD, τ) > β

)

= P
(

max
{∣∣R+(FD, τ)

∣∣2
,
∣∣R−(FD, τ)

∣∣2}
> β

)

= 1− P(max
{∣∣R+(FD, τ)

∣∣2
,
∣∣R−(FD, τ)

∣∣2}
< β

)

= 1− P(∣∣R+(FD, τ)
∣∣2
< β,

∣∣R−(FD, τ)
∣∣2
< β

)

= 1− P(∣∣R+(FD, τ)
∣∣2
< β

)
P
(∣∣R−(FD, τ)

∣∣2
< β

)
.

(29)

The last line in (29) has been obtained by exploiting the
independence between |R+(FD, τ)|2 and |R−(FD, τ)|2 that
derives from the independence of R+(FD, τ) and R−(FD, τ).
In fact we have

E
{
R+(FD, τ

)[
R−
(
FD, τ

)]∗}

= E
{[
RB
(
FD, τ

)
+ RC

(
FD, τ

)][
RB
(
FD, τ

)− RC
(
FD, τ

)]∗}

= E
[∣∣RB

(
FD, τ

)∣∣2 − ∣∣RC
(
FD, τ

)∣∣2]

= 0.
(30)

Equation (30) is zero since |RB(FD, τ)|2 and |RC(FD, τ)|2 are
equally distributed and the difference of their mean cancels
out. From (30) R+(FD, τ) and R−(FD, τ) are uncorrelated
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and, since they are both Gaussian random variables, inde-
pendent. For these reasons |R+(FD, τ)|2 and |R−(FD, τ)|2 are
also independent.

Since R+(FD, τ) and R−(FD, τ) are Gaussian random
variables, |R+(FD, τ)|2 and |R−(FD, τ)|2 are χ2 distributed
with two degrees of freedom. When the signal is absent, or
the local replicas are not aligned with the received signal, then
|R+(FD, τ)|2 and |R−(FD, τ)|2 are both central χ2 random
variables [14] and the false alarm probability of Sml(FD, τ)
is

Pml
fa (β) = 1−

[
1− exp

{
− β

4σ2
n

}]2

. (31)

Equation (31) has been obtained by substituting the cumu-
lative density function (cdf) of central χ2 random variables
[14] into (29). It can be noted that the exponential in (31)
depends on 4σ2

n instead of 2σ2
n as for (17). This is due to the

fact that the equivalent code (24) has twice the power of the
single pilot and data codes.

When the Galileo signal is present and correctly aligned
with the local replica, |R+(FD, τ)|2 and |R−(FD, τ)|2 are no
more central χ2 random variables, and the noncentrality
parameters λ+ and λ− have to be determined. λ+ and λ−
can be obtained by determining the mean of R+(FD, τ) and
R−(FD, τ) under the hypothesis that the local equivalent
code matches or not the navigation bit. In particular we
have

E
[
R+(FD, τ

)]

=E{RB
(
FD, τ

)
+ RC

(
FD, τ

)}

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2E
{
RB
(
FD, τ

)}=√C sin(πNΔF)
(πNΔF)

K(Δτ)

≈√C if
dC[n]
dB[n]

=1,

0 if
dC[n]
dB[n]

=−1

(32)

and similarly

E
[
R−
(
FD, τ

)]

= E
{
RB
(
FD, τ

)− RC
(
FD, τ

)}

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2E
{
RB
(
FD, τ

)}=√C sin(πNΔF)
(πNΔF)

K(Δτ)

≈√C if
dC[n]
dB[n]

=−1,

0 if
dC[n]
dB[n]

=1.

(33)

From these considerations it emerges that the decision
variable Sml(FD, τ), under the hypothesis of presence of signal

Table 1: Simulation parameters.

Parameter Value

Sampling frequency fs = 4.092 MHz

Intermediate frequency fIF =
fs
4
= 1.023 MHz

Receiver bandwidth BIF =
fs
2
= 2.046 MHz

Code rate 1.023·106 chip/s

Code length 4092 chip

Integration time NTs = 4 ms

and correct alignment, is given by the maximum between
a central χ2 and a noncentral χ2 random variables with
two degrees of freedom. The noncentrality parameter of the
noncentral χ2 random variable is given by

λ = C
sin2(πNΔF)

(πNΔF)2 K2(Δτ) ≈ C. (34)

Given these premises it is finally possible to express the
detection probability

Pml
d (β) = 1−

[
1−exp

{
− β

4σ2
n

}][
1−Q1

(√
λ

2σ2
n

,

√
β

2σ2
n

)]

≈ 1−
[

1−exp
{
− β

4σ2
n

}][
1−Q1

(√
2CN
N0 fs

,

√√√2βN
N0 fs

)]
,

(35)

where Q1(·, ·) is the Marcum Q function of order 1.

4. SIMULATION ANALYSIS

In order to validate the theoretical analysis developed in
the previous sections, the Galileo E1 OS has been simulated
according to the parameters reported in [1] and acquired
according to the two methods considered in this work. The
simulation parameters are reported in Table 1. More in detail
a GNSS signal has been simulated according to model (11).
The spreading codes from [1] has been used to generate the
Galileo E1 OS signals, and the acquisition systems depicted
in Figures 1 and 2 have been implemented in order to
evaluate the decision statistics (12) and (25). The false
alarm and detection probabilities have been estimated by
verifying if the decision variables, under both (H1) and (H0)
hypotheses, passed or not the decision threshold obtained by
inverting (20) and (31). 2·105 trials have been used for the
estimation process. Frequency and delay errors have not been
simulated and, for the evaluation of the detection probability,
the incoming signal has been considered perfectly aligned
with local replica. These errors were not considered in the
theoretical model and thus they have not been considered in
the simulation scheme as well. The impact of frequency and
delay residual errors has been extensively studied in [15] and
can be easily included in the models developed in previous
sections. This topic is however out of the scope of this paper.
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Figure 3: Simulated and theoretical ROCs for noncoherent and
coherent acquisition systems. C/N0 = 25 dB-Hz.
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Figure 4: Simulated and theoretical ROCs for noncoherent and
coherent acquisition systems. C/N0 = 30 dB-Hz.

The simulations results are reported in Figures 3, 4, and
5, where the cases of C/N0 = 25, 30, and 35 dB-Hz have
been considered. These C/N0 values have been chosen since
they represent marginally strong and weak signal conditions.
The probabilities evaluated by Monte Carlo simulations
match the theoretical models developed in previous sections
and the theoretical and simulated ROCs overlap in all
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Figure 5: Simulated and theoretical ROCs for noncoherent and
coherent acquisition systems. C/N0 = 35 dB-Hz.

the considered cases. Simulations effectively support the
theoretical models proving the effectiveness of the analysis
developed in Section 3.

It can be noted, from Figures 3, 4, and 5, that the coherent
acquisition algorithm always outperforms the noncoherent
combining strategy. Moreover, it can be observed that the
two methods tend to have similar performance for low C/N0.
This performance degradation of coherent combing with
sign recovery is probably due to the fact that, for low C/N0,
the estimation of the relative phase between data and pilot
becomes unreliable preventing an effective combination of
the two channels transmitted for the Galileo E1 OS.

5. CONCLUSIONS

In this paper, two different acquisition strategies for the
acquisition of the Galileo E1 OS signals have been considered
and deeply analyzed. The first strategy, the noncoherent
combining, is from the literature whereas the analysis of the
second one, coherent combining with sign recovery, is new
and represents the innovative contribution of this paper. An
analytical model for the false alarm and detection probabil-
ities of both algorithms has been derived and Monte Carlo
simulations have been used for supporting the theoretical
analysis. From the theoretical model and simulations it is
shown that the coherent combining algorithm outperforms
the noncoherent combing proving the effectiveness of the
proposed method. Thus, provided that both algorithms
require similar computational loads, the coherent combining
acquisition algorithm results in preferable to noncoherent
combining and should be adopted for the joint acquisition
of the E1 OS data and pilot channels.
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APPENDICES

A. INDEPENDENCE OF THE RANDOM
VARIABLES AT THE OUTPUT OF THE DATA AND
PILOT CORRELATORS

In this appendix we show that the random variables,
obtained by correlating the input Galileo signal with the local
replicas of the data and pilot channels, are approximatively
independent. The proof is based on the correlation proper-
ties of Galileo memory codes [3].

From (11) the signal at the input of the Galileo receiver
is the sum of a useful term and of white Gaussian noise.
This input sequence is correlated with local replicas of the
data and pilot primary codes, opportunely delayed and
modulated, and for each satellite, a pair of random variables
is obtained:

RB
(
τ,FD

) = 1
N

N−1∑

n=0

rIF[n]eB

[
n− τ

Ts

]
exp

{
j2πFDn

}
,

RC
(
τ,FD

) = 1
N

N−1∑

n=0

rIF[n]eC

[
n− τ

Ts

]
exp

{
j2πFDn

}
.

(A.1)

Since rIF[n] is the sum of a deterministic component and
white Gaussian noise and since both RB(τ,FD) and RC(τ,FD)
are linear transformations of rIF[n], then their independence
can be proven by considering

XB
(
τ,FD

) = 1
N

N−1∑

n=0

ηIF[n]eB

[
n− τ

Ts

]
exp

{
j2πFDn

}
,

XC
(
τ,FD

) = 1
N

N−1∑

n=0

ηIF[n]eC

[
n− τ

Ts

]
exp

{
j2πFDn

}

(A.2)

that are obtained from the noise component of rIF. Since the
input noise is assumed to be zero mean and since the useful
signal component determines the mean of the correlation
function, it is possible to write XB(τ,FD) = RB(τ,FD) −
E{RB(τ,FD)} and XC(τ,FD) = RC(τ,FD) − E{RC(τ,FD)}.
Thus the independence of XB(τ,FD) and XC(τ,FD) implies
the independence of RB(τ,FD) and RC(τ,FD). By defining

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

ηIF[0]

ηIF[1]

. . .

ηIF[N − 1]

⎤
⎥⎥⎥⎥⎥⎥⎦

;

Ex =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0

0 exp
{
j2πFD

}
. . . 0

. . . . . . . . . . . .

0 0 . . . exp
{
j2πFD(N − 1)

}

⎤
⎥⎥⎥⎥⎥⎥⎦

;

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

eB

[
− τ

Ts

]

eB

[
1− τ

Ts

]

. . .

eB

[
N − 1− τ

Ts

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

eC

[
− τ

Ts

]

eC

[
1− τ

Ts

]

. . .

eC

[
N − 1− τ

Ts

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

(A.3)

it is then possible to rewrite (A.2) as

XB
(
τ,FD

) = 1
N
MTExB,

XC
(
τ,FD

) = 1
N
MTExC,

(A.4)

and the covariance between XB and XC becomes

E
[
XB
(
τ,FD

)
X∗C

(
τ,FD

)] = E
[
XH
C

(
τ,FD

)
XB
(
τ,FD

)]

= E
[ 1
N2

CHEHx M
∗MTExB

]

= 1
N2

CHEHx E
[
M∗MT

]
ExB

= σ2
IF

N2
CHEHx ExB =

σ2
IF

N2
CHB

≈ 0.
(A.5)

The covariance (A.5) is almost zero for the quasi-
orthogonality of the Galileo memory codes. In (A.5) the fact
that EHx Ex = IN and E{M∗MT} = σIFIN has been used. IN is
the N ×N identity matrix.

From (A.5) XB(τ,FD) and XC(τ,FD) can be considered
uncorrelated and thus, since they are Gaussian random
variables, independent.

B. MAXIMUM LIKELIHOOD ESTIMATOR

In this appendix, the Maximum Likelihood estimator for the
delay τ0, the Doppler frequency FD,0, and the relative phase
between the Galileo E1 OS data and pilot channel is derived.
Its connection with the coherent acquisition block with sign
recovery is also shown.

In this context the signal presence is assumed and the
signal parameters are treated as unknown constants. By
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considering (22) and by assuming ηIF[n] a white Gaussian
sequence, it is possible to derive the joint probability density
function of the set {rIF[n]}N−1

n=0 :

f (�r ) = 1
(
2πσ2

IF

)N/2 exp

{
−∑N−1

i=0

[
ri − μi

(
τ,FD, S

)]2

2σ2
IF

}
,

(B.1)

where

(i)

μi
(
τ,FD, S

)

=
√
CdB

[
i− τ

Ts

](
eB

[
i− τ

Ts

]
−S eC

[
i− τ

Ts

])
cos

(
2πFDi+θ

)
,

(B.2)

(ii) S = dC[i − τ/Ts]/dB[i − τ/Ts] is the relative phase
between the data and the pilot channels and can
assume two values: −1 and 1,

(iii) ri is the i th component of the vector �r.

The Likelihood function for the set (τ,FD, S) is given by

L
(
τ,FD, S

)

= 1
(
2πσ2

IF

)N/2 exp

{
−∑N−1

i=0

[
rIF[i]− μi

(
τ,FD, S

)]2

2σ2
IF

}

(B.3)

and its maximization is obtained by maximizing the argu-
ment of the exponential in (B.3). Thus the Maximum
Likelihood estimator for (τ,FD, S) is given by

(
τ̂, F̂D, Ŝ

)

=arg min
τ,FD ,S

N−1∑

i=0

[
rIF[i]− μi

(
τ,FD, S

)]2

=arg min
τ,FD ,S

[N−1∑

i=0

r2
IF[i]−2

N−1∑

i=0

μi
(
τ,FD, S

)
rIF[i]+

N−1∑

i=0

μi
(
τ,FD, S

)2
]
.

(B.4)

The term
∑N−1

i=0 r
2
IF[i] does not depend on (τ̂, F̂D, Ŝ ) and thus

can be dropped. Moreover,

N−1∑

i=0

μi
(
τ,FD, S

)2

=
N−1∑

i=0

C
(
eB

[
i− τ

Ts

]
− S eC

[
i− τ

Ts

])2

cos2(2πFDi + θ
)

=C
N−1∑

i=0

(
2−2S eB

[
i− τ

Ts

]
eC

[
i− τ

Ts

])[
1
2

+
1
2

cos
(
4πFDi+2θ

)]

= 2C
N−1∑

i=0

[
1
2

+
1
2

cos
(
4πFDi + 2θ

)]

− 2SC
N−1∑

i=0

eB

[
i− τ

Ts

]
eC

[
i− τ

Ts

][
1
2

+
1
2

cos
(
4πFDi+θ

)]

≈ CN ,
(B.5)

where the orthogonality between eB[i−τ/Ts] and eC[i−τ/Ts]
and the fact that the summation in (B.5) acts as a lowpass
filter have been exploited. Equation (B.5) shows that also the
term

∑N−1
i=0 μi(τ,FD, S)2 is approximatively independent from

the parameters (τ,FD, S) and thus (B.4) becomes

(
τ̂, F̂D, Ŝ

) = arg max
τ,FD ,S

N−1∑

i=0

μi
(
τ,FD, S

)
rIF[i]

= arg max
τ,FD ,S

N−1∑

i=0

rIF[i]dB

[
i− τ

Ts

]

×
(
eB

[
i− τ

Ts

]
− S eC

[
i− τ

Ts

])
cos

(
2πFDi + θ

)

= arg max
τ,FD ,S

dB

N−1∑

i=0

rIF[i]

×
(
eB

[
i− τ

Ts

]
− S eC

[
i− τ

Ts

])
cos

(
2πFDi + θ

)
.

(B.6)

Since the navigation bit dB is supposed constant over one-
code period it can be moved out the summation in (B.6).
Equation (B.6) represents the expression for the maximum
likelihood estimator for (τ,FD, S), however it can be applied
only under the hypothesis of knowing the bit dB and the
phase θ. In order to remove the dependence from those two
parameters the cost function considered in (B.6) is usually
modified according to the following methodology. Since all
the terms in the last summation of (B.6) are real signals, it is
possible to rewrite (B.6) as follows:
(
τ̂, F̂D, Ŝ

)

= arg max
τ,FD ,S

Re

{
dB

N−1∑

i=0

rIF[i]
(
eB

[
i− τ

Ts

]
− S eC

[
i− τ

Ts

])

× exp
(
j2πFDi + jθ

)
}

,

(B.7)
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that is, the real part of a complex scalar product. Equation
(B.7) can be further expanded as

(τ̂, F̂D, Ŝ )

= arg max
τ,FD ,S

Re

{[N−1∑

i=0

rIF[i]
(
eB

[
i− τ

Ts

]
− S eC

[
i− τ

Ts

])

× exp
{
j2πFDi

}
]
·exp

{
jθ+ j

(
1−dB

)π
2

}}
,

(B.8)

where the terms in square brackets do not depend on the
phase θ and on the sign dB. Since dB takes values in {−1, 1}
it has been expressed as

dB = exp
{
j(1− dB)

π

2

}
. (B.9)

The summation in (B.8) is a complex number that can be
expressed in terms of phase and amplitude as

[N−1∑

i=0

rIF[i]
(
eB

[
i− τ

Ts

]
− S eC

[
i− τ

Ts

])
exp

{
j2πFDi

}
]

= AS
(
τ,FD, S

)
exp

{
jϕS

(
τ,FD, S

)}
.

(B.10)

In this way (B.8) can be rewritten as

(
τ̂, F̂D, Ŝ

)

= arg max
τ,FD ,S

AS
(
τ,FD, S

)

×Re
{

exp
{
jϕS

(
τ,FD, S

)}
exp

{
jθ + j(1− dB)

π

2

}}
.

(B.11)

If the phase θ and the sign dB are unknown, they can be
estimated by maximizing (B.11) also with respect to these
two parameters. Equation (B.11) is maximized with respect
to θ and dB when the condition

exp
{
jϕS(τ,FD, S)

}
exp

{
jθ + j(1− dB)

π

2

}
= 1 (B.12)

is verified. By substituting (B.12) into (B.11), the joint
estimator for the delay τ0, the Doppler frequency FD,0, and
the relative phase S becomes

(
τ̂, F̂D, Ŝ

)

=arg max
τ,FD ,S

AS
(
τ,FD, S

)

=
∣∣∣∣∣

N−1∑

i=0

rIF[i]
(
eB

[
i− τ

Ts

]
−S eC

[
i− τ

Ts

])
exp

(
j2πFDi

)
∣∣∣∣∣

(B.13)

that is a form of quadrature or incoherent matched filter
[19]. The estimator (B.13) is equivalent to the coherent
acquisition block with sign recovery
(
τ̂, F̂D, Ŝ

)

=arg max
τ,FD ,S

∣∣∣∣∣

N−1∑

i=0

rIF[i]
(
eB

[
i− τ

Ts

]
−S eC

[
i− τ

Ts

])
exp

(
j2πFDi

)
∣∣∣∣∣

2

.

(B.14)
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