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Abstract: Two fractional calculus approaches in the framework of continuum mechanics are
revisited and compared. The former is a local approach, which has been proposed to investigate
the behaviour of fractal media. The latter is a non-local approach, according to which long-range
interactions between material particles are opportunely modelled in the equilibrium equations.
Analogies and differences between the two models are outlined.

Keywords: Fractal media, local fractional calculus, long-range interactions, Marchaud
derivative.

1. INTRODUCTION

Aim of the paper is to revisit and compare two applications
of fractional calculus to continuum mechanics. For the sake
of simplicity, only one-dimensional problems will be dealt
with.
The former approach is based on the local fractional cal-
culus introduced by Kolwnakar (Kolwankar and Gangal
(1996), Kolwankar and Gangal (1998)) to address the
problem of fractal media, i.e. solids where the deforma-
tion is localized on a fractal subset. By assuming that
deformation takes place on a fractal subset, the displace-
ment field is represented by devil staircase-like functions
(Carpinteri et al. (2001), Carpinteri and Cornetti (2002)).
As well known, these functions have zero first derivative,
except in an infinite number of points where they are not
differentiable. On the other hand, they admit fractional
derivatives of order less than the fractal dimension of the
set where strain localizes. It is hence possible to express
the fractal strain as the local fractional derivative of the
displacement field.
The latter approach was introduced to model non-local
continua (Di Paola and Zingales (2008)), i.e. solids charac-
terized by non-local interactions (Aifantis (1994), Eringen
and Edelen (1972)). The novelty is that internal forces
are described by fractional integrals and derivatives (Di
Paola and Zingales (2008)). One of the most remarkable
achievements of this approach is that, by the Marchaud
definition of fractional derivative (Samko et al. (1993)),
the fractional operators have a clear mechanical interpre-
tation, i.e. springs connecting non-adjacent points of the
body. The related stiffness decays along with the distance
among the material points. However, it is seen that, in
order to have a consistent mechanical model, only the

integral part of Marchaud derivative has to be retained.
The two approaches are finally discussed and compared.
For the sake of clarity, it is opportune to introduce in
this section the definitions of the left and right Riemann-
Liouville derivatives, Dα

a+f(x) and Dα
b−f(x), respectively.

In particular, given a Lebesgue function f(x) on the closed
interval [a, b], their expressions are given by (0 < α < 1,
Samko et al. (1993)):

Dα
a+f(x) =

1
Γ(1− α)

d
dx

x∫

a

f(ξ)
(x− ξ)α

dξ, (1)

Dα
b−f(x) = − 1

Γ(1− α)
d
dx

b∫

x

f(ξ)
(ξ − x)α

dξ. (2)

2. LOCAL APPROACH

The mechanics of solids deformable over fractal subsets has
been widely investigated (Carpinteri (1994a,b), Carpinteri
et al. (2001), Carpinteri et al. (2004a)). When dealing
with fractal media, mechanical quantities with anomalous
physical dimensions, related to the fractal dimensions of
the domain upon which they are defined, must be taken
into account (Carpinteri (1994a,b)). Then, by means of
the local fractional operators, the static and kinematic
equations (as well as the principle of virtual work) may
be derived (Carpinteri et al. (2001)). Before entering into
details, let us remind that we are referring to a generic
body whose stress flux and deformation pattern have
fractal characteristics, whereas the material itself does not
need to present a fractal microstructure.
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Fig. 1. Fractal localization of: stress (a), strain (b), energy
dissipation (c).

2.1 Fractal mechanics quantities

The singular stress flux through fractal media can be
modelled by means of lacunar fractal sets A∗ of dimension
∆σ = 2 − dσ ≤ 2 (Fig. 1a), representing damaged cross
sections. An original definition of the fractal stress σ∗
was put forward in (Carpinteri (1994a,b)) by applying
the renormalization group procedure to the nominal stress
tensor [σ]. The fractal stress σ∗, whose dimensions are
[F ][L]−(2−dσ), is a scale-invariant quantity.

The kinematical conjugate of the fractal stress σ∗ is the
fractal strain ε∗. The basic assumption is that displace-
ment discontinuities can be localized on an infinite number
of cross-sections, spreading throughout the body. This
hypothesis has been suggested by several experimental
investigations, for instance in metals (Kleiser and Bo-
cek (1986)) and in highly stressed rock masses (Poliakov
et al. (1995)). Considering the simplest uniaxial model, a
slender bar subjected to tension, it can be argued that
the projection (over the horizontal axis z) of the cross
sections where deformation localizes, is a lacunar fractal
set, with dimension ∆ε = 1 − dε comprised between zero
and one. If the Cantor set (∆ε

∼= 0.631) is assumed as the
archetype of damage distributions, we may speak of the
fractal Cantor bar (Fig. 1b). The dilatation strain tends
to localize into singular stretched regions, while the rest of
the body is considered as undeformed. The displacement
function can be represented by a devil’s staircase graph,
that is, by a singular fractal function which is constant
everywhere except at the points corresponding to a lacunar
fractal set of zero Lebesgue measure (Fig. 1b). By applying
the renormalization group procedure (Carpinteri et al.
(2001)), the fractal strain ε∗, whose physical dimension
[L]dε lies between that of pure strain [L]0 and that of
a displacement [L]1, reveals to be the scale-independent
parameter describing the kinematics of the fractal bar.

Eventually, let us remind that the lacunar fractal domain
Ω∗, with dimension ∆ω = 3− dω, where the strain energy
Φ is stored during a generic loading process, must be
equal to the Cartesian product of the lacunar cross-section
with dimension 2− dσ times the cantorian projection set,
with dimension 1 − dε (Fig. 1c). Thus, a fundamental
relationship among the exponents is achieved (Carpinteri
et al. (2001)):

dω = dσ + dε. (3)

2.2 Local fractional calculus

Local fractional derivatives (LFDs) were introduced with
the motivation of studying the local properties of fractal
structures and processes (Kolwankar and Gangal (1998),
Kolwankar and Gangal (1999)), since no fractal function
can be the solution of a classical differential equation
(Carpinteri and Mainardi (1997)). The LFD definition is
obtained from Eq. (1) introducing two “corrections” in
order to avoid some physically undesirable features of the
classical definition. In fact, if one wishes to analyze the
local behaviour of a function, both the dependence on
the lower limit a and the fact that adding a constant to
a function yields a different fractional derivative should
be avoided. This can be obtained subtracting from the
function the value of the function at the point where we
want to study the local scaling property and choosing as
the lower limit that point itself. Therefore, restricting our
discussion to an order q comprised between 0 and 1, the
LFD is defined as the following limit (if it exists and is
finite):

Dqf(x) = lim
t→x

Dq
x+[f(t)− f(x)], 0 < q ≤ 1. (4)

In (Kolwankar and Gangal (1996)) the Weierstrass func-
tion was shown to be locally fractionally differentiable up
to a critical order α between 0 and 1. More precisely, the
LFD is zero if the order is lower than α, does not exist
if greater, while exists and is finite only if equal to α.
Thus, the LFD shows a behaviour analogous to that of the
Hausdorff measure of a fractal set. Furthermore, the crit-
ical order is strictly linked to the fractal properties of the
function itself. In fact, the critical order α coincides with
the local Hölder exponent s (which depends, as is well-
known, on the fractal dimension), as it was demonstrated
by proving the following local fractional Taylor expansion
of function f(x) of order q < 1 for x → x0 (Kolwankar
and Gangal (1996)):

f(x) = f(x0) +
Dqf(x0)
Γ(q + 1)

(x− x0)q + Rq(x− x0), (5)

where Rq(x − x0) is a remainder, negligible if compared
with the other terms. Let us observe that the terms in the
right hand side of Eq. (5) are nontrivial and finite only if
q is equal to the critical order α. Moreover, for q = α, the
fractional Taylor expansion (5) gives us the geometrical
interpretation of the LFD. When q is set equal to unity,
one obtains from (5) the equation of a tangent. All the
curves passing through the same point x0 with the same
first derivative have the same tangent. Analogously, all
the curves with the same critical order α and the same
Dα form an equivalence class modelled by xα. This is how
it is possible to generalize the geometric interpretation of
derivatives in terms of “tangents”.

The solution of the simple differential equation df/dx =
1[0,x] gives the length of the interval [0, x]. The solution
is nothing but the integral of the unit function. Wishing
to extend this idea to the evaluation of the measure of
fractal sets, it can be seen immediately that the classical
fractional integral does not work, as it fails to be additive
because of its nontrivial kernel. On the other hand, a
fractional measure of a fractal set can be obtained through



the inverse of the LFD defined as (Kolwankar and Gangal
(1999)):

Iα
[a,b]f = lim

N→∞

N−1∑

i=0

f(x∗i )I
α
xi+1dxi

(xi+1), (6)

where [xi, xi+1], i = 0, . . . , N − 1, x0 = a and xN = b,
provide a partition of the interval [a, b] and x∗i is some
suitable point chosen in the subinterval [xi, xi+1], while
1 dxi is the unit function defined on the same subinterval.
Kolwankar called Iα

[a,b]f the fractal integral of order α

of f(x) over the interval [a, b] (Kolwankar and Gangal
(1999)). The simple local fractional differential equation
Dαf(x) = g(x) has not a finite solution when g(x) is
constant and 0 < α < 1. Interestingly, the solution exists if
g(x) has a fractal support whose Hausdorff dimension d is
equal to the fractional order of derivation α. Consider, for
instance, the triadic Cantor set C, built on the interval
[0, 1], whose dimension is d = ln 2/ ln 3. Let 1C(x) be
the function whose value is one in the points belonging
to the Cantor set upon [0, 1], zero elsewhere. Therefore,
the solution of Dαf(x) = 1C(x) when α = d is f(x) =
Iα
[0,x]1C(t). Applying Eq. (6) with x0 = 0 and xN = x

and choosing x∗i to be such that 1C(x∗i ) is maximum in
the interval [xi, xi+1], one gets (Kolwankar and Gangal
(1999)):

f(x) = Iα
[0,x]1C = lim

N→∞

N−1∑

i=0

F i
C

(xi+1 − xi)α

Γ(1 + α)

=
SC(x)

Γ(1 + α)
,

(7)

where F i
C is a flag function that takes value 1 if the

interval [xi, xi+1] contains a point of the set C and 0
otherwise. SC(x) is the Cantor (devil’s) staircase (Fig. 1b),
i.e. a function almost everywhere flat except on an infinite
number of singular points corresponding to the underlying
Cantor set where it grows from 0 to 1. Moreover, Eq.
(7) introduces the fractional measure of a fractal set: for
the Cantor set C it is defined as Fα(C) = Iα

[0,1]1C(x).
In fact Fα(C) is infinite if α < d, and 0 if α > d. For
α = d, we find Fα(C) = 1

Γ(1+α) , since SC(1) = 1. This
measure definition yields the same value as that predicted
by the Hausdorff measure, the difference being represented
only by a different value of the normalization constant.
Eventually, from Eq. (7), it follows that the fractional
measure of a generalized Cantor set C

[a,b]
α of dimension

α built over the interval [a, b] of the x-axis is:

Fα(C [a,b]
α ) = Iα

[a,b]1C
[a,b]
α

=
(b− a)α

Γ(1 + α)
, (8)

where 1
C

[a,b]
α

is the function equal to 1 if x ∈ C
[a,b]
α , to 0

elsewhere.

2.3 The fractal bar

In the present section, we intend to solve a simple case
using the mathematical tools presented in the previous
section. Our aim is to show that experimental diagrams
(see, for instance, Kleiser and Bocek (1986)) such as the
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Fig. 2. The fractal bar subjected to an axial load: the
displacement field.

one of Fig. 1b can be obtained also analytically. More
details can be found in Carpinteri and Cornetti (2002).

Thus, let us consider a uniaxial model (Carpinteri and Cor-
netti (2002)), hereafter called fractal Cantor bar, according
to Feder’s terminology (Feder (1998)), i.e. a bar of length
b deformable on a fractal subset of dimension (1−dε). The
longitudinal axis is z. The bar is clamped in z = 0, whereas
a tensile load N is applied at its end z = b (Fig. 2). A strain
field will arise that is zero almost everywhere except in an
infinite number of points (corresponding to the deformable
subset) where it is singular. The displacement singulari-
ties can be characterized by the LFD of order equal to
the fractal dimension α = 1 − dε of the domain of the
singularities, the unique value for which the LFD is finite
and different from zero (the critical value). Therefore, we
can define analytically the fractal strain ε∗ as the LFD of
order α of the displacement:

ε∗(z) = Dαw(z). (9)

Let us observe that, in Eq. (9), the noninteger physical
dimensions [L]dε of ε∗ are introduced by the LFD, whereas
in Section 2.1 they are a geometrical consequence of the
fractal dimension of the localization domain.

Without losing generality, let us assume the deformable
subset to be the triadic Cantor set C

[0.b]
α built on [0, b],

α = ln2/ln3. In order to compute the displacement
function w(z), we need the proper constitutive law. Here,
for the sake of simplicity, we use a linear elastic relation
and assume dσ = dε: in this case the coefficient of
proportionality between fractal stress and fractal strain
coincides with the one between the nominal quantities,
i.e. it is the Young’s modulus E. In symbols: σ∗ = Eε∗.

For equilibrium reasons, the internal axial force is constant
and equal to N throughout the bar. Hence, we get a fractal
strain ε∗ equal to N/EA∗ over the deformable subset, 0
elsewhere. The kinematic equation (9) becomes:

Dαw(z) =
N

EA∗
1

C
[0,b]
α

(z). (10)



Introducing the dimensionless quantities w̃ = w/b, z̃ = z/b
(z̃ ∈ [0, 1]), we can apply the scaling property expressed
by (for a = 0, Samko et al. (1993)):

dqf(bx)
[ dx]q

= bq dqf(bx)
[ d(bx)]q

, (11)

which is valid also for the LFD, to get Dαw(z) =
b1−αDαw̃(z̃). Eq. (10) can therefore be expressed in di-
mensionless form as follows:

Dαw̃(z̃) =
N

EA∗b1−α
1C(z̃), (12)

where C is the triadic Cantor set built on [0, 1] as indicated
in Section 2.1. In this form, the solution of the differential
equation (12) can be obtained directly from Eq. (7):

w̃(z̃) =
N

EA∗b1−α

SC(z̃)
Γ(1 + α)

, (13)

where SC(x) is the Cantor staircase built on the interval
[0, 1] and rising from 0 to 1. Recovering the physical
quantities yields:

w(z) =
Nb∗

EA∗
SC(

z

b
), (14)

where b∗ = bα

Γ(1+α) is the fractal measure of the deformable
subset. Equation (14) is plotted in Fig. 2. Let us emphasize
that the Cantor staircase, introduced geometrically in
Section 2.2, is now obtained analytically. Furthermore,
notice that Eq. (14) provides important information about
the size effect affecting the global deformation. In fact
we find that the free end displacement w(b) is equal to
Nb∗
EA∗ , i.e. w(b) ∼ bα. This means that the displacement
increases less than linearly with the bar length, as occurs
with classical elastic bodies. From the point of view of
the overall deformation ε = w(b)/b, we get ε ∼ b−(1−α):
it decreases with size as a consequence of the strain
localization on a lacunar fractal subset.

3. NON-LOCAL APPROACH

Different approaches have been proposed to take into
account the effects of material microstructure onto the
classical continuum equations (Eringen and Edelen (1972),
Aifantis (1994)). A new model based on fractional calcu-
lus has recently been suggested (Di Paola and Zingales
(2008)), and it will be described in the next sections.

3.1 Elastic bar with long-range interactions

Let us now consider an elastic bar of length b and subjected
to external forces F. Let us discretize the bar in m equal
elements, each with volume Vj = A∆z (j = 1, ...,m),
where A is the cross-section area and ∆z = b/m. The
generic volume element Vj is located at the abscissa zj =
j∆z. Its equilibrium equation can be written taking into
account external loads, contact forces provided by adjacent
volumes, Vj−1 and Vj+1, which are denoted by Nj and
Nj+1, respectively, and long range interactions Qj applied
on Vj by the surrounding non-adjacent elements of the bar
(Fig. 3). In formulae:
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Fig. 3. Discretized elastic bar: equilibrium of the generic
volume element Vj .

∆Nj + Qj = ∆Nj +
j−1∑

h=1

Q(h,j) −
m∑

h=j+1

Q(h,j) =

= −FjA∆z,

(15)

where Fj = F (zj), ∆Nj = Nj+1 −Nj and Q(h,j) (h 6= j)
are the long-range forces that surrounding volume ele-
ments apply on element Vj . These forces can be modelled
as:

Q(h,j) = sgn(zh − zj)[w(zh)− w(zj)]g(zh, zj)VjVh, (16)

being g(zh, zj) a real-valued monotonically decreasing
function expressed as:

g(zh, zj) =
Ecαα

AΓ(1− α)|zh − zj |1+α
, (0 ≤ α ≤ 1) (17)

and sgn(z) the classical signum function:

sgn(z) =

{− 1 if z < 0
0 if z = 0

+ 1 if z > 0.
(18)

Note that the constant cα in Eq. (17) has the anomalous
dimensions [L]α−2. The classical continuum mechanics is
consistently recovered for α → 0. Substituting Eq. (16)
into (Eq. (15)), yields:

∆Nj− EcααA

Γ(1− α)
∆z[

j−1∑

h=1

w(zh)− w(zj)
(zj − zh)1+α

∆z+

−
m∑

h=j+1

w(zj)− w(zh)
(zh − zj)1+α

∆z] = −FjA∆z.

(19)

Dividing Eq. (19) by EA∆z and assuming a linear elastic
material i.e., σ(z) = Eε(z) = Edw/dz, the following
differential equation is obtained for ∆z → 0 (Di Paola
and Zingales (2008)):

d2w

dz2
− cα

(
D̂α

0+w + D̂α
b−w

)
= −F (z)

E
. (20)

D̂α
0+w and D̂α

b−w in Eq. (20) represent the integrals terms
in the Marchaud fractional derivatives on a finite interval
(note that a = 0), which have been proved to coincide
(Samko et al. (1993)), for a certain class of functions, with
the Riemann-Liouville fractional derivatives (Eqs. (1) and
(2)):

Dα
a+f(x) =

f(x)
Γ(1− α)(x− a)α

+

+
α

Γ(1− α)

x∫

a

f(x)− f(ξ)
(x− ξ)1+α

dξ,
(21)



Dα
b−f(x) =

f(x)
Γ(1− α)(b− x)α

+

+
α

Γ(1− α)

b∫

x

f(x)− f(ξ)
(ξ − x)1+α

dξ,
(22)

Equation (20) can be rewritten, equivalently, in terms of
the Marchaud fractional derivatives ((Eqs. (21) and (22)))
as:

d2w

dz2
−cα[

(
Dα

0+w + Dα
b−w

)
+

−w
(
Dα

0+1 + Dα
b−1

)
] = −F (z)

E
,

(23)

which represents a nonhomogeneous ordinary fractional
differential equation, with non-constant coefficients, since
the derivatives of the unit function are neither zero nor
constant.

It is worth observing that the fractional formula of inte-
gration by parts (Samko et al. (1993)):

b∫

a

[(Dα
a+f) · g]dx =

b∫

a

[(Dα
b−g) · f ]dx (24)

can be exploited to verify that the resultant of the non-
local forces, expressed by the second term in the left-hand
side of Eq. (23), is zero. In fact, by choosing either f or g
equal to 1, it is easy to check that:

b∫

0

[(Dα
0+w + Dα

b−w)+

−w(Dα
0+1 + Dα

b−1)]dz = 0.

(25)

Unfortunately, analytical solutions of Eq. (23) (i.e., Eq.
(20)) are not available in the literature at the authors best
knowledge.

3.2 Equivalent mechanical model

The physical validity of Eq. (15) can be explained by
considering a simple discrete spring-point model of the bar
(Di Paola and Zingales (2008)), as reported in Fig. 4 only
for four points. Local forces between adjacent particles are
taken into account by springs with elastic stiffness Kl =
EA/∆z. On the other hand, long-distance interactions
between particles are modelled by linear springs with
distance-decay stiffness as Knl

jh = g(zj , zh), where function
g is provided by Eq. (17).

Thus, the equilibrium equation for the generic node lo-
cated at the abscissa zj may be written as:

j = 1:
Kl (w2 − w1)+

+(A∆z)2
m∑

h=2

g(zh, z1)(wh − w1) = −F1,
(26)

j = 2, ..., m− 1:
Kl (wj−1 − 2wj + wj+1)+

+(A∆z)2
m∑

h=1,h 6=j

g(zh, zj)(wh − wj) = −Fj ,
(27)

F1

1

F4

2 3 4

K l lK K l

K14

24K

K13

 

Fig. 4. Discretized elastic bar: spring-point model.

j = m:

Kl (wm−1 − wm)+

+(A∆z)2
m−1∑

h=1

g(zm, zh)(wh − wm) = −Fm,
(28)

where the right-hand sides of Eqs. (26-28) represent the
body forces applied to material particles.
Equilibrium equations (26-28) can be sintethized in a
compact form by introducing the non-local coefficient
matrix K = Kl + Knl as:

Kw = F, (29)

where w and F are the (m)-dimensional displacement and
force vectors, respectively; Kl is the tri-diagonal matrix
related to contact contributions due to adjacent elements:

Kl =




Kl −Kl ... ... 0
−Kl 2Kl −Kl ... 0
... ... ... ... ...
... ... −Kl 2Kl −Kl

0 ... ... −Kl Kl




, (30)

while Knl is the fully populated, non-local stiffness matrix:

Knl =

= (A∆z)2




Knl
11 −g(z2, z1) ... −g(zm, z1)

−g(z2, z1) Knl
22 ... −g(zm, z2)

... ... ... ...

... ... ... ...
−g(zm, z1) ... ... Knl

mm




, (31)

with

Knl
jj =

m∑

h=1,h 6=j

g(zj , zh). (32)

3.3 Numerical Applications

The non-local stiffness matrix obtained by the point-spring
model (Eq. (31)) is found to coincide, for ∆z → 0, with
that obtained by discretizing Eq. (20) with fractional finite
differences (Di Paola and Zingales (2008)). Homogeneous
boundary conditions are imposed to prevent divergent
behaviour (Kilbas et al. (2006)). Let us consider a slender
bar under tension. The bar dimensions are selected as
follows: L = 200 mm and A = 100 mm2. The following
material characteristics are considered: E = 72 · GPa,
α = 0.3 and cα = 0.03 mm−1.5. The axial strain related
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Fig. 5. Axial strain in a free-free bar: continuum fractional
approach (continuous line) vs. discrete spring-point
model (dots).

to such a structure is displayed in Fig. (5), showing
a perfect agreement between the continuum fractional
approach (continuous line) and the discrete spring-point
model presented in the previous section (dots). Note that
the axial strains are uniform along the bar core and
increase at the boundary, as from experimental evidences.
Similar results are predicted also by different non-local
models (see, for instance, Aifantis (1994)).

4. CONCLUSIONS

Classical continuum theory works properly at the macro-
scale, where the effect of material microstructure can
be neglected. Recent technological progress (e.g. nano-
devices) as well as the possibility to have a deeper insight
into material behaviour forced the scientific community to
analyze phenomena taking place at the meso/micro level.
One way to address such problems is the use of enriched
continuum mechanics models. Among these models, in
the present paper we revisited two recently proposed ap-
proaches whose common feature is represented by the use
of fractional calculus, which turns out to be a powerful
tool to handle non-standard continua.
The former approach deals with fractal media, i.e. with
solids whose microstructure is such that strain localizes
onto fractal subsets. The latter approach deals with solids
characterized by non-local long-range interactions. Al-
though they are rather different, it is interesting to high-
light the following analogies/differences between them.

(1) Both the approaches yield non-standard fractional
derivatives, the former one using the local fractional
derivative and the latter one the integral part of
Marchaud fractional derivative.

(2) The local approach is based on kinematic arguments,
whilst the non-local one stems from a static analysis.

(3) Both the approaches provide a non-uniform strain
field under a uniform stress field.

(4) Both the models introduce a displacement derivative
of order lower than the classical one, differently from
what proposed by gradient theory (Aifantis (1994)),
which provides derivatives of the displacement of
higher orders. This is a drawback of gradient theory,
since higher order differential equations need extra
boundary conditions to be solved, whose physical
meaning is still unclear.

(5) In the local model, the LFD replaces the classical
derivative (Eq. (9)), whereas in the non-local model
the fractional derivative represents a correction to be
added to the classical equilibrium equation (Eq. (19))
in order to take internal forces into account.

(6) In the local approach, the kinematic equation ap-
pears as the straightforward generalization to frac-
tal media of the definition of strain in continuum
mechanics. This provides the key to generalize the
principle of virtual work as well as to highlight the
static-kinematic duality for fractal media (Carpinteri
et al. (2001)). On the other hand this aspect remains
hidden in the non-local approach.
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