
20 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Distributed connectivity service for a SIP infrastructure / Ciminiera, Luigi; Marchetto, Guido; Risso, FULVIO GIOVANNI
OTTAVIO; Torrero, Livio. - In: IEEE NETWORK. - ISSN 0890-8044. - 22:5(2008), pp. 33-40.
[10.1109/MNET.2008.4626230]

Original

Distributed connectivity service for a SIP infrastructure

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/MNET.2008.4626230

Terms of use:

Publisher copyright

©2008 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1846461 since:

IEEE

	

This is an author’s version of the paper

Ciminiera L., Marchetto G., Risso F., Torrero L.
“Distributed connectivity service for a SIP infrastructure.”

Published in

IEEE Network, vol. 22, n. 5, pp. 33-40

The final published version is accessible from here:

http://dx.doi.org/10.1109/MNET.2008.4626230

©2008 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

1569111156

1

Distributed Connectivity Service for a SIP
Infrastructure

Luigi Ciminiera, Guido Marchetto, Fulvio Risso, Livio Torrero
Politecnico di Torino, Dipartimento di Automatica e Informatica

Corso Duca degli Abruzzi 24, 10129 Torino, Italy
{luigi.ciminiera, guido.marchetto, fulvio.risso, livio.torrero}@polito.it

Abstract— Because of the constant reduction of available

public network addresses and the necessity to secure networks,
middleboxes such as Network Address Translators and firewalls
have become quite common. Being designed around the client-
server paradigm, they break connectivity when protocols based
on different paradigms are used (e.g., VoIP or P2P applications).
Centralized solutions for middlebox traversal are not an optimal
choice because they introduce bottlenecks and single-point-of-
failures. To overcome these issues, this paper presents a
distributed connectivity service solution that integrates relay
functionality directly in user nodes. Although the paper focuses
on applications using the Session Initialization Protocol (SIP), the
proposed solution is general and can be extended to other
application scenarios.

I. INTRODUCTION
While end-to-end direct connectivity was a must in the

early days of the Internet, nowadays an increasing number of
hosts is connected through middleboxes such as Network
Address Translators (NATs), which enable the reuse of private
addresses, and/or firewalls, which are used to secure corporate
networks and internal resources. These devices work
seamlessly in case of client-server applications (although the
client must reside in the “protected” part of the network), but
they limit the end-to-end connectivity of the applications that
use different paradigms, such as VoIP and P2P. Particularly,
middleboxes prevent nodes behind them to be directly
contacted from external nodes. For example, an internal host
might not have problems to start a data transfer to an external
host but the vice versa (e.g, an incoming VoIP call) may be
impossible. Thus, proper strategies for middlebox traversal are
required in order to enable the seamless communication
between hosts, no matter where they are located. Among the
known strategies, hole punching and relaying [1] represent the
ones more frequently used. The common idea is to make the
middlebox believe that the internal host begins the
communication. The middlebox will then create a temporary
channel with the remote host, thus allowing the delivery of
packets coming from the outside world. Particularly, the hole
punching forces each internal host to keep a persistent
connection with an external rendez-vous server located on the
public Internet. This creates a sort of “hole” that can be used
by an external host to contact the internal host directly. If hole

punching fails, for example if hosts are behind symmetric
NATs, the relaying represents the last chance: internal hosts
maintain a persistent connection with an external node (the
relay server) which operates as a forwarder, i.e., it receives all
packets directed to the internal host and redirects them to it.
This solution requires that the internal host advertises the IP
address of the relay server as one of its addresses, and that
instructs the relay server with the proper forwarding rules.

This paper focuses on the problem of middleboxes traversal
for applications using the Session Initialization Protocol
(SIP) [2], which are among the applications that suffers most
from middleboxes limitations. Two solutions have been
defined in this context. SIP messages directed to the
destination User Agent (UA) are delivered with a relay-based
approach, which exploits an intermediate public SIP
proxy [3]. For media flows, the Interactivity Connectivity
Establishment (ICE) [4] protocol has been proposed. ICE is an
integrated solution defined to discover NAT bindings and to
execute the hole punching for media streams. In addition, ICE
supports also media relaying based on the TURN [5] protocol.
Both the hole punching mechanism of ICE and TURN rely on
STUN [6], a client-server protocol consisting in two
messages, Binding Request and Binding Response. These
messages are enough for implementing the hole punching
procedure [1], while TURN needs to extend the STUN
protocol to establish communication channels with relays,
called TURN servers. STUN can also be used to implement a
middlebox behavior discovery service [7], which can be used
by internal hosts to determine the type of NAT/firewall they
are behind to.

The presented middlebox traversal solutions rely on
centralized servers that provide rendez-vous and relay
capabilities. However, the centralized server is a single point
of failure: if the server fails, all UAs behind middleboxes
become unreachable. Furthermore, a centralized solution
cannot scale to an IP-based telecommunication provider with
millions of customers, in which servers may be required to
handle a huge amount of traffic (both SIP signaling messages
and media datagrams), thus requiring a high amount of
computational resources and bandwidth. The server acting as
relay for SIP (i.e., the SIP proxy) has also to handle the traffic
generated by keep-alive messages that UAs behind middlebox
periodically send to it. Keep-alive messages are necessary to

1569111156

2

maintain the communication channel with the server and thus
to guarantee these UAs can be always reached. This could
result in a high overhead. For example, according to the NAT
binding timeout reported in [3], in a SIP domain including 1.5
millions of UAs with limited connectivity, the central server
has to handle about 50000 keep-alive messages per second.

This paper proposes a distributed architecture — referred to
as DIStributed COnnectivity Service (DISCOS) — for
ensuring connectivity across NATs and firewalls in a SIP
infrastructure. This solution overcomes the limitations of the
current centralized solution by creating a gossip-based P2P
network and integrating the above described rendez-vous and
relay functionalities in the UAs. Each globally reachable UA
with enough resources can provide such services to UAs with
limited connectivity. A major emphasis is given to the overlay
design, as it is a key point for ensuring a fast “service lookup”
(i.e., to find a peer that still have enough resources for
offering the connectivity service), which is instrumental for
providing an adequate quality of service to the users. In
particular, we show how a scale-free topology can fit this
requirement and we propose an overlay construction model
that can be used to build such topology.

DISCOS is somewhat orthogonal to P2PSIP [8], although
both being based on P2P technologies. In fact, P2PSIP is
mainly a solution for distributed lookup whereas DISCOS
offers a solution for middlebox traversal.

The idea of distributing such functionalities among end-
systems is also one of the characteristics of Skype, a well-
known VoIP application. However, Skype uses secret and
proprietary protocols that cannot be studied and evaluated by
third parties, therefore limiting the ability to understand
exactly how these problems are solved. For example, in the
Skype analysis presented in [9] and [10] the authors could
give only partial explanations about its NAT and firewall
traversal mechanisms. Their experiments pointed out that
nodes with enough resources can become supernodes and
provide support for NAT and firewall traversal. In particular,
they offer relay functionalities and probably run a sort of
STUN server that other nodes use to discover the presence
(and to determine the type) of NAT and firewall in front of
them. Therefore, it is clear that a node behind NAT has to
connect to a supernode in order to be part of the Skype
network, but no information could be given about the
supernode discovery and selection policies. Also supernode
overlay topology is almost completely unknown. Thus, there
is no way to evaluate the effectiveness of these solutions. On
the other hand, here we propose a distributed architecture for
middlebox traversal whose scalability and robustness are
discussed and evaluated. In addition, the solution has been
engineered and validated by simulation on a SIP
infrastructure, but the solution is more general and it can be
seen as a mechanism to cope with middlebox traversal, thus
opening the path to a wider adoption.

II. OPERATING PRINCIPLES

A. Distributed Connectivity Service
The Distributed Connectivity Service (DISCOS) extends

current centralized NAT and firewall traversal solutions by
distributing rendez-vous and relay functionalities among UAs.
Relaying and hole punching service for media flows is
implemented by integrating a STUN/TURN server in each
UA. The TURN server is also used to support relaying of SIP
messages. However, DISCOS can be easily modified to offer
relaying of SIP messages by integrating SIP proxy
functionalities in each UA, leading to a distributed
implementation of [3].

UAs with enough resources (e.g. a public network address,
a wideband Internet connection and free CPU cycles) become
what we define a connectivity peer and start offering
connectivity service. In particular, connectivity peers can act
as both SIP relay (leveraged by UAs with limited connectivity
for receiving SIP messages) and media relay. Connectivity
peers can also offer support to the hole punching procedure
for media session establishment, thus operating as a
distributed rendez-vous server. In addition, connectivity peers
also provide support for middlebox behavior discovery [7].
UAs with limited connectivity can locate and attach to an
available peer whenever they need one of these services.

Connectivity peers are organized in a P2P overlay and their
knowledge is spread through proper advertisement messages,
thus building an unstructured gossip-based network.
Structured networks, characterized by additional overhead due
to the maintenance of the structure, are not considered because
their excellent lookup properties are not required. In fact,
DISCOS uses the overlay only to find the first available
connectivity peer and not for locating a precise resource.

It is worth noticing that, since DISCOS distributes existing
middlebox traversal functionalities among peers, it is also
totally compatible with current middleboxes and their
traversal solutions. This enables a smooth deployment of the
proposed solution.

B. Overlay Topology
In order to enable DISCOS to locate an available peer for

UAs with limited connectivity, possibly in the shortest time,
peers should have a deep knowledge of the network: the
greater is the number of known peers, the higher is the
probability to find an available peer in a short time, especially
if known peers are lightly loaded. In gossip-based networks,
the spread of information is based on flooding, thus the
overlay topology has a deep impact on the network efficiency.
For instance, the greater is the average path length between
nodes, the higher is the depth of the flooding (hence the load
on the network) that is needed for an adequate spread of the
information. Thus, an overlay topology that ensures a small
average path length is required. However, this is not sufficient
for enabling peers to know a large set of suitable connectivity
peers from which to choose when a UA asks for the
connectivity service. In fact, nodes maintain a cache that

1569111156

3

should be kept small in order to reduce the overhead required
to manage all the entries. This limits the number of peers
known at each instant. The limited cache size can be
compensated by frequently refreshing its contents, so that the
set of known peers changes frequently, resulting in a sort of
“round robin” among peers: always different connectivity
peers can be provided to UAs that ask for the service at
different instants, thus increasing the opportunity for a queried
connectivity peer to suggest available ones when it cannot
provide the service itself. Frequent cache refresh is also useful
for ensuring that nodes store up to date information about
existing peers. Such policy can be efficiently adopted if the
overlay results in a scale-free network [11], an interesting
topology that ensures small average path length and features
scalability and robustness. In a scale-free network, few nodes
(referred in the following as hubs) have a high degree while
the others have a low one. The degree of a node is the sum of
all its incoming (i.e., the in-degree) and outgoing (i.e., the out-
degree) links. In the DISCOS overlay, the out-degree of a
node is limited by the cache size while the in-degree is the
number of other peers having that node in their cache. Thus,
nodes can be considered hubs when they are in the cache of
several peers, i.e., when they are highly popular. Hubs
frequently receive advertisement messages from a large set of
different nodes, so they frequently update their cache. In
particular, if advertisement messages contain lowly popular
nodes, hubs can discover peers that, being lowly popular, are
lightly loaded with high probability. The key is to make
searches through hubs since they potentially know a large
variety of lightly loaded peers. Thus, the proposed solution
essentially exploits — and generalizes to the case of a single
resource provided by many nodes — the results achieved by
Adamic et al. [12] about random walk searches in
unstructured P2P overlays. They demonstrated that searches in
scale-free networks are extremely scalable (their cost grows
sublinearly with the size of the network), proving also that
searches towards hubs perform better than random searches,
since hubs have pointers to a larger number of resources. In
DISCOS the benefit of searching through hubs comes from
the high frequency with which pointers to connectivity peers
change in their cache. These properties are obtained at the
expense of a non-uniform distribution of the number of
messages handled by nodes: the higher is the popularity of a
node, the larger is the number of advertisement messages
received. However, a proper hub selection policy and a
reasonable advertisement rate could mitigate the effects of this
disparity. These aspects will be better analyzed in the
following section.

The Barabasi-Albert [11] model has been proposed to
create scale-free graphs. In this model, few nodes are
immediately available and, when a new node arrives, it
connects to one of the existing nodes with a probability that is
proportional to the degree of such node (preferential
attachment); in other words, the model assumes a global
knowledge of nodes and their degree, which is clearly
inapplicable in a real network scenario. A first step to

implement such model in our overlay is to make M peers
available to other nodes through a Bootstrap Service. When a
node joins the overlay for the first time, it queries the
Bootstrap Service for a subset of these M registered nodes.
However, preferential attachment is not possible with the
mechanism described so far because all incoming peers (i) can
learn only the nodes provided by the Bootstrap Service and
(ii) cannot compute the popularity of a node. An adequate
spread of the network knowledge can address the first issue,
but there are no ways to enable a node to learn the in-degree
(i.e., the precise metric of node popularity) of the others. In
our case, the popularity is computed autonomously by each
node through a simple approximated metric based on the
number of received advertisement messages that contain such
node. In our approximated model, preferential attachment is
implemented by forcing peers to evaluate popularity of nodes
through the above mentioned mechanism and then to include
some most popular peers in the advertisement messages they
send. This allows nodes to insert highly popular peers (hubs)
in their cache, thus building and maintaining the scale-free
topology. In summary, new nodes use the peers known
through the Bootstrap Service as “bootstrap” nodes, then they
learn most popular ones through the received advertisement
messages and start to perform preferential attachment.
Furthermore, incoming nodes that already know peers
discovered during their previous visits can avoid bootstrap
procedure by attaching directly to them. The presented
topology is shown in Figure 1.

UA A

CP

CPCP

CP

CPCP

CP

CP

CP

CP

CP

CP

CP

CP

CP

NAT

CP
CP = connectivity peer

= highly popular connectivity peer (hub)

The UA behind NAT queries a
node (possibly a hub) for service

CP

Bootstrap
service

A joining connectivity peer with no entries in cache
queries the bootstrap service for some hubs

UA A

CP

CPCP

CP

CPCP

CP

CP

CP

CP

CP

CP

CP

CP

CP

NAT

CP
CP = connectivity peer

= highly popular connectivity peer (hub)

The UA behind NAT queries a
node (possibly a hub) for service

CP

Bootstrap
service

A joining connectivity peer with no entries in cache
queries the bootstrap service for some hubs

Figure 1. DISCOS overlay topology

It is worth noticing that different Bootstrap Services can be

used to create disjoint overlays as joining peers that fetch
nodes from different Bootstrap Services will start exchanging
advertisement messages with different connectivity peers.
This enables the possibility to deploy different DISCOS
overlays in different geographical areas of a SIP domain. If a
location-aware Bootstrap Service selection policy is adopted,
users can find a connectivity peer that is close to them, thus
preserving the user-relay latency achieved by current
centralized solutions, where different servers can be used at

1569111156

4

different locations.

NO

Start

Is the cache empty?
YES

Contact the
most popular
not yet visited

Response within
a timeout?

Fetch peers
from

Bootstrap Service

NO

YES

Get the three
peers provided
in the response

Is it available
for SIP/media relay

service?

YES

NO
Success

Put the most
popular in cache

(drop less
popular if full)

Contact the two
less popular included

in the response

Start

Are there peers
in the advertisement?

NO

Extract one

YES
Stop

Is the peer
already in cache?

NO

YES

Increase
peer popularity

Is the cache full?
NO

YES

Drop peer in
average position

Insert new peer

Order the cache
by popularity

Start

Is the cache empty?
YES

Contact one
using STUN

Response within
a timeout?

Fetch peers
from

Bootstrap Service

NO

NO

YES

Has node
limited connectivity?

YES

Join DISCOS
overlay

NO

SIP relay
lookup

Perform other
STUN tests with

the contacted peer

(a) (c)(b)

Are there peers
not yet visited?

NO

YES Stop
(Timeout if SIP
relay lookup)

Order the cache
by popularity

Response within
a timeout?

NO

YES

Is it available
for SIP/media relay

service?

YESNO

Success

NO

Start

Is the cache empty?
YES

Contact the
most popular
not yet visited

Response within
a timeout?

Fetch peers
from

Bootstrap Service

NO

YES

Get the three
peers provided
in the response

Is it available
for SIP/media relay

service?

YES

NO
Success

Put the most
popular in cache

(drop less
popular if full)

Contact the two
less popular included

in the response

Start

Are there peers
in the advertisement?

NO

Extract one

YES
Stop

Is the peer
already in cache?

NO

YES

Increase
peer popularity

Is the cache full?
NO

YES

Drop peer in
average position

Insert new peer

Order the cache
by popularity

Start

Is the cache empty?
YES

Contact one
using STUN

Response within
a timeout?

Fetch peers
from

Bootstrap Service

NO

NO

YES

Has node
limited connectivity?

YES

Join DISCOS
overlay

NO

SIP relay
lookup

Perform other
STUN tests with

the contacted peer

(a) (c)(b)

Are there peers
not yet visited?

NO

YES Stop
(Timeout if SIP
relay lookup)

Order the cache
by popularity

Response within
a timeout?

NO

YES

Is it available
for SIP/media relay

service?

YESNO

Success

Figure 2. Operation of DISCOS when (a) a node joins the SIP domain, (b) a node in the overlay receives

an advertisement message, and (c) a node performs a SIP/media relay lookup

The implementation of the Bootstrap Service is highly
customizable. A possible solution consists in deploying M
static peers and preconfiguring their addresses on each UA. A
more flexible approach (considered in the following) consists
in deploying multiple bootstrap servers reachable through
appropriate DNS SRV entries configured in the DNS. Each
bootstrap server stores information about M connectivity peers
that spontaneously register themselves when they join the
overlay. Multiple bootstrap servers are deployed for
redundancy and load balancing purposes. Proper DNS
configuration can enable a location-aware Bootstrap Service
selection.

C. Protocol Overview
Whenever a UA joins the SIP domain, it has to determine if

it can become a connectivity peer or it is behind a middlebox.
This is done by contacting a connectivity peer and exploiting
its STUN functionalities [9]. The described bootstrap
procedure is performed if it does not know any active peer.
The flow chart related to the join procedure is shown in Figure
2(a).

If the UA can become a connectivity peer, it checks the
number of addresses registered on each bootstrap server and,
if it is smaller than a fixed bound M, it adds itself to the list.
Then, it sends an advertisement message to the known peers
in order to announce itself. The UA is now part of the

1569111156

5

DISCOS overlay and it starts receiving messages from other
nodes, thus gradually filling its cache with new peers. A
proper peer advertisement policy is adopted in order to
implement preferential attachment (thus building and
maintaining the scale-free topology) and to enable caches to
be refreshed with lightly loaded peers (thus having potential
nodes available for the service). In particular, advertisement
messages include the sender node, the two most popular peers
it knows (enabling preferential attachment), and the two less
popular peers it knows (spreading the knowledge of lightly
loaded peers).

Advertisement messages are periodically sent by peers to
all nodes they have in their cache and contain a special TTL
field that allows the message to cross N hops: as soon as the
message is received the TTL value is decremented and, if it is
a positive value, the recipient sends another message to all the
nodes in its cache. Every time a peer receives an
advertisement message, it updates its cache by increasing the
popularity of nodes already present and by inserting the new
ones. As previously described, it is important for a node to
have both hubs and lowly popular peers in its cache. Thus,
also a proper cache management policy is adopted if the cache
is full: the node with average popularity is removed before the
insertion, resulting in a cache that privileges big hubs and
lowly popular peers. Figure 2(b) details the operations of a
peer when receives an advertisement message.

UAs with limited connectivity have a different behavior,
since they essentially exploit DISCOS features to find SIP
relays (they choose a connectivity peer as relay for SIP
messages as soon as they join the SIP domain; in addition,
they select another when the current one disappears) and
media relays (when they need one to establish a media
session). A UA with limited connectivity performs these
lookups by contacting the most popular peers in its list, which
can accept or decline the request. If it refuses, it includes in
the answer the two less popular peers and the most popular
peer it knows: the less popular peers are queried immediately
(since they are supposed to be free enough to provide
connectivity), while the most popular is inserted in the cache
(since it can perform faster searches because it is probably a
hub). If both the queried peers refuse to provide the service,
another node is picked from the cache and the procedure is
repeated. If all the nodes in the cache have been queried
without success, two different policies are applied depending
on the type of service the UAs with limited connectivity
needs: in the case of lookup for a SIP relay, the UA waits for a
random time and then repeats the procedure; in the case of
lookup for a media relay the procedure is stopped and the
media session cannot be established. Relay lookup procedure
is shown in Figure 2(c).

UAs with limited connectivity also receive ad-hoc messages
from their relays containing three highly popular peers, which
allow them to fill, first, and then update, their cache with new
hubs. This enables them to direct searches towards hubs when
they need for a connectivity peer. Broken hubs (e.g., because
of a network failure) are detected through a timeout: if a hub

does not reply to a query, the UA can query one of the others
hubs in its cache. If no peers are available, the UA fetches
again the registered ones from the bootstrap server; however,
this situation is unlikely to occur as UAs with limited
connectivity periodically receive new hubs from their SIP
relays.

This protocol could be integrated in SIP as well as
implemented separately. The former approach is more
straightforward as it simply consists in defining new SIP
header fields. The latter one is more efficient, especially
concerning the message size. In fact, the human readable
nature of SIP messages would result in advertisement
messages large about 800 bytes.

D. Security issues
The deployment of a P2P architecture for providing

connectivity service raises several security issues that are
different than in centralized solutions. In DISCOS, like in
many other distributed systems, the control of the
consequences of malicious behavior of nodes can be more
difficult than in the centralized counterpart. Much effort has
been expended during the last past years in investigating these
issues in the context of P2PSIP overlays [8][13][14], which
have to deal with similar concerns as they replace centralized
SIP proxies for user location. Some solutions have been
proposed and can be seamlessly applied in DISCOS. For
example, in [14] public key certificates are distributed among
users to allow them to verify the origin and the integrity of
messages. Analogously, certificates can be used in DISCOS to
authenticate advertisement messages, so that they can be
considered trusted. This limits the operation of malicious
peers as they can be easily traceable. This and other P2PSIP
derived security policies certainly need further improvements
in order to better fit specific DISCOS requirements. However,
we are confident that effective results can be obtained with
minimal modifications because, as mentioned above, security
issues to address are similar in the two environments. This
additional effort is left for future work.

III. OVERLAY SIMULATION

A. Simulations background
We developed a custom, event-driven simulator to evaluate

the effectiveness of the proposed solution. In particular we
were interested in proving its scalability and validating its
algorithms. Thus, we implemented a simulator supporting the
following four operations: node arrival/departure, media
session setup/teardown, SIP relay lookup (triggered when a
node with limited connectivity joins the network or when its
current SIP relay disappears), and media relay lookup (that
occurs when a node need a relay to perform a media session).

Simulations are referred to a single SIP domain. Node
arrivals and call occurrences are modeled using a Poisson
process, while node lifetime and call length are extracted from
real Skype traffic coming from/to the network of the
University campus in order to approximate the behavior of

1569111156

6

real VoIP networks. With our parameters, the average number
of nodes in the network depends on their arrival rate, because
of the effect of Poisson arrivals model coupled with Skype’s
lifetime distribution. For example, an arrival rate λN = 100
nodes/minute leads to a network consisting, on average, of
30000 nodes, which is the standard size in our simulation and
it is a good trade-off between simulation length (some lasting
several days on a Dual Xeon 3 GHz processor) and
significance of results. In order to test our solution within
different traffic load scenarios, three different rates are used
for media session occurrences: 1.4λN, 5λN, and 20λN
sessions/minute. These values, coupled with the distribution
of Skype call duration, leads to 10%, 30%, and 98% of nodes
simultaneously involved in a media session, respectively.

Statistics presented in [15] show that about 74% of hosts
are behind NAT. In addition [1] shows that hole punching is
successful in about 82% of cases. To the best of our
knowledge, no detailed information is available about firewall
proliferation over the Internet. On the strength of these
available data, we consider for simulation a network scenario
where nodes have limited connectivity with probability
PLC= 0.74 and media sessions directed to these nodes need
relaying with probability PMR= 0.18. Whenever a node joins
the SIP domain, two different actions can be performed at
simulation level: if it is tagged as a node with limited
connectivity (with probability PLC), it triggers a SIP relay
lookup, otherwise it will join the DISCOS overlay as a
connectivity peer. Media sessions are possible between each
pair of nodes (selected randomly). When a node behind NAT
is contacted, a media relay lookup is triggered by this node
with probability PMR.

The number of UAs with limited connectivity to which a
peer can simultanously provide SIP relay service is set to 10,
advertisement messages have a TTL equal to 2, their sending
interval is set to 60 minutes, and peer’s cache are supposed to
contain 10 entries. Furthermore, the number of peers
registered in the bootstrap server (which is supposed to be
unique and reachable by nodes) is set to 20. Simulation lasts
enough to exit from transient period; presented results are
referred to the steady state.

B. Overlay topology evaluation
First simulation aims at demonstrating that our protocol

creates a scale-free network among connectivity peers. In
particular, we consider the clustering coefficient and the in-
degree of nodes [11]. The clustering coefficient of a node is
defined as the number of links between its neighbor nodes
divided by the number of links that could possibly exist
between them. In order to be a scale-free, an overlay must
have an average clustering coefficient higher than the one of a
random graph obtained in the same conditions, which is
clearly proved in Figure 3(a). In details, the average clustering
coefficient for DISCOS decreases when the network size
grows, asymptotically converging to a value that is about 20
times the clustering coefficient of a random graph. We also
verified that, at all network sizes experimented, the coefficient

remains almost constant in time. Concerning the in-degree, the
requirement to meet is that the distribution of node degree
follows a power-law γ , where is the
probability that a node has k connections and c is a
normalization factor. Figure 3(b) shows that the distribution of
in-degree values obtained through simulation well fits a power
law with c = 0.7 and

−= ckkP)()(kP

γ = 1.5. These tests validate our overlay
construction model, showing the resulting topology really
evolves in a scale-free network.

In order to prove the effectiveness of the DISCOS
topology, we compare our solution with a distributed system
where the information is randomly spread and nodes to query
during lookup procedures are randomly chosen among peers
in the cache. Figure 3(c) depicts the average number of peers
that have to be contacted to reach an available SIP relay for
both DISCOS and the randomized overlay. While the
advertisement rate and the TTL value remain the same, the
figure shows that in DISCOS the number of peers contacted is
sensibly lower. Furthermore, the ratio between the
performances obtained by the two policies increases with the
network size, thus demonstrating the scalability properties of
our solution.

These tests prove the effectiveness and the scalability of
DISCOS. In particular, results show how the scale-free
topology ensures overlay efficiency with a limited message
rate (each peer sends an advertisement message every 60
minutes) with a small TTL (equal to 2) and a limited cache
size (10 entries). We have also evaluated the number of
advertisement messages that connectivity peers have to handle
in our simulated SIP domain including 30000 UAs: 99% of
nodes processes less than 7 advertisement messages per
minute and the remaining 1% processes a number of messages
that varies between 8 and 48 messages per minute, thus
resulting in a reduced per-node overhead. However, this
confirms that hubs should be chosen carefully, preferring
nodes with enough computational and bandwidth resources,
e.g., using the dynamic protocol proposed by Chawathe et al.
for the Gia P2P network [16].

C. Media sessions relaying performance
This section aims at analyzing the overlay support for

media sessions, in particular when hole punching fails and
relaying is needed. To prevent resource wasting, a media relay
is typically chosen by a UA right before the establishment of a
media session. Various types of media flows are considered,
differing in the amount of consumed bandwidth. In particular,
assuming b bit/s is the consumed bandwidth unit, five types of
flows requiring nb)51(≤≤ n bit/s are defined. The flow type
is randomly selected (with uniform distribution) when a new
session starts. We also define Bi as the amount of bandwidth
that peer i can offer for relaying media sessions. For the sake
of simplicity, Bi is assumed to be the same for each
connectivity peer and equal to 5b bit/s. However, in a real
scenario this value could vary according to node capabilities.

We start the evaluation of the DISCOS support for media
sessions from the estimation of the failure probability as it is
the parameter that mainly affects the quality of service

1569111156

7

perceived by users. A session can fail for two reasons: (i) no
available relay is found, or (ii) the relay is found but suddenly
becomes unavailable during the session (e.g., because it
disconnects from the network). With respect to the first
problem, we never observed such an event during simulation:
a UA with limited connectivity was always able to find a
media relay. This result suggests that, with our assumptions
about the number of media sessions requiring a relay, the
probability for this event to occur in a DISCOS environment
can be considered negligible. The second issue could be
mitigated by implementing proper relay backup policies. As
shown in Figure 3(d), the media session can fail in about 0.6-
0.65% of cases, but the selection of a single backup relay (that
takes care of the communication in case the first relay fails)

sensibly reduces this probability, and further reductions are
possible increasing the number of relay nodes. The blocking
probability remains low even in the unlikely case in which
98% of the users are involved in a call (i.e., almost all users
are at the phone). The overhead deriving from the search of
backup relays is depicted in Figure 3(e), which plots the
average number of peers that have to be contacted to find K
available media relays. For a reasonable number of
simultaneous sessions, this value remains low. However, we
set the number of backup relay nodes to 1, which is a
reasonable trade-off between the probability of a session drop
and the additional complexity that results when a UA has to
search a backup relay node before starting media sessions.

Finally, we analyzed the distribution of load among

0

0,2

0,4

0,6

0,8

1

0 1 2 3
Number of media flows per relay

Fr
ac

tio
n

of
 n

od
es

10% involved in a call
30% involved in a call
98% involved in a call

0

0,001

0,002

0,003

0,004

0,005

0,006

0,007

0 1 2 3
Number of backup relays

Fa
ilu

re
 p

ro
ba

bi
lit

y

10% involved in a call
30% involved in a call
98% involved in a call

0

2

4

6

8

10

12

14

1 2 3
Number of allocated relays

C
on

ta
ct

ed
 n

od
es

10% involved in a call
30% involved in a call
98% involved in a call

0

2

4

6

8

10

12

0 5000 10000 15000 20000 25000 30000
Network size [nodes]

C
on

ta
ct

ed
 n

od
es

DISCOS overlay
Random spread and lookup

0

0,1

0,2

0,3

0,4

0,5

0 5000 10000 15000 20000 25000 30000
Network size [nodes]

A
ve

ra
ge

 c
lu

st
er

in
g

co
ef

fic
ie

nt
DISCOS overlay
Random Graph

(a)

(e)

(d)(c)

(b)

(f)

0,0001

0,001

0,01

0,1

1

1 10
In-degree

Fr
ac

tio
n

of
 n

od
es

100

DISCOS observations
Power law, c=0.7, γ=1.5

0

0,2

0,4

0,6

0,8

1

0 1 2 3
Number of media flows per relay

Fr
ac

tio
n

of
 n

od
es

10% involved in a call
30% involved in a call
98% involved in a call

0

0,001

0,002

0,003

0,004

0,005

0,006

0,007

0 1 2 3
Number of backup relays

Fa
ilu

re
 p

ro
ba

bi
lit

y

10% involved in a call
30% involved in a call
98% involved in a call

0

2

4

6

8

10

12

14

1 2 3
Number of allocated relays

C
on

ta
ct

ed
 n

od
es

10% involved in a call
30% involved in a call
98% involved in a call

0

2

4

6

8

10

12

0 5000 10000 15000 20000 25000 30000
Network size [nodes]

C
on

ta
ct

ed
 n

od
es

DISCOS overlay
Random spread and lookup

0

0,1

0,2

0,3

0,4

0,5

0 5000 10000 15000 20000 25000 30000
Network size [nodes]

A
ve

ra
ge

 c
lu

st
er

in
g

co
ef

fic
ie

nt
DISCOS overlay
Random Graph

(a)

(e)

(d)(c)

(b)

(f)

0,0001

0,001

0,01

0,1

1

1 10
In-degree

Fr
ac

tio
n

of
 n

od
es

100

DISCOS observations
Power law, c=0.7, γ=1.5

Figure 3. Simulations results: (a) average clustering coefficient evaluation, (b) in-degree power-law distribution, (c) average number of
contacted peers to find a SIP relay, (d) media session failure probability versus number of allocated backup relays, (e) average number

of peers contacted to allocate K relays, and (f) bandwidth consumption distribution

1569111156

8

connectivity peers. In particular, Figure 3(f) shows the
distribution of the number of media flows simultaneously
handled by media relays. It can be observed that, although
media flows have different bandwidth requirements, the great
part of relays simultaneously handles no more than one media
session. Thus, a good load balancing among peers is
guaranteed.

IV. CONCLUSIONS
This paper presents a distributed infrastructure, called

DISCOS, which aims at providing connectivity service to
hosts behind middleboxes. This solution extends current
centralized approaches (and overcomes their scalability and
robustness limitations) by integrating middlebox traversal
functionalities into edge nodes. The paper also presents the
mechanisms that can be used to manage such infrastructure
and exploit its services. The proposed infrastructure is based
on an unstructured peer-to-peer paradigm and has been proved
to be extremely effective in locating suitable relays and
distributing media sessions evenly among the available
connectivity peers. Results confirm that the overhead for
managing the overlay is low, that each host is able to locate a
suitable connectivity peer with a small number of messages
(hence, in a very short time), and the blocking probability of a
new media call is negligible even for very high load. Although
our simulations cannot simulate a nationwide network (for
processing/memory problems), we are confident that results
can be extended to such an environment, because the
distributed infrastructure is based on the scale-free topology,
which is the key to achieve these results ensuring overlay
scalability and robustness.

Future work aims at validating the proposed infrastructure
in non-SIP environments and more exhaustively address
security issues.

V. ACKNOWLEDGMENT
The authors would like to thank Marco Mellia was

instrumental to obtain a proper characterization of Skype user
agents.

VI. REFERENCES
[1] Bryan Ford, Pyda Srisuresh, Dan Kegel, “Peer-to-Peer Communication

Across Network Address Translators,” USENIX Annual Tech. Conf.,
Anaheim, CA, Apr. 2005.

[2] J. Rosemberg et al., “SIP: Session Initiation Protocol,” IETF Std. RFC
3261, June 2002.

[3] C. Jennings, Ed., R. Mahy, Ed., “Managing Client Initiated Connections
in SIP,” http://tools.ietf.org/html/draft-ietf-sip-outbound-11, Nov. 2007.

[4] J. Rosenberg, “Interactive Connectivity Establishment (ICE): A Protocol
for NAT Traversal for Offer/Answer Protocols,”
http://tools.ietf.org/html/draft-ietf-mmusic-ice-18, Mar. 2008.

[5] J. Rosenberg, R. Mahy, P. Matthews, “Traversal Using Realys Around
NAT (TURN): Relay Extensions to Session Traversal Utilities for NAT
(STUN),” http://www3.tools.ietf.org/html/draft-ietf-behave-turn-07, Feb.
2008.

[6] J. Rosenberg, R. Mahy, P.Matthews, D. Wing, “Session Traversal
Utilites for (NAT) (STUN),” http://tools.ietf.org/html/draft-ietf-behave-
rfc3489bis-15, Feb. 2008.

[7] D. MacDonald, B. Lowekamp, “NAT Behavior Discovery Using
STUN,” http://www3.tools.ietf.org/html/draft-ietf-behave-nat-behavior-
discovery-03, Feb. 2008.

[8] D. A. Bryan, B. B. Lowekamp, “Decentralizing SIP,” ACM Queue,
vol. 5, no. 2, March 2007.

[9] S. A. Baset, and H. Schulzrinne, “An Analysis of the Skype Peer-to-Peer
Internet Telephony Protocol,” IEEE Int. Conf. on Computer
Communications (INFOCOM 2006), Barcelona, Spain, Apr. 2006.

[10] P. Biondi, F. Desclaux, “Silver Needle in the Skype,” Black Hat Europe
2006, Amsterdam, the Netherlands, Mar. 2006.

[11] R. Albert, A.-L. Barabási, “Statistical mechanics of complex networks,”
Review of Modern Physics, 74, 47-97, 2002.

[12] L. A. Adamic, R. Lukose, A. R. Puniyani, B. A. Huberman, “Search in
Power-law Networks,” Physical Review, E 64, 2001.

[13] J. Seedorf, “Security Challenges for Peer-to-Peer SIP,”IEEE Network,
vol. 20, no. 5, Sept. 2006.

[14] C. Jennings, B. Lowekamp, E. Rescorla, S. Baset, H. Schulzrinne,
“Resource Location And Discovery (RELOAD),”
http://www.p2psip.org/drafts/draft-bryan-p2psip-reload-04.txt, June
2008.

[15] Martin Casado and Michael J. Freedman, “Peering through the Shroud:
The Effect of Edge Opacity on IP-based Client Identification,”
USENIX/ACM Int. Symp. on Networked Systems Design and
Implementation (NSDI 2007), Cambridge, MA, April 2007.

[16] Y. Chawathe, S. Ratnasamy, L. Breslau, Nick Lanham S. Shenker,
“Making Gnutella-like P2P Systems Scalable,” ACM Int. Conf. of the
Special Interest Group on Data Communication (SIGCOMM 2003),
Karlsruhe, Germany, Aug. 2003.

http://www.nd.edu/%7Enetworks/Publication%20Categories/03%20Journal%20Articles/Physics/StatisticalMechanics_Rev%20of%20Modern%20Physics%2074,%2047%20(2002).pdf
http://www.usenix.org/events/nsdi07/

	2008_IEEE-Network_DISCOS__draft
	Revised_Paper
	I. Introduction
	II. Operating Principles
	A. Distributed Connectivity Service
	B. Overlay Topology
	C. Protocol Overview
	D. Security issues

	III. Overlay simulation
	A. Simulations background
	B. Overlay topology evaluation
	C. Media sessions relaying performance

	IV. Conclusions
	V. Acknowledgment
	VI. References

