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The starting point of this work is the development of a new class of partially structured LDPC codes, very well suited for hardware
implementation. Specifically these codes are built so that the edges of their parity matrix can be partitioned into two disjoint sets,
namely, the structured and the random ones. For the proposed class of codes a constructive design method is provided. To assess
the value of this method the constructed codes performance are presented. From these results, a novel decoding method called
split decoding is introduced. Finally, to prove the effectiveness of the proposed approach a whole VLSI decoder is designed and
characterized.
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1. INTRODUCTION

Low Density Parity Check [1, 2] (LDPC) codes are among the
most powerful error correcting codes available; performance
and decoding algorithms have been deeply explored in the
last few years and LDPC codes have been proposed for
application in several standards. However, their practical
implementation is still a challenging subject of investigation.
There are basically two aspects of LDPC that pose serious
implementation problems: (1) the huge size of parity-
check matrices that are of interest for high performance
applications; (2) the high irregularity of these matrices,
that is, the fact that they are very sparse with ones often
distributed almost randomly.

From the implementation standpoint, the first aspect
implies the allocation of a large number of processing
elements and larger number of communication paths among
them; the second one entails a very limited adjacency
of processing elements, resulting in scarcely efficient and
expensive communication structures [3]. In order to limit
the implementation complexity of both the processing and
the interconnect resources of the decoder, several partially
parallel architectures have been proposed as feasible alterna-
tives to the fully parallel approach [4–6].

In partially parallel architectures, processing elements
(PE) are shared among multiple check and variable nodes:
each PE is required to sequentially serve a number of rows

or columns of the parity-check matrix; since, at each instant
of time, only a subset of the messages to be exchanged
between variable and check nodes actually need to be
moved from one PE to another one, this approach also
reduces the number of physical interconnects in the decoder.
Finally, instead of storing messages in independent registers,
partially parallel architectures allow grouping them into
more efficient memories. Of course, resource sharing implies
a throughput scaling and the parallelism degree has to
be selected according to the target throughput: complexity
tradeoff.

While the partially parallel approach looks like a fully
scalable solution able to flexibly adapt to different cost and
throughput constraints, it raises the problem of collisions
in the access to memories [7]. In the connection of P PEs
with the same number of message memories, the possibility
of simultaneously moving P messages between PEs and
memories has a very low probability and in a large percentage
of cases more than one required message must be read
from or written to the same memory. Due to the limited
adjacency of the parity-check matrix, the optimization of
message partitioning among memories tends to have a poor
effect on the number of occurred conflicts. PEs must then be
frequently stalled to accommodate for multiple simultaneous
accesses to memories and this severely affects the decoder
throughput.

In order to cope with these problems, two different kinds
of solution have been proposed.
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Figure 1: Parity-check matrix structure for code rate 1/2.

(1) A few code-independent approaches have been for-
mulated aiming at avoiding collisions for a generic
LDPC code. This class of solutions leads to expensive
implementation architectures, such as those pro-
posed in [5, 8, 9].

(2) Structured LDPC codes [10] have been proposed: in
this approach, a structure is given to the parity-check
matrix and all ones are properly distributed with the
purpose of limiting the interconnect requirements
while keeping good error correcting capabilities.
Classes of structured codes have been studied and
implemented successfully.

This paper presents a new approach based on the idea
of designing parity-check matrices with edges partitioned
into two classes, namely, structured ones, positioned in
accordance with a repetitive fixture laid not far from the
diagonal, and random ones, which can be placed freely
in the whole matrix, with the purpose of achieving good
performance in terms of error correcting capabilities. This
approach has been previously partly presented in [11] where
the authors proposed a partially structured 1/2 rate LDPC
code and described the implementation of a decoder with
two separate processing units: a dedicated part tailored
to take advantage of the regularly placed ones, and a
programmable application specific instruction set processor
(ASIP) serving the whole random part of the parity-check
matrix.

This work extends the previous one deeply investigating
the benefits coming from the idea of designing a parti-
tioned parity-check matrix, with a particular emphasis on
the hardware architecture. This paper provides two major
contributions: a decoding algorithm that takes advantage of
the partitioned parity-check matrix to simplify the collision

problem and the VLSI design of a decoder implementing the
described algorithm.

The rest of the paper is organized as follows. Section 2
introduces LDPC and eIRA codes, reviewing some code
design issues. Then the proposed partially structured eIRA
code class is presented and some constructive results are
given. To prove the usefulness of this approach simulation
performance is presented.

Then the decoding algorithm of these codes is presented
in Section 3. Due to the particular structure of the parity-
check matrix, some modifications to the traditional belief
propagation algorithm are possible. The obtained algorithm,
called split decoding presents remarkable savings with
respect to the traditional one. These savings are deeply
investigated in Section 4. The modular fixture of structured
ones strongly simplifies the communication structure among
processing elements, while the reduced number of “random”
ones enables collision-free partitioning that eliminates the
need for stall cycles in the decoding process. In the same
Section, logical synthesis results are given and memory
footprint of the designed VLSI core is analyzed. Lastly, in
Section 5 conclusions will be drawn.

2. PARTIALLY STRUCTURED eIRA CODES

2.1. LDPC and eIRA codes background

An LDPC code is a linear block code defined by an m × n
sparse parity-check matrix. It can be described also in terms
of its Tanner graphs: each of the bits and of the parity-check
equations, defined, respectively, as variable nodes (VNs) and
check nodes (CNs), is represented by a vertex in the graph.
The number of edges connected to a vertex of the graph is
defined as the degree of that node; the VN (or CN) degree
distribution of a code specifies how the edges are distributed
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Table 1: VN degree distributions (node perspective).

Code rate ˜λ1
˜λ3

˜λ5
˜λ6

˜λ9

1/3 0.6667 0.2222 — — 0.1111

1/2 0.5000 0.3750 — 0.1250 —

2/3 0.3334 0.5556 — 0.1110 —

among the variable (or check) nodes of the code. In a regular
(c, r) LDPC code all VNs have degree c and all CNs have
degree r in the graph.

In [12], irregular LDPC codes have been shown to
outperform regular LDPC codes. In this work, we will focus
on eIRA codes [13–15]: a popular subset of LDPC codes.
eIRA codes are characterized by the peculiar structure of the
parity-check matrix corresponding to the nonsystematic bits,
which is made of VNs with degree 2, arranged according to
a chain-like structure, known in the literature as “staircase
construction.” The main advantage of this structure is that
the obtained code can be encoded in linear time. In [14], it is
shown that such a constraint leads to negligible performance
losses.

There are some specific design issues for eIRA codes.
Typically, the project of irregular LDPC codes consists of
the optimization of the VN and CN degree distributions
and of the design of a parity-check matrix compliant
with the obtained distributions. The degree distributions
are optimized by means of several techniques such as
density evolution [12] and its approximated version of [16];
however, when dealing with eIRA codes, these techniques
cannot be directly applied. The problem of designing an
efficient eIRA code is well presented in [17], where it is shown
that the loss in performance introduced by the staircase
construction is about 0.1 dB, in the waterfall region.

While the VN and CN degree distributions determine
the convergence behavior of the code asymptotically (for an
infinite block length), the actual structure of the parity-check
matrix is crucial for the performance of finite length LDPC
codes. Many design algorithms can be applied to obtain a
good parity-check matrix [18–20]; specific design algorithms
for eIRA codes are presented in [21, 22].

2.2. Proposed code design guidelines

As a general rule, highly structured matrices and a limited
connectivity lead to low code performance; this effect is not
present in [10] because regular LDPC with a VN degree of
3 does not suffer from high error floors. On the contrary,
eIRA codes have a significant number of degree 2 VNs. This
would likely result in a code with a high error floor due to the
constraints on the limited connectivity. To avoid these effects
we adopt a partial structure allowing some of the edges to be
placed randomly.

Let us illustrate this concept with an example: in Figure 1
we depict the parity-check matrix of a rate 1/2 code.
Three sections can be identified: the rightmost contains the
“staircase” parity-check VNs, the leftmost one contains high-
degree VNs and the central one degree 4 VNs. The latter two
sections include edges disposed according to a predefined
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Figure 2: Parity-check matrix of a (2040, 1020) code.

Table 2: Edge categories distribution.

Code rate Staircase Pattern Free

1/3 0.400 0.467 0.133

1/2 0.296 0.519 0.185

2/3 0.182 0.606 0.212

pattern, as well as some placed in a pseudorandom fashion.
The optimal degree distribution obtained as explained in
[17] contains a significant number of degree-3 VNs. We
deliberately decided to forbid them to lower the error floor.
Details on this expedient are available in [23].

As far as the structured part of the matrix is concerned,
we use permuted versions of the identity matrix. In partic-
ular, the permutations used in the blocks labelled Πi (i =
1, 2, . . .) in Figure 1 are triangular S-random interleavers
built according to a tail-biting definition of the spread factor.

2.3. Three examples: rate 1/2, 2/3, and 1/3 codes

We will illustrate how the design guidelines can be applied to
generate three different codes with three code rates, namely,
1/2, 2/3, and 1/3. For the rate 1/2 we consider a codeword
length approximately equal to 2000 bits, in order to have a
direct comparison with the code of [10], and we chose a
degree distribution with a maximum VN degree of 7, which
produces a total number of edges very similar to the one of
[10]. The degree distribution of the code and its parity-check
matrix are described, respectively, in Table 1 and in Figure 2.

The edges can be classified into three categories: they can
be related to the staircase construction, to the deterministic
pattern, or their position can be free. In Table 2 we list
their distribution: the percentage of randomly placed edges
is quite low, so that the burden on the slower ASIP part of
the decoder is not excessive.
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Figure 3: Parity-check matrix of a (3078, 1026) code.
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Figure 4: Parity-check matrix of a (1512, 1008) code.

According to the scheme of Figure 1, there are nine
macro-columns in the central section. If D = (n− k)/12, for
the ith (i = 0, 1, . . . ,D−1) column of the jth ( j = 0, 1, . . . , 8)
macro-column, the three edges are placed in the following
rows:

(i) jD + 2i + (1−mod(D, 2));

(ii) (2 + j)D + Π1(i);

(ii) (3 + j)D + Π2(i).

Based on the equations above, we chose Π1 and Π2 as tail-
biting S-random interleavers as explained in [11].

The same philosophy holds also for code rates different
from 1/2. In particular, we present the cases 1/3 and 2/3 as
other examples.

The degree distributions are reported in Table 1, while
Table 2 describes the distribution of the edges in the
different categories. The two generated LDPC codes have an
information word length k of 1026 and 1008, respectively,
while the codeword length n is 3078 and 1512. Their parity-
check matrixes are depicted in Figures 3 and 4, respectively.

Also in these cases, it is crucial to use tail-biting S-
random interleavers as building blocks of the parity-check
matrix.

2.4. Simulation results

To verify the validity of the designed algorithm, we compared
the rate 1/2 code described in Section 2.3 with two similar
codes coming from IEEE 802.11n and IEEE 802.16e stan-
dards.
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Figure 5: Simulation results for code rate 1/2.
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Figure 6: FER and BER simulation results for the 1/2, 1/3, and 2/3
code rates.

The simulation results of Figure 5 show that our code
does not suffer from high error floor, despite its strong
structure (is better than IEEE 802.11n and IEEE 802.16e at
high SNR as far as FER is concerned).

Finally, in Figure 6 we provide the simulations results
of the LDPC codes generated in the previous subsections.
It is reasonably safe to conclude that the structured design
approach suggested in this paper leads to good results for
a wide range of code rates, both in terms of convergence
threshold and of low error floors.
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Figure 7: Variable node processor input and outputs.

3. DECODING ALGORITHM FOR PARTIALLY
STRUCTURED LDPC CODES

The belief propagation (BP) algorithm is one of the most
popular LDPC decoding methods, giving optimal perfor-
mance in the case of H matrices with no cycles. In BP, the
following update rule is applied for VN j :

Qj,i = λj +
∑

k∈M( j)/i

Rk, j , (1)

where λj is the intrinsic information, which depends on
the channel variance and on the jth received symbol of the
codeword, Ri, j is the message sent by CNi to VN j , M( j) is the
set of nodes connected to VN j , and Qj,i is the message sent
by VN j to CNi. All but one input messages Rij are summed
in (1) to output a single variable to check message Qj,i.

Check node i receives Qj,i messages as inputs and gener-
ates output messages according to the following equation:

Ri, j = Ωk∈N (i)/ j
(

Rk,i
)

, (2)

where N (i) is the set of nodes connected to CN i and the Ω
operator, for two operands, is defined as

Ω(a, b) = log

(

ea + eb

1 + ea+b

)

. (3)

For more than two operands, the Ω operator can be applied
recursively; for example, for three operands, we have

Ωk∈[0···2]ak = Ω
(

a0,Ω
(

a1, a2
))

. (4)

The BP algorithm is usually executed in two phases, repeated
at each decoding iteration: first all variable nodes sample
their input messages and process them, then check nodes
receive messages and generate their outputs.

We propose here a new decoding algorithm, where the
same operations described in (1) and (2) are separately

applied to two subsets of nodes: let us define MS( j) and

MR( j) as the two subsets of nodes connected to VN j and
associated, respectively, to structured and random ones of the
H matrix. The VN update rule can be rewritten as

Qj,i = λj +
∑

k∈MS( j)/i

Rk, j +
∑

k∈MR( j)/i

Rk, j . (5)

By also defining the following two sums:

RR
j =

∑

k∈MR( j)

Rk, j ,

RS
j = λj +

∑

k∈MS ( j)

Rk, j ,
(6)

the variable to check message is computed as

Qj,i = RR
j + RS

j − Ri, j . (7)

In Figure 7, a high-level view of the variable node processor
operations is given. The purpose here is to better explain
which variables are read and written during the execution
of the decoding process. The left part of figure shows input
and output signals when the VN processor is serving the
structured ones (VNP(S)), while the right part refers to the
exchanged signals when the same unit is processing random
ones (VNP(R)).

The check node processing can be expressed in a similar
way. The N (i) set of nodes connected to CN i is now split
into N S(i) and N R(i), defined as the two subsets of nodes
connected to CN i and associated, respectively, to structured
and random ones. Using this two sets of nodes, we compute
the check to variable messages by means of the following
expression:

Ri, j = Ω
(

Ωk∈N S(i)/ j
(

Qk,i
)

,Ωk∈N R(i)/ j
(

Qk,i
))

. (8)

Two total sums of the incoming messages are defined as

QR
i = Ωk∈N R(i)

(

Qk,i
)

,

QS
i = Ωk∈N S(i)

(

Qk,i
)

(9)

and the check to variable messages are then obtained as

Ri, j = Ω
(

Ωk∈N S(i)/ j
(

Qk,i
)

,QR
i

)

(10)

in the case of messages associated to structured ones (i ∈
N S(i)), and

Ri, j = Ω
(

Ωk∈N R(i)/ j(Qk,i),QS
i

)

(11)

in the case of messages associated to random ones (i ∈
N R(i)).
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Figure 8: Scheduling of operations inside a single iteration of the
split decoding algorithm.

The scheduling of the read and write operations for both
a VN as well as for the CN is reported in Figure 8. As it can
be seen, structured and random parts are always scheduled
in sequence.

We call this modified BP algorithm split BP decoding
(SBP) or briefly split decoding (SD). The new method is
simply an algebraic reorganization of (1) and (2), and the
code performance in terms of error correcting capabilities
does not decrease when applying (7), (10), and (11). As
we will detail in the following section, the key advantage
provided by SD is the possibility of independently processing
random and structured edges of H : while structured ones
follow a modular pattern that strongly simplifies their
parallel processing with no collisions in the memory access,
the same characteristic does not hold for random ones,
which tend to generate collisions when processed in parallel.
However, differently from typical random H matrices, the
subset of random ones is sparse enough to enable their
efficient partitioning into separate memory banks with no
collisions in the read or write accesses.

4. DECODING ARCHITECTURE

4.1. Functional description

From an architectural standpoint, the main contribution of
our work lies in the different scheduling we use for the
decoding process. In fact, as can be observed from Figure 9,
the decoder architecture is essentially a partially parallel one
very similar to those already proposed in the literature [4–
6]. The decoder presented in Figure 9 supports any generic
(n,m) LDPC code distributing the n + m node operations
over P processing elements (PEs). In particular, the example
shown is for P = 85 but the same architecture can be
used for any value of P. However, in the following analysis
we will consider the case of P = 85 since for the code
designed in Section 2.3 this is the size of the repetitive
fixture.

Each PEi is connected to a memory, called DMEMi. Each
PE can write into any memory bank exploiting a crossbar
switch, while it can only read from its own memory. These
memories are used to store the messages exchanged between
PEs during the entire decoding process. Adopting a single
crossbar switch solution allows saving of hardware resources
without limiting the supported message exchange between

PE0

PE1

PE2

· · ·

PE84

DMEM0

DMEM1

DMEM2

· · ·

DMEM84

CMEM

Figure 9: General partially parallel architecture.

PEs and memories: in fact, given two generic permutation
laws, πread and πwrite, associated, respectively, to the reading
and writing operations of PEs on the memory banks, one
of the two laws can always be replaced with a fixed PE to
memory coupling, provided that the other law is modified
with a new one, obtained as the serial concatenation of πread

and πwrite. We assume the following.

(i) Each PE is able to be used both as check as well as
variable node. Let PEi be a given processing element
of the decoder: this means that through the whole
decoding process PEi will serve ni variable nodes and
mi check nodes, respectively. If the total workload is
evenly split over the PEs’ set, ni = n/P and mi = m/P.

(ii) Each PE receives messages from one single memory
bank (DMEM) through a dedicated connection and
sends updated messages to any memory through a
P × P crossbar switch.

(iii) DMEM is single port memory bank, so that read
and write accesses are possible only in different clock
cycles.

(iv) Control values to be applied to the programming
input of the crossbar switch are stored in a dedicated
memory, CMEM, which is sequentially addressed by
a counter.

(v) The content of CMEM is precomputed offline to
resolve memory access conflicts.

Figure 10 represents the data-path architecture of a single
PE. Each PE is also reused in time to compute both the
structured part as well as the random one. In order to
support this feature a second input and some additional logic
are required.

Three memory banks are needed to fully support PE
operations, namely, LLR MEM, ACC MEM, and S/R MEM.
The first one, as the name suggests, is needed to store the
information coming from the channel. It is intended to be
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Figure 10: Architecture of the processing element dedicated to
check and variable node processing.

loaded at the beginning of every new frame to be decoded.
ACC MEM is used to implement a flexible accumulator
scheme necessary to implement the additions needed both
in VN as well as CN. The third memory bank, the so-called
S/R memory is useful to allow PE to be reused for structured
and random part processing. When the PE is performing the
structured part, the S/R memory will hold messages coming
from the random one; conversely, when the PE is dedicated
to the random part, structured messages will be held into S/R
RAM.

When configured to serve as CN processing unit, each
PE sequentially receives messages originated by VN (here
called generally E i) from one of the DMEM banks. Partial
results of this computation are then stored into the ACC
MEM until all the edges for that particular CN have been
received. The latency of the whole update procedure for a
given CN depends on the degree of the corresponding row
in the parity-check matrix. Using the data path depicted
in Figure 10 one clock cycle is required for reading each
incoming edge as one cycle is needed to write the result back
(edge out). The same holds for the VN case, that is, the total
latency is equal to twice the column degree.

4.2. Performance analysis

Given a decoder architecture as the one of Figure 9 and a
flexible PE as in Figure 10 it is possible to derive a sort of
performance bound for the decoding latency as well as for
the throughput. Given an even workload distribution among
the PEs and no collisions in reading message memories,
the number of cycles to perform a single iteration can be
expressed as

̂D = 4 · E
P

, (12)

where E is the total number of ones in the parity-check
matrix, P is the parallelism of the system. The factor of four
comes out from the structure of the PE itself. This number
assumes that only single-port memories can be used and that
layered decoding scheduling is not exploited.

Under these premises the maximum theoretical decoding
throughput ̂T can be expressed as

̂T = (n−m) fCK

I · ̂D
, (13)

where fCK is the clock frequency and I the number of itera-
tions performed. With the proposed 1/2 rate code, assuming
a number of iterations equal to ten and a parallelism of
P = 85 it turns out that ̂T = 0.318 fCK.

However, in practical situations memory conflicts force
to delay simultaneous accesses to the same bank and then
to insert stall cycles. We will then introduce a collisions
degradation factor α able to capture this behavior. We can
then express the total number of cycles needed for each
iteration in case of collisions as

Dcoll = α · ̂D. (14)

The resulting throughput of the decoder can be rewritten as

Tcoll = 1
α
· ̂T. (15)

It is important to stress how α depends on the specific
LDPC code but it is also affected by message scheduling and
load partitioning between PE. Partitioning and scheduling
techniques can be used to try to minimize α; however, it is
known that good parity-check matrices show little adjacency
making partitioning and scheduling benefits very limited.

To evaluate the impact of α we try to partition the
associated Tanner graph in order to perform an initial
allocation. We use the software Metis [24] freely available
on the Internet. Given this allocation we implement a cycle-
accurate architectural simulator using the Python language,
able to report the total number of cycles needed to perform a
single iteration (i.e., Dcoll). In this way, it has been possible
to derive α values for different types of LDPC codes (see
Table 3).

The important peculiarity observed is that the α factor
for a given LDPC tends to be as large as four. As an example,
in the case the proposed code we found α = 4.28. This
means that the potential parallelism of the architecture given
in Figure 9 is largely wasted.

Table 3 summarizes these values for the proposed code
(reported ad code 1) as well as for other four irregular LDPC
codes. In particular, we provide the values of ̂D, Dcoll, and
relative throughput figures, evaluated as a function of the
clock frequency. To show how collisions are a concern also
on different LDPC codes we perform the same partitioning
and scheduling steps also on different codes. Code labelled
as 2 is directly taken from Professor MacKay website [25],
where it can be found as 4986.93i.939. Code 3 is the
IEEE 802.11n wireless local area network channel code and
exhibits characteristics similar to the proposed one, while
code labelled as 4 is one of the IEEE 802.16e 1/2 rate codes.
Also in these three cases it is possible to observe how the
presence of a significant number of collisions spoils the
overall system performance. For the last two codes, however,
it is important to consider that they have been specifically
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Table 3: Cycle and throughput evaluation for different LDPC codes.

Code n m E ̂D Dcoll α ̂T Tcoll

1 2040 1020 6885 324 1387 4.28 0.32 fCK 0.07 fCK

2 9972 4986 14958 704 2794 3.97 0.71 fCK 0.18 fCK

3 1944 972 6797 320 1240 4.19 0.3 fCK 0.07 fCK

4 2016 1008 6384 301 1259 4.18 0.33 fCK 0.08 fCK

designed to be decoded avoiding collisions, provided that
dual port memories are used. Despite this, we put these code
in Table 3 to enhance the relevance of collisions in LDPC
decoding as a severe limitation to system throughput.

The SD algorithm described in Section 3 allows to get
over this limitation by exploiting the partial structure of the
proposed codes. The only significant modification to the PE
structure is the need for S/R MEM to store partial VN to CN
and N to VN messages, QS

i, j , Q
R
i, j , R

S
i, j , and RR

i, j .
The complexity increase due to these hardware modifi-

cations is negligible and it will be evaluated in Section 4.3.
Instead, the reduction of required decoding cycles impacts
significantly on the size of CMEM needed to control the
crossbar. We derive here for the proposed approach the
offered throughput, which depends on the total number
of cycles required to complete all read and write memory
accesses.

An iteration is divided into the following four subitera-
tions:

(1) Φ1: check node processing for structured ones;

(2) Φ2: check node processing for random ones;

(3) Φ3: variable node processing for structured ones;

(4) Φ4: variable node processing for random ones.

In the first subiteration, variable-to-check messages associ-
ated to structured ones of H matrix are read by the PEs,
as structured ones are contained into P × P submatrices
concentrated along three lines in H ; the number of cycles
required to complete the reading is equal to the number of
submatrices. It is worth noting that no conflicts are possible
since each submatrix has a single one per row and per
column. In the case of the code rate 1/2 matrix given in
Figure 2, this number is equal to DΦ1, read = Estr/P being Estr

the total number of structured edges. Subiteration Φ1 also
needs to write the generated check-to-variable messages: this
operation takes the same time as the reading one, DΦ1, write =
DΦ1,read. Additionally, each PE in phase Φ1 must also read the
partial VN-to-CN messages QR and update the partial CN-
to-VN messages RS : both operations take a number of cycles
equal to m/P. Thus, phase Φ1 takes a total number of cycles
equal to

DΦ1 = 2 ·
(

Estr +m

P

)

. (16)

The same value is obtained in the calculation of the
total number of cycles needed to complete subiteration
Φ3 (variable node processing for structure ones), with the

exception that the number of cycles needed to read and write
CN to VN messages here is n/P, hence (16) becomes

DΦ3 = 2 ·
(

Estr + n

P

)

. (17)

In subiteration Φ2, a number of messages equal to the
number of the ones in the random part of H matrix must
be read and written. Since these ones are distributed in
an irregular way, there is no guaranty that they can be
handled in parallel P at a time with no collisions. However,
very low density of random ones enables their efficient
partitioning among the P memories: experiments done with
cases proposed in Section 2 and additional random matrices
having the same one density show that random ones can
almost always be partitioned with no collisions. Under this
assumption, the total number of read or write operations is
equal to Ernd/P, where Ernd is the number of random ones in
H . Subiteration Φ2 also needs m/P cycles to read the partial
VN-to-CN messages QS and update the partial CN-to-VN
messages RR. The total number of cycles for Φ2 can then be
expressed as

DΦ2 = 2 ·
(

Ernd +m

P

)

(18)

while Φ4 cycles can be derived as for the case of Φ3, hence

DΦ4 = 2 ·
(

Ernd + n

P

)

(19)

combining the four contributions together it turns out that

Dsd = 4 ·
(

Estr + Ernd + n +m

P

)

= 4 ·
(

E + n +m

P

)

.

(20)

We define Dsd as the number of cycles needed when the
proposed split decoding approach is used. As already stated
in (13), the resulting throughput will be

Tsd =
(n−m) fCK

I ·Dsd
. (21)

Lastly, we introduce the parameter η as a measure of the
total efficiency of the decoding process with respect to the
ideal case. For instance, for SD we have

ηsd =
̂D

Dsd
= E

E + n +m
. (22)
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Table 4: Memory occupation breakdown.

Split decoding

Memory Instances Parallelism Words �Words� Area Total area

DMEM 85 8
⌈

2
E +m + n

P

⌉

256 12000 μm2 1.0 mm2

CMEM 1 7 · P = 595 Dsd/2 512 750 · 103 μm2 0.75 mm2

LLR MEM 85 8
⌈

n

P

⌉

32 2550 μm2 0.22 mm2

ACC MEM 85 8 max
(⌈

n

P

⌉

,
⌈

m

P

⌉)

32 2550 μm2 0.22 mm2

S/R MEM 85 8 max
(⌈

n

P

⌉

,
⌈

m

P

⌉)

32 2550 μm2 0.22 mm2

Total 2.36 mm2

Partition and scheduling (collision)

Memory Instances Parallelism Words �Words� Area Total area

DMEM 85 8
⌈

2
E

P

⌉

256 12000 μm2 1.0 mm2

CMEM 1 7 · P = 595 Dcoll/2 2048 2.8 · 106 μm2 2.8 mm2

LLR MEM 85 8
⌈

n

P

⌉

32 2550 μm2 0.22 mm2

ACC MEM 85 8 max
(⌈

n

P

⌉

,
⌈

m

P

⌉)

32 2550 μm2 0.22 mm2

Total 4.24 mm2

In the case of the proposed code, we have E = 6885,
n = 2040, and m = 1020, hence ηsd = 0.69. It is
extremely interesting to compare this figure with the one
resulting when only partitioning and scheduling techniques
are applied on the same code. In that case, we use forDcoll the
expression as reported in (14), leading to

ηcoll = 1
α

(23)

and with α = 4.28 it turns out that η = 0.23, nearly three
times less than the one obtainable with the proposed method.

If we are interested in the throughput for ten iterations,
on the same code it turns out that Tcoll = ηcoll ̂T = 0.074 fCK

while SD achieves Tsd = ηsd ̂T = 0.22 fCK. Thus, the
proposed approach achieves a throughput speedup of nearly
three for the same decoding architecture and the same clock
frequency, as reported in Table 3.

4.3. Synthesis results and performance

The partially parallel architecture previously discussed has
been described in VHDL, synthesized and mapped on a
0.13 μm CMOS standard cell technology, considering the
(2040, 1020) 1/2 rate code.

After logical synthesis and mapping, the maximum
combinational delay was tpd = 2.5 nanoseconds which
corresponds to a clock frequency of fCK = 400 MHz. As
far as the decoding throughput, the split decoding solution
is able to achieve 88 Mbps with 10 iterations while the

direct mapping of the same code on the same architecture
leads to a throughput of 29.6 Mbps. This means that the
proposed solution can achieve the same throughput as
a straightforward one using a clock frequency as low as
one third with respect to the traditional one. Since power
dissipation in CMOS circuits is directly related to the clock
frequency, power dissipation of one third or a battery life of
three time grater can be achieved with the same throughput.

As far as the area occupation is concerned it is possible
to separate two main contributions: area that is dedicated
to directly implement logical functions and area which is
devoted to memory. The former can also be divided into
different contributions, namely, PEs and the crossbar switch.
Each PE requires 4.61 equivalent kgates leading to an area
occupation of almost 392 kgates. The 85×85 crossbar switch
requires 172 equivalent kgates. Hence, a total area occupation
of 564 kgates is needed to implement the decoder logic.
It is important to remark how this area requirement is
independent from the chosen scheduling, thus both SD as
well as the traditional partially parallel solution require the
same area.

Memory is where things are different for the two
approaches: these data are collected in Table 4. As it can be
seen, some memories have the same dimensions regardless
of the scheduling adopted. What really matters is the size
of the memory needed to control the crossbar during an
iteration. The number of words required depends directly on
the number of write cycles: then each word needs to store
a complete 85 × 85 permutation. For the sake of simplicity,
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Table 5: Comparisons with state-of-art decoders implementations.

Previously published architectures
Proposed

[26] [27] [28]

CN method 3-min minsum minsum Ω

Precision 6 bit 8 bit 6 bit 8 bit

Technology 65 nm 130 nm 90 nm 130 nm

Frequency 400 MHz 83 MHz 109 MHz 400 MHz

Logic gates 520 kgates 420 kgates 380 kgates 564 kgates

Memory bits 500 kbits 106 kbits 100 kbits 544 kbits

Iterations 20 8 20 10

Net throughput 48 MBps 60 MBps 63 MBps 88 MBps

Normalized throughput 960 MBps 480 MBps 1260 MBps 880 MBps

TAR [5] 381 569 1620 321

we decided to store these control signal uncoded using 7 bits
to control each crossbar line. This leads to a word length of
85 × 7 = 595 bits in either cases. It is also important to note
how the memory increase due to S/R MEM is completely
negligible when compared to the total area. Summarizing the
split decoding approach needs almost 390 equivalent kgates,
with respect to more than 700 kgates needed by traditional
approach. This results in an area saving of more than one
third, bringing also significant possibilities to reduce the
overall power dissipation.

To better evaluate the validity of this approach it would
be interesting to compare synthesis results to recent LDPC
decoder implementations. In Table 5 some implementation
results are sketched. Given the particularity of the presented
approach both in terms of code design as well as hardware
implementation, these comparisons are not straightforward.
In order to compare our architecture to similar approaches,
we select works that implement IEEE 802.16e LDPC decoder.
Throughput figures are obtained considering the largest
available 1/2 rate code (i.e., n = 2304). Even if this code
presents a larger block length than the proposed one, it is
important to remark that the total number of edges in this
case is E = 7296. Comparing this number with the proposed
code (E = 6885) it turns out that IEEE 802.16e code shows a
complexity of 1.06 with respect to the proposed (2040, 1020)
code. Under this premises it is then reasonable to consider
the two cases almost comparable.

Additionally, it is important to consider how our results
have been obtained addressing the (2040, 1020) code: given
the flexibility of our partially parallel decoder the same
hardware can be exploited to decode also IEEE 802.16e codes.
In such a case, obviously, the advantages deriving from SD
cannot be exploited anymore.

As can be seen from Table 5, the first two important
things to compare are internal data representation and CN
implementation: it is worth noting how our architecture
represents messages using 8 bits and resorts to the Ω operator
as far as the CN is concerned. While this choice tends to
produce a larger PE area with respect to minsum approaches,
the decoding performances are improved, enabling less
decoding iterations to be implemented. In particular, [29]
showed how minsum performance tends to be degraded by

fixed-point implementations and in presence of irregular
codes. Starting from these considerations we expect our area
occupation to be larger than the other ones.

Also the technology used is quite dispersed over different
values: while area occupation can be properly compared,
this does not hold for delay figures. Our design is able to
achieve 2.5 nanoseconds period after logical synthesis on a
130 nm technology node: we expect that resorting to a 65 nm
technology asynchronous delay would be less.

As far as the area occupation is concerned, it is important
to consider both the logic gates contribution as well as the
memory requirements. From Table 5 it is possible to observe
how our architecture exhibits a logic gate count similar to
others, while memory footprint is where things are different.
This difference is mainly due to two factors: the use of
lookup table operations inside PEs and the use of a crossbar
switch as interconnection fabric. While the former could
also be relaxed, moving towards a minsum implementation,
the latter cannot be avoided due to more complex code
structure with respect to the 802.16e case. In that case, in
fact, PEs connections can be implemented using simpler
permutations that are obtained from identity matrix cyclical
rotations. In our case, on the other hand, we need to support
arbitrary permutations to enable collision-free decoding of
the random part.

It is also interesting to analyze throughput results. It
should be noted how decoding net throughput of considered
cases falls between 48 and 63 MBps. Our decoder is able to
achieve 88 MBps with 10 decoding iterations. If a throughput
of 60 MBps is required, decoding iterations can be increased
up to 14, enhancing the correction capabilities. In Table 5
we also include an additional throughput figure called
normalized throughput: these data are extrapolated from
the net throughput multiplied by the total number of
decoding iterations. We decided to include also these data to
better emphasize the effective throughput sustained by each
compared architecture.

Finally, to better assess the throughput-area tradeoff we
also report a number called TAR [5]. Under this perspective,
it is important to observe how the proposed approach
presents a TAR lower than others. However, one should
not neglect how TAR is directly affected by technology
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node, as already noted earlier. Additionally, our architecture
is able to decode codes with highly irregular structure,
while the others presented are limited to traditional partially
structured codes.

5. CONCLUSIONS

In this paper, we present a novel class of partially structured
eIRA codes. We also show how a code of this class can
essentially perform equivalently to other state-of-art LDPC
codes, while preserving some desirable properties that
can be exploited when implementing a decoder. Then we
focused on the main issues of implementing a partially
parallel decoder architecture suitable for this class of codes.
In this framework, we devised an alternative decoding
approach, namely, the split decoding, which exhibits remark-
able advantages over traditional methods. Following this
approach memory requirements can be relaxed of more
than one third, leading to significant reductions in power
dissipation.

Additionally, split decoding enables also the possibility of
achieving higher decoding throughput without any hardware
impact. Thanks to this higher efficiency, the clock frequency
can be reduced further reducing the total power. Finally,
we compare an SD-based architecture with three state-of-
art LDPC decoders. From this comparison, it can be noted
how the proposed architecture presents similar decoding
throughput with a larger area occupation, mainly due to
internal data representation and interconnection network.
Still it is our opinion that the presented approach is valuable,
being able to deal with highly irregular parity-check matrices
without sacrificing decoding throughput.

As far as future directions are concerned we feel that split
decoding performance could be increased borrowing some
ideas from shuffled decoding [30]. In particular, shuffled
decoding could enhance the parallelism degree between
structured and random edges processing, leading to an
increased overall throughput.
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