
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Design and implementation of a framework for creating portable and efficient packet-processing applications / Morandi,
Olivier; Risso, FULVIO GIOVANNI OTTAVIO; Valenti, S; Veglia, P.. - (2008), pp. 237-244. (Intervento presentato al
convegno International Conference on Embedded Software tenutosi a Atlanta, GA, USA nel 19-24 October 2008)
[10.1145/1450058.1450091].

Original

Design and implementation of a framework for creating portable and efficient packet-processing
applications

Publisher:

Published
DOI:10.1145/1450058.1450091

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1855296 since:

ACM Association for Computing Machinery

Design and Implementation of a Framework for Creating
Portable and Efficient Packet-Processing Applications

Olivier Morandi, Fulvio Risso
Dipartimento di Automatica e Informatica

Politecnico di Torino
{olivier.morandi, fulvio.risso}@polito.it

Silvio Valenti, Paolo Veglia
INFRES

TELECOM-ParisTech
{silvio.valenti,paolo.veglia}@enst.fr

ABSTRACT
It is a common belief that using a virtual machine for portable
executions of data-plane packet-processing applications would
introduce too many penalties in terms of performance, because of
the assumed overhead caused by the presence of a hardware
abstraction layer. Even if common sense proves true in the case of
general purpose virtual machines, such as the JVM and the CLR,
it may be wrong in case of a special-purpose network-oriented
virtual machine. This paper describes the architecture of a run-
time environment and a compiler infrastructure for the Network
Virtual Machine (NetVM), showing that the portability of packet-
processing programs can be achieved without additional penalties
even over heterogeneous platforms. Our implementation supports
three different target architectures: one with a general purpose
processor (Intel x86), one with a multi-core network processor
(Cavium Octeon) and one with a systolic-array network processor
(Xelerated X11), and shows that the NetVM model (i) is able to
abstract such heterogeneous platforms and (ii) enables the
exploitation of hardware functionalities provided by the specific
architecture; finally, it demonstrates that the performances of
NetVM programs compiled into native code are comparable to
those obtained using commercial general purpose compilers.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-Purpose and
Application-Based Systems - Real-time and embedded systems

General Terms
Performance, Experimentation.

Keywords
High-speed packet processing, Network Virtual Machine,
Network code portability, Network processors.

1. INTRODUCTION
In order to manage the ever increasing speeds of today’s
networks, the deployment of efficient packet-processing

applications requires the use of ad-hoc hardware, such as ASICs
and Network Processors (NPs). While the formers are based on
extremely rigid designs, the latter have the great advantage of
being software programmable. Nevertheless the lack of a common
standard for both architectures and programming interfaces makes
it difficult to deploy portable and efficient applications on
different platforms.

With respect to the field of general purpose computers, a solution
to a similar problem was the introduction of virtual machines, i.e.
an abstraction layer between the user code and the hardware
which enables the paradigm “Write once, run everywhere.” The
Network Virtual Machine (NetVM) [1][2] aims at applying such
an approach in the field of network processors, where
performance is a key factor. One of the main objections to this
approach was that the introduction of such an additional layer,
while enabling portability, would result in a substantial overhead,
wasting the benefits of using special purpose and optimized
hardware architectures.

In this paper we demonstrate that this claim is not necessarily true
in the case of a virtual machine specifically designed for packet-
processing applications, like the NetVM. In fact, NetVM
programs can be executed quite efficiently, without any
modifications, on three different platforms such as the Intel x86
general purpose architecture, the Cavium Octeon [3] multi-core
processor and systolic-based Xelerated X11 [4] network
processor.

In order to obtain good performance, we implemented a multi-
target optimizing compiler infrastructure which is able to generate
native or assembly code depending on the target platform.
Optimizations work on two different levels: the higher level is
architecture-independent and operates on the code removing
redundancies and useless computations, whereas the lower is
target-specific and performs the actual mapping between the
NetVM model and the target machine. It is also in charge of
exploiting the special hardware units available on modern NPs.

Experimental results show that the proposed approach is quite
efficient: our compiler often generates code whose performance
are better than the ones obtained from hand-written code and
compiled with commercial general-purpose compilers.

This paper is structured as it follows. Section 2 summarizes the
related work, Section 3 gives an overview of the NetVM model
and Section 4 outlines its implementation. Section 5 describes the
optimizer module, whilst the structure of the Intel x86 and
Cavium Octeon back-ends is presented in Section 6. Experimental

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EMSOFT’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-468-3/08/10...$5.00.

results are reported in Section 7 and conclusions are drawn in
Section 8.

2. RELATED WORK
The programmability of network processor architectures is a topic
that has been widely discussed in studies. In [5] a C compiler for
an industrial network processor was proposed showing that
exposing low level details in the language through intrinsics and
compiler known functions allows an efficient exploitation of the
available hardware features without relying on assembly language.
On the other hand [6][7][8][9] present novel domain-specific
languages, programming models and compilers to address the
difficult task of automatically partitioning packet-processing
applications on multi-core based network processors. The
proposed solutions are very target-specific because they tend to
expose the features available on the target hardware to the
programmer.

The solution proposed in [8] is based on a new packet-processing
language and a compilation framework for optimizing programs
by using profiling information gathered at runtime. The compiler
also implements some optimizations that are specific to packet-
processing applications, yet still aims at exploiting the
characteristics of a single platform (i.e. Intel IXP 2400).

The Network Virtual Machine (NetVM) [1][2] instead aims at
enabling the portability of packet-processing applications without
sacrificing performance. Hence it differs from previous solutions
because it provides an abstraction layer based on a dataflow
programming model in which hardware is virtualized, with the
result of completely hiding the target architecture from the
programmer, while still allowing an efficient mapping. In
addition, our model, although not directly addressing the problem
of automatically partitioning programs on multi-core
architectures, is designed to support a variety of heterogeneous
platforms and at the same time to enable target specific low-level
optimizations. Moreover our work is quite novel in taking into
account the massive presence of specific hardware modules in
modern NPs, allowing their exploitation but hiding their details
from the programmer.

3. THE NETWORK VIRTUAL MACHINE
The Network Virtual Machine (NetVM) is an abstract processing
architecture targeted at network data-plane applications. Its design
aims at facilitating the programming and the deployment of
different kinds of data-plane processing devices, most notably
network processors, allowing a single application to run
efficiently on heterogeneous hardware platforms, while providing
a layer for hiding their differences.

The NetVM architecture is modular and configurable by the
programmer. An application is composed of the interconnection
of a set of modules, called NetPEs, which represent different
functional entities that perform specific tasks on incoming
packets. The execution of a NetVM application is data-driven and
starts upon the arrival of a packet, which flows through
subsequent NetPEs. The packet buffer is wrapped in a more
complex entity called the Exchange Buffer, which also contains
additional information (i.e. the info partition) used for transferring
structured data between consecutive NetPEs. Every NetPE can be
viewed as a stack-based virtual processor with a packet-oriented

instruction set; it provides a set of private registers for holding
temporary values and a memory for storing a persistent state that
is local to the module. It also has access to the current exchange
buffer, where the packet and the info partition are viewed as
separate memory segments.

The NetVM model does not define any high-level programming
language; instead, it defines a mid-level abstraction layer called
Network Intermediate Language, NetIL, which can be employed
as a target for several high-level programming languages, either
declarative (e.g. rule-based packet filtering and classification
languages) or imperative (e.g. C-like languages). This allows the
NetVM to be general enough to support several classes of packet-
processing applications (possibly written with different
languages), while still enabling the generation of efficient code.
Figure 1 presents an example of NetIL code and its x86
counterpart referred to a simple filter that checks if the ethertype
field of an Ethernet frame is equal to 0x0800 (i.e. if the Ethernet
frame contains an IP packet).

NetIL code for filter “ethernet.type == 0x0800”

; Code Segment
segment .push
.maxstacksize 10 ; define the maximum stack depth

pop ; discard the "calling" port
push 12 ; push the ethertype offset on the stack
upload.16 ; load 2 bytes from the packet memory
push 0x800 ; 0x800 = ip
jcmp.neq discard ; if not equals jump to discard, otherwise...
ret 1 ; return 1

discard:
ret 0 ; return 0

ends

X86 code for filter “ethernet.type == 0x0800”

; Packet buffer base in ecx
001 cmp word ptr [exc+12], 0x8 ; load packet_buffer[12:2]
002 jne 005 ; if not equals jump to return 0
003 mov eax, 1 ; move return code in EAX
004 ret ; return 1
005 mov eax, 0 ; move return code in EAX
006 ret ; return 0

Figure 1. Comparing NetIL and x86 code.

Since packet-processing applications usually rely on a set of
functionalities that are often implemented directly in hardware on
many network processor architectures (e.g., Content Addressable
Memories for fast table lookups, hashing, string matching, etc.),
the NetVM model includes the concept of virtual coprocessors,
i.e. a way to make such features available to the programmer
through a well-defined interface. A coprocessor is viewed by the
application as a black box providing specific operations. While its
coherent interface guarantees the portability of the software on
different platforms, its implementation varies from platform to
platform. In particular, on architectures that do not provide any
hardware acceleration, coprocessors are emulated by software,
while on architectures providing special purpose features,
coprocessors may be mapped directly on hardware.

4. THE NETVM FRAMEWORK
The NetVM model requires a runtime environment acting as a
communication layer with the external world. Its main function is
to provide I/O facilities, to handle the coprocessors
implementation (hardware or software) and to manage the
application’s resources, e.g. memory allocation. In fact a NetVM
application needs to receive packets from input interfaces and to

forward them to output interfaces after the processing. Such
operations are heavily dependent on the hardware characteristics.
In other words, the runtime environment must implement an
abstraction layer making all such details transparent to the
application and to the programmer.

On the other hand, since a NetVM application relies on different
elements (NetPEs, coprocessors, etc), whose configuration can be
chosen by the programmer, the runtime environment has to (1)
allow the programmer to create and configure each component,
and (2) implement these elements on different architectures either
by exploiting hardware modules or by supplying software
implementation of unavailable components.

API

Architecture-Independent
Functions

Interpreter

Optimizing Compiler
(JIT/AOT)

NetVM components implementation

Target Architectures (e.g. X86, Octeon, X11)

(A)

(B)

(C)Compiler BackendsArchitecture-Dependent
Functions

NetVM components implementation

Figure 2. NetVM Framework Architecture

The NetVM model is implemented as a framework, (whose
logical layout is shown in Figure 2), which comprises a portable
runtime environment and a multi-target optimizing compiler. At
the top of the framework (A) sits a programming interface that
allows the programmer to instantiate and manage the main
NetVM components in the user applications. The middle layer (B)
represents the core of the framework, implementing the
architecture-independent parts of the runtime environment and a
NetIL interpreter, as well as the target-independent components of
the compiler. Finally, at the bottom of the structure (C) we find
target specific modules, i.e. the compiler back-ends and the
architecture-specific parts of the runtime environment, which
implement the actual mapping of the NetVM functionalities (i.e.
instruction set and virtual coprocessors), on the target
architecture.

4.1 Compiler Infrastructure
As Figure 3 shows, our compiler follows a classical 3-stage
model. First, the compiler front-end builds a medium-level
intermediate representation (MIR) of the source program, while
checking its formal correctness; then the MIR is fed into the
optimizer, whose objective is to reduce code redundancies and
improve efficiency. A platform-dependent back-end lowers the
optimized MIR to a low level intermediate representation (LIR),
which is very close to the assembly language of the target
architecture and performs additional optimizations. Finally, the
resulting machine code is emitted.

A program represented in MIR form is described as a list of
expression trees, whose root nodes represent statements (i.e.

assignment and control flow operators), while leaf nodes represent
the operands of an expression (e.g. constant values or registers).
The LIR form, instead, represents the program as a sequence of
three-address instructions closer to the target machine language.
The reason for implementing a multi-level intermediate
representation is based on the need to delay the lowering phase
and to provide as much information as possible on the source
program to the optimizer. This makes it possible to perform more
aggressive optimizations, based on the knowledge of the semantic
of the constructs employed by the programmer, as will be pointed
out in Section 6.

The whole compilation framework is designed in a modular
fashion, in order to ease the task of adding new back-ends. In
particular, the analysis and optimization algorithms are able to
work on different intermediate representations, and each back-end
can configure the optimizer in order to apply only the
transformations that are suitable for the target platform.

The compiler can generate either machine code in memory,
following the Just-In-Time paradigm, or assembly files as an
Ahead-Of-Time compiler. In the latter case, the programs
generated by the compiler are assembled by using third party tools
(e.g. GCC or the development tools provided for the specific
target platform).

Back-End

Tree-based Mid-Level Intermediate
Representation

High level
Front-end

High level
Front-end

High level
Front-end Front-Ends

Verifier
Mid-level optimizations

BUR Instruction Selection
+

Target-Specific
Optimizations and
Transformations

NetVM Back-End
Target

Independent
Phases

Target
Specific
Phases

Target Assembly Language

NetIL bytecode

NetIL bytecode front-end

Figure 3. Compiler Architecture

5. OPTIMIZING NETVM CODE: THE
FRONTEND
A reliable optimization framework is required to enable
programmers to concentrate on high-level functions instead of the
details of the target platform. Moreover, an efficient optimizer
makes it easier to develop high-level language front-ends, which
can generate redundant instructions and rely on the subsequent
optimizer modules to produce efficient code.

In order to provide a general framework for simplifying the
development of dataflow analysis and optimization algorithms,
our compiler translates the MIR into a Static Single Assignment
form (SSA) [10]. The SSA form implies that every variable is
assigned exactly once, in this way the relationships between the
definition and the uses of every variable are made explicit in the
MIR, without altering the semantics of the program. The
optimizing algorithms benefit from this form in terms of
simplicity of implementation.

The optimization algorithms implemented in the NetVM
framework have been selected after an accurate analysis of
existing NetIL code, either hand-written, or automatically
generated through a set of high-level frontends. In particular, the
code generated by the packet filter compiler presented in [11],
exposes several redundancies and suboptimal recurrent patterns.
The implemented algorithms aim also at taking into account such
situations, by removing the negative effects introduced by
automatic code generation.

Among the implemented optimization algorithms, Constant
Propagation replaces every use of constant-initialized registers
with the respective values. Such optimization removes assignment
instructions where a constant is copied into a register whose value
is never changed and often enables the application of other
optimizations, such as Constant Folding or Dead Code
Elimination. The former of these tries to simplify all the
operations whose operands are constant, by replacing them with
the result computed at compile-time. The latter removes
instructions defining variables that are no longer used later in the
code (i.e. dead variables). Algebraic Simplification has some
similarities with constant folding, but, instead of computing at
compile time the result of constant expressions, it exploits
algebraic properties of mathematical and logic instructions to
replace sub-expressions that can be computed at compile time
with their result, for example by substituting the expression (a * 1)
with (a). Reassociation is a technique that joins different
statement trees into deeper ones, enabling further transformations
to be applied by other algorithms like Constant Folding [12].

The role of reassociation is evident when considering the structure
of packet demultiplexing programs automatically generated by the
packet filter compiler frontend. These programs usually contain
sequences of operations for finding the offsets of both protocol
headers and fields in the packet buffer. Figure 4A shows an
example of such a sequence of statements for incrementing a
variable holding the current offset (i.e. r0), in order to point to
the beginning of the TCP header. The increment is made in two
steps, by adding the lengths of the Ethernet and IP headers (14
and 20 bytes respectively). The reassociation algorithm joins the
two statements resulting in the statement on the left of Figure 4B,
allowing further optimizations. Indeed, constant folding can
remove the second ADD node, resulting in the tree on the right.
Since this kind of pattern is very frequent, reassociation is very
effective in terms of performance gain.

All optimizations described above are performed on the IR in
SSA form, but in order to produce executable code, this has to be
reverted back to a normal form: this step leaves the program in a
state where most variables are defined only once and a large
number of copies exist in the program. This is clearly non-optimal
because such quantity of copies is cumbersome to execute and a
large number of virtual register can burden subsequent compiler
modules, affecting compilation times. For these reasons we
implemented a Copy Coalescing [13] algorithm, which scans the
code for copies and tries to assign the same name to both the
source and the destination variables involved in the copy. This is
safe if the variables involved have live ranges that do not overlap.
Beside optimizations based on dataflow analyses, the optimizer
also provides algorithms for simplifying the structure of the
control flow graph, such as Branch Simplification, for replacing
all conditional jumps that can be evaluated at compile-time with

unconditional jumps, Jump-to-Jump Elimination for bypassing
and removing basic blocks containing only a jump instruction,
and Unreachable Code Elimination for removing unreachable
basic blocks [12].

STORE r0

ADD

LOAD r0 CONST 14

STORE r0

ADD

LOAD r0 CONST 20

STORE r0

ADD

CONST 20

STORE r0

ADD

LOAD r0 CONST 34ADD

LOAD r0 CONST 14

(A)

(B)
Figure 4. Optimization of packet demultiplexing code

Although the architecture-independent optimization algorithms
implemented look simple and are widely known from classical
compiler theory, they have proven to be extremely effective for
two main reasons: (i) packet-processing applications use a very
simple structure of the code, compared to general purpose ones,
and (ii) these provide the base for further target-specific
transformations that can be applied by a specific back-end, as will
be detailed in Section 6. The combination of both architecture-
independent and target-specific optimizations results in the
production of code that in some cases is faster than the one
generated by a commercial C compiler, as shown in Section 7.

6. COMPILER BACK-ENDS
The back-end for the Xelerated X11 network processor has been
presented in [14]; hence this section will focus on the back-ends
for the Intel x86 and Cavium Octeon platforms.

6.1 X86 Back-end
The x86 back-end follows the Just-In-Time paradigm: for each
NetPE composing a NetVM application it generates the binary
code for a function receiving an Exchange Buffer as an argument.
While the process of translating the intermediate representation to
machine code is quite similar to classical compilation, the NetVM
model opens some new possibilities for low-level optimization.

First the back-end translates the tree-based intermediate
representation generated by the upper layers of the compiler into
the LIR. This task is handled through a Bottom-Up Rewriting
System (BURS) [15], which executes a tree-matching algorithm
driven by architecture-specific rules that specify how a portion of
the intermediate representation (i.e. an expression sub-tree)
should be translated into target instructions. In particular,
different rules can relate to overlapping tree patterns, and the
BURS is able to chose the best (i.e. the less expensive)
combination that covers the most extended expression tree. BURS
can be configured to recognize very specific patterns that can be
part of an algorithm, enabling a very flexible approach in the

creation of the target code. For instance, an algorithm made up of
three pieces ABC can be implemented as AB in software and C in
hardware on one platform, and as A in software and BC in
hardware on another platform.

The second step is the register allocation, whose task is to assign a
machine register or a memory location to a live range of the
program. We implemented a classical global register allocation
algorithm through graph coloring [16][17], using the spill
heuristic proposed in [18] for minimizing spill costs and for
guaranteeing an optimal utilization of machine registers.

6.1.1 Intel X86 low-level optimizations
The set of BURS rules implemented in the back-end aims at
addressing two problems: (i) the optimal exploitation of the
complex instruction set of the target machine, and (ii) the
application of specific optimizations for packet-processing
applications.

With respect to the first kind of optimization, the CISC-based
Intel x86 includes powerful and complex instructions, which
allow specific NetIL patterns to be translated into a single x86
instruction, with the result of minimizing the code size. The
BURS instruction selection algorithm makes this operation
straightforward. For example, Figure 5 presents an x86 code
fragment that calculates the length of the IP options fields with
both its naïve and its optimized version. Since this value is
calculated by loading the IP header field, masking it, multiplying
it by four and finally subtracting 20, we can compact most of the
processing through the x86 LEA (Load Effective Address)1
instruction, which exploits the Memory Management Unit of the
processor.

movzx eax, byte ptr [ebx+14]
and eax, 0xf
mov esi, 4
mul esi
mov esi, eax
add esi, -20

movzx eax, byte ptr [ebx+14]
and eax, 0xf
lea ecx, dword ptr[ecx+eax*4–20]

Non optimized Optimized

Figure 5. Exploiting the Intel x86 instruction set

On the other hand we implemented special rules for optimizing
frequent operations of packet-processing applications. For
example, these often need to load a field from the packet header,
perform some calculation and compare it with a constant value.
However packets contain data organized in network byte order,
which is big-endian, while x86 uses the little-endian convention.
This requires swapping the data contained in the packet buffer
before starting the processing. Our solution, instead, uses the
BURS to recognize those patterns of instructions and move the
byte swapping operation to compile time. In other words,
whenever possible, instead of generating code for swapping the
bytes of a register at runtime, the compiler swaps the constant
during the compilation, thus producing more efficient code. A
simple example of the use of this technique is presented in Figure
6, which refers to the control that determines if an Ethernet header
is followed by an IP header.

1 The LEA instruction stores in a register the effective value of a pointer

that can be expressed as [base + offset * scale + displacement], where
base and offset are registers, scale is an integer among 2, 4, 8, and
displacement is an immediate value.

mov eax, word ptr [12]
shr eax, 0x10
bswap eax
cmp eax, 0x800

cmp word ptr [12], 0x8

Non optimized Optimized

Figure 6. Constant byte order swapping optimization

Another common operation in packet-processing applications is
represented by the multi-way branch, modeled after the switch-
case construct of the C language. The back-end includes a switch
lowering module that follows an approach similar to the one
implemented in the LLVM compiler [19], which is able to select
the best mapping algorithm, according to the cardinality and the
density of the case set.

Finally, the x86 back-end includes a specific phase that
implements an efficient linking strategy for code associated to
different NetPEs: direct linking avoids returning the control to the
framework when a NetPE task ends, hence reducing the overhead
introduced by the runtime environment.

6.2 Octeon Back-end
Beside the x86 back-end, we implemented a back-end targeting
the Cavium Octeon network processor. We will first present a
short description of the characteristics of the processor before
introducing how the NetVM model is mapped on it.

6.2.1 The Octeon architecture
Like most NPs, the Cavium Octeon tries to exploit the parallelism
of typical packet-processing applications: for this reason it
features up to 16 MIPS-64 cores at 600 MHz. Each core has a
private L1 cache, while the L2 cache and DRAM are shared.
Although the L2 cache and DRAM are physically shared, the
cores cannot communicate through the memory because of their
private virtual memory space. Communication primitives between
cores are provided by specific hardware mechanisms. The primary
on-chip communication mechanism is the work, which is an entity
created upon the arrival of a packet and queued into a specific
hardware unit: the Packet Order Work (POW). Works have many
attributes that determine how the POW schedules them to the
cores. For example the programmer can specify different QoS
levels associated with different kinds of traffic, since the unit
receiving incoming packets can parse the packet header, providing
a preliminary classification. The most important attribute is the
group: in fact cores subscribe to groups and the POW schedules
works to the cores according to the subscribed groups. When a
core terminates its job, it can submit the work to another group,
i.e. to another core, or send the packet out to a network interface.

Besides the MIPS cores, the chip also contains supporting units
and coprocessors for offloading some specific tasks. In particular,
some of these deal with the reception and the transmission of
packets, others are devoted to the management of pools of
memory buffers, while coprocessors implement cryptographic and
string matching functionalities in hardware.

6.2.2 The compiler back-end for the Cavium Octeon
In this case the compiler follows the Ahead-Of-Time model,
which produces as its output several assembly files, C listings and
configuration files. The result is a native application running on
the NP hardware with a minimal runtime environment, as the
processor units are exploited to implement natively the NetVM

model. In fact, the code generation is not different from the x86
back-end (i.e. it implements the BURS instruction selection and
global register allocation), while the mapping of native hardware
functionalities deserves some more discussion and represents the
most valuable part of this work. Particularly, this includes the
mapping of the Exchange Buffer (i.e., the memory that contains
the packet) on native hardware structures, and the mapping of the
string matching coprocessor of the NetVM model.

With respect to the former, the Exchange Buffer can be mapped
on the work structure of the POW unit. This enables NetPEs to be
distributed on different cores that communicate through the native
mechanism, in a way that is completely transparent to the
programmer. Currently, our prototype exploits only one core,
hence it implements dynamic NetPE linking as in the x86 back-
end and exploits the POW unit only for receiving and transmitting
packets from the external world. However the general mechanism
is already in place and can be used as a starting point for future
work aiming at fully exploiting the potentialities of multi-core
processing.

With respect to the second item, the NetVM model has a general
string matching coprocessor that enables searching for groups of
patterns in the packet payload. Patterns, which must be initialized
before starting the program, are divided into groups identified
with an integer ID, so that the coprocessor can search all the
patterns belonging to a group at once and return multiple
matching results to the caller. While the x86 back-end provides a
software implementation based on the Aho-Corasik algorithm
[20], the Octeon includes a hardware unit that is able to traverse
graph-based structures representing Deterministic Finite
Automata (DFA) in memory, which can be used to perform both
string and regular expression matching. With respect to the
Octeon processor, the DFA graph must be translated into a binary
image, which has to be loaded in a special external memory, the
Low Latency Memory (LLM). During execution, the cores can
submit a command to the DFA engine specifying the address of
the packet payload and the address of the graph in the Low
Latency memory to be used. The hardware unit automatically
loads data from the packet memory and uses it to traverse the
graph in the LLM, while searching for a match.

Finally, the runtime environment for this back-end is very simple
and it consists of an initialization routine (automatically emitted
by the compiler) that initializes the processor units and
instantiates the memory structure needed by the NetVM instance.
The only task of the runtime environment is then to receive
packets from interfaces and to pass them to the NetVM.

7. EXPERIMENTAL EVALUATION
This section presents some tests that demonstrate the performance
of the NetVM model and of its compiling infrastructure compared
to other technologies. The tests are based on two applications
written for the NetVM: PFLCompiler [11], a compiler for
automatically generating packet-filtering programs starting from a
filtering expression and a database containing protocol
descriptions in terms of field format and encapsulation conditions,
and NetVMSnort [21], a port of the popular open-source Intrusion
Detection System Snort.

7.1 Testing the x86 back-end
Tests on the x86 platform measure the performance of the code
emitted by our compiler compared to two other targets. The first
one is the code generated by the BPF virtual machine, which is
able to generate native assembly through the WinPcap Just-In-
Time compiler. Although the WinPcap JIT compiler is very
simple compared to our compiling infrastructure, it provides a
useful benchmark with a well-known and widely-used
architecture. The second target is made up of a set of native
programs created in C language and compiled with Microsoft
Visual Studio, which represent the real touchstone of our solution.
The native C filters use a custom macro to speed up byte-ordering
operations, instead of using the standard ntoh() functions of the
C standard library.

We defined five packet filters2 with different complexity, and we
profiled the execution time through the RDTSC assembly
instruction available on the x86 architecture. Tests were
performed on a Windows-based machine, equipped with a
Pentium 4 processor, running at 3GHz with Hyper-Threading and
4GB of memory.

Results presented in Table I show that our compiler generates
code that is faster than that produced by the other technologies
under testing. Main reasons rely on the intrinsic properties of the
NetVM model, which exports some useful information to the
compiling infrastructure, thus enabling very effective, albeit
simple, optimizations (such as compile-time constant swapping).
Since the characteristics of packet-processing applications are
taken into consideration in the entire compilation process, the
NetVM compiler can perform more aggressive optimizations than
its counterparts. Notably, this is obtained with a limited set of
optimizations compared to commercial compilers (such as
Microsoft Visual Studio). Additionally, results show that both the
mid-level optimizations and those implemented in the x86 back-
end introduce a substantial boost in performance (third column)
compared to non-optimized code (second column). These figures
represent an improvement of the results presented in [11] in which
no back-end optimizations were used.

Table I. Filtering time on the x86 back-end (ticks)
Filter NetVM no opt NetVM opt BPF Native

1 23 7 36 8
2 26 12 39 26
3 30 15 39 13
4 52 39 76 61
5 35 21 43 34

2 Filters, according to the well-known libpcap/WinPcap syntax

are “ip” (filter1), “ip src 10.1.1.1” (filter2), “ip and tcp”
(filter3), “ip src 10.1.1.1 and ip dst == 10.2.2.2 and tcp src port
20 and tcp dst port 30” (filter4) and “ip src 10.4.4.4 or ip src
10.3.3.3 or ip src 10.2.2.2 or ipsrc 10.1.1.1” (filter5). The test
packet was created so that filtering code was executed entirely
before returning to the caller.

7.2 Testing the Octeon back-end
The first test on the Octeon back-end shows the results obtained
with the same five filters already presented in the previous
section. Due to the lack of a BPF JIT compiler for this platform,
NetVM filters are compared only to handwritten ones, the latter
using the GNU C compiler (GCC). Results (in clock ticks) are
presented in Table II.

Also in this case the code generated through the NetVM compiler
is more efficient than that produced by the counterpart, thanks to
the set of optimizations performed before emitting the code. In
this case, the number of ticks is a good indication of the number
of instructions emitted for each filter, because the Octeon
processor is based on a MIPS pipelined architecture where most
instructions are executed in exactly one clock cycle. These
numbers can be further improved (although this is left to future
work) by integrating a proper instruction reordering phase to
avoid pipeline stalls.

Table II. Filtering time on the Octeon back-end (ticks)
Filter NetVM Native

1 9 8
2 14 15
3 17 20
4 51 62
5 29 32

On the Octeon platform we also executed the NetVMSnort
application. Although a direct comparison with the original Snort
is not possible (processing algorithms are not exactly the same,
and the original Snort does not run on the Octeon platform
because of memory limitations), the main result is that
NetVMSnort compiles and runs on the Octeon platform and is
able to exploit native hardware coprocessors. This demonstrates
the possibility of mapping even a complex NetVM application on
this architecture, hence the validity of the NetVM model.
Furthermore, Table III shows the comparison between the time
spent in coprocessors (out of the total time used by the application
to complete its job) between the x86 platform, where string-
matching is executed in software, and the Octeon platform, where
string-matching is executed through a hardware DFA engine,
demonstrates that the NetVM model enables the efficient
exploitation of native hardware features on platforms in which
these are available.

Table III. String matching performance on Octeon and x86

Platform Percentage of the time spent in string
matching

Octeon 3.79%
x86 13.44%

8. CONCLUSIONS
This paper presents the design and implementation of an
optimizing multi-target compiler and run-time system for the
NetVM model.

The aim of this work is to demonstrate that the virtual machine
paradigm is applicable to packet-processing applications without

affecting their performance, and greatly improves their portability.
Our compiler allows the execution of NetIL code on different
architectures, without performance penalties compared to hand-
written code. We also show that the NetVM model is effective in
exploiting the hardware features available on real network
processors.

Although we have obtained excellent results, the implementation
can still be further improved. A direction for future work is the
study of specific medium-level optimizations for packet-
processing applications. Another topic that we currently do not
take into account is exploiting multiprocessor capabilities of NPs.
In fact we can easily map each NetPE on a different core, but in
the future we aim to find an automatic mechanism for splitting a
generic application on multiple cores.

9. ACKNOWLEDGEMENTS
The authors wish to thank Marco Bergero and Pierluigi Rolando
for the contribution they have given respectively in the
development of the NetVM runtime environment and of the
optimization framework presented in this work.

10. REFERENCES
[1] M. Baldi and F. Risso. Towards effective portability of

packet handling applications across heterogeneous hardware
platforms. In IWAN 2005: Proceedings of the 7th Annual
International Working Conference on Active and
Programmable Networks, Sophia Antipolis, France,
November 2005.

[2] M. Baldi and F. Risso. A framework for rapid development
and portable execution of packet-handling applications. In
ISSPIT 2005: Proceedings of the 5th IEEE International
Symposium on Signal Processing and Information
Technology, Athens, Greece, December 2005.

[3] Cavium. Networks. Octeon Network Processors.
http://www.caviumnetworks.com

[4] Xelerated. Xelerator X11 network processor.
http://www.xelerated.com

[5] J. Wagner and R. Leupers. C compiler design for an
industrial network processor. In LCTES ’01: Proceedings of
the ACM SIGPLAN workshop on Languages, compilers and
tools for embedded systems, pages 155–164, New York, NY,
USA, 2001.

[6] R. Ennals, R. Sharp, and A. Mycroft. Linear types for packet
processing. In ESOP 2004: Proceedings of the 13th
European Symposium on Programming, pages 204–218,
Barcelona, Spain, March 2004.

[7] R. Ennals, R. Sharp, and A. Mycroft. Task Partitioning for
Multi-core Network Processors. In Compiler Construction,
volume 3443/2005 of Lecture Notes in Computer Science,
pages 76–90. Springer Berlin/Heidelberg, March 2005.

[8] M. K. Chen, X. F. Li, R. Lian, J. H. Lin, L. Liu, T. Liu, and
R. Ju. Shangri-la: achieving high performance from compiled
network applications while enabling ease of programming. In
PLDI ’05: Proceedings of the 2005 ACM SIGPLAN
conference on Programming language design and
implementation, pages 224–236, New York, NY, USA,
2005. ACM.

[9] G. Memik and W. Mangione-Smith. Nepal: A framework for
efficiently structuring applications for network processors. In
Proceedings of the Network Processor Workshop in
conjunction with 9th International Symposium on High
Performance Computer Architecture (HPCA-9), Anaheim,
California, February 2003.

[10] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F.
K. Zadeck. Efficiently computing static single assignment
form and the control dependence graph. ACM Trans.
Program. Lang. Syst., 13(4):451–490, 1991.

[11] O. Morandi, F. Risso, M. Baldi, and A. Baldini. Enabling
flexible packet filtering through dynamic code generation. In
ICC 2008: Proceedings of the IEEE International
Conference on Communications, Beijing, China, May 2008.

[12] S. S. Muchnick. Advanced compiler design and
implementation. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1997.

[13] Z. Budimlic, K. D. Cooper, T. J. Harvey, K. Kennedy, T. S.
Oberg, and S. W. Reeves. Fast copy coalescing and live-
range identification. In PLDI ’02: Proceedings of the ACM
SIGPLAN 2002 Conference on Programming language
design and implementation, pages 25–32, New York, NY,
USA, 2002.

[14] O. Morandi, F. Risso, P. Rolando, O. Hagsand, and P.
Ekdahl. Mapping Packet Processing Applications on a
Systolic Array Network Processor. In HPSR 2008:
Proceedings of the IEEE 2008 International Conference on

High Performance Switching and Routing, Shanghai, China,
May 2008

[15] C. W. Fraser, R. R. Henry, and T. A. Proebsting. Burg: fast
optimal instruction selection and tree parsing. SIGPLAN
Not., 27(4):68–76, 1992.

[16] L. George and A. W. Appel. Iterated register coalescing.
ACM Trans. Program. Lang. Syst., 18(3):300–324, 1996.

[17] P. Briggs, K. D. Cooper, and L. Torczon. Improvements to
graph coloring register allocation. ACM Trans. Program.
Lang. Syst., 16(3):428–455, 1994.

[18] D. Bernstein, M. Golumbic, y. Mansour, R. Pinter, D.
Goldin, H. Krawczyk, and I. Nahshon. Spill code
minimization techniques for optimizing compliers. In PLDI
’89: Proceedings of the ACM SIGPLAN 1989 Conference on
Programming language design and implementation, pages
258–263, New York, NY, USA, 1989. ACM.

[19] A. Korobeynikov. Improving switch lowering for the llvm
compiler system. In SYRCoSE 2007: Proceedings of the
2007 Spring Young Researchers Colloquium on Software
Engineering, Moscow, Russia, May 2007.

[20] A. V. Aho and M. J. Corasick. Efficient string matching: an
aid to bibliographic search. Commun. ACM, 18(6):333–340,
1975.

[21] O. Morandi, P. Monclus, G. Moscardi, and F. Risso. An
intrusion detection sensor for the netvm virtual processor.
Technical report, Politecnico di Torino, September 2007.
TR-DAUIN-NG-02

