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Synchronization in Networks of Hindmarsh-Rose
Neurons

Paolo Checco, Member, IEEE, Mario Biey, Marco Righero, Student Member, IEEE, and
Ljupco Kocarev, Fellow, IEEE

Abstract—Synchronization is deemed to play an important
role in information processing in many neuronal systems. In
this work, using a well known technique due to Pecora and
Carroll, we investigate the existence of a synchronous state and
the bifurcation diagram of a network of synaptically coupled
neurons described by the Hindmarsh-Rose model. Through the
analysis of the bifurcation diagram, the different dynamics of
the possible synchronous states are evidenced. Furthermore, the
influence of the topology on the synchronization properties of the
network is shown through an example.

I. INTRODUCTION

DURING the last few years networks of bio-inspired neu-
rons have interested an increasing number of researchers

in all branches of science. In particular, spiking neurons
have attracted the interest because many studies consider this
behavior an essential component in information processing
by the brain [1]. In this class of neurons, bursting neurons
are of relevant interest since they characterize a variety of
biological oscillators. The electrical potential of these neurons,
which typically is the state variable that contains the main
information, undergoes a succession of alternating active and
silent phases in which, respectively, it has a spiking behavior
(very fast oscillations) and it evolves slowly without oscilla-
tions. Furthermore, the notion of synchronization is related
to several central issues of neuroscience [2]; synchronization
seems to be a central mechanism for neuronal information
processing within a brain area as well as for communication
between different brain areas. For example, synchronization
between areas of the visual cortex and parietal cortex, and
between areas of the parietal and motor cortex was observed
during the visual-motor integration task in awake cat [3].
Direct participation of synchrony in a cognitive task was
experimentally demonstrated in humans [4]. This motivates the
investigation of the conditions for synchronization in networks
of bursting neurons [5], [6]. Among many simple bursting
models, the Hindmarsh-Rose (HR) neuron [7] is fairly simple
and popular. It is described by a system of three coupled first
order differential equations in which the first state variable
shows the succession of alternating active and silent phases.
The synchronization conditions of a network of Hindmarsh-
Rose neurons have been studied in several papers (for example
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see [5], [6], [8]) and more detailed conditions have been
recently introduced in [9], [10].

In this paper we focus on a network of synaptically coupled
HR neurons and we derive its synchronization conditions,
resorting to the well established technique proposed by Pecora
and Carroll [11]. As a first result of our investigation, using
the above mentioned technique the approximate results given
in [6] are retrieved and their limits are evidenced. Furthermore,
it turns out that the synchronous behavior may be different
from that of an isolated neuron and it has to be evaluated re-
sorting to a time-domain analysis, using the coupling strength
as bifurcation parameter. Hence, the second aim of this paper
is to give a complete analysis of the possible synchronous
states by determining the corresponding bifurcation diagram.
Finally, it will be shown that the synchronization properties
still depend - even if not strongly - on the topology of the
network.

II. PRELIMINARIES

The Hindmarsh-Rose neuron model [7] – originally pro-
posed to model the synchronization of firing of two snail
neurons [12] – can be generalized as follows ( [13], [14]):





ẋ(t) = y − F (x) + I − z + u
ẏ(t) = G(x)− y
ż(t) = (1/τ)(H(x)− z)

. (1)

where x(t) represents the membrane potential, usually con-
sidered as the natural output of the cell, y(t) and z(t) are
the recovery and the adaptation variables taking into account,
respectively, fast and slow ion currents and dots denote time
derivatives. The external stimulus is given by constant I and
input u. Furthermore, τ is the time constant of the slow ion
current and the functions F (x), G(x), and H(x) are chosen
to display the generation of bursts of spikes and are usually
third, second, and first order polynomials, respectively.

In view of a future comparison, let us use the same
parameters as in [6], [8]: F (x) = bx2 − ax3, G(x) =
c − dx2, and H(x) = s(x − x1), where a = 1, b = 2.8,
c = 0, d = −4.4, s = 9, x1 = −5/9, I = 0, τ = 1000, and,
for an isolated cell, u = 0. It follows that the studied cells are
described by the following equations:





ẋ(t) = fx(x, y, x) = 2.8x2 − x3 − y − z
ẏ(t) = fy(x, y, x) = 4.4x2 − y
ż(t) = fz(x, y, x) = 0.001 [9(x + 5/9)− z] .

(2)

With the free parameters fixed at the chosen values, the time
evolution of the state variables is periodic. The coupling in



2

a network of N such neurons can be modeled in different
ways. In this work we focus on synaptic coupling between
the x variables. In the simplest case where time delays and
internal variables can be neglected, the synaptic coupling is
often approximated by a static sigmoidal nonlinear input-
output function γ with a threshold and saturation [14]:

γ(xj) =
1

1 + e−ν(xj−θs)
. (3)

As in [6], the free parameters are chosen to be ν = 10 and
θs = −0.25. The evolution of the i-th neuron of the network
is ruled by





ẋi(t) = fx(xi, yi, xi)− gs σ(xi)
∑N

j=1 aij γ(xj)
ẏi(t) = fy(xi, yi, xi)
żi(t) = fz(xi, yi, xi)

(4)

where gs is the coupling strength and aij are the elements
of the adjacency matrix A, defined as follows: aii = 0;
aij = aji = 1 if neurons i and j are connected to each
other, 0 otherwise. Furthermore, σ(xi) = xi − Vs, where
Vs is the reversal potential, assumed to be Vs = 2. Letting
ξi = (xi, yi, zi)T and f = (fx, fy, fz)T , where (·)T denotes
transpose, the above equations can be recast as follows:

ξ̇i = f(ξi)− (xi − Vs)
∑N

j=1gij Γ(ξj) , (5)

where Γ(ξj) = (γ(xj), 0, 0)T and gij = gsaij are the
elements of the weighted adjacency matrix G = gsA .

III. MODIFIED MASTER STABILITY FUNCTION

In order to obtain the conditions of identical synchro-
nization, the master stability equation/function approach is
used [11], because it permits to separate the contribute of the
identical isolated cells and of the topology of the network
in the synchronization conditions. It is important to remark
that this approach permits to verify if the synchronous state is
(locally) stable or not, that is if the state vector of the network,
starting sufficiently close to the synchronous state, converges
to it. By considering the identical synchronization conditions,
i.e. ξ1 = ξ2 = . . . = ξN = ξ∗, it follows that the synchronous
state exists only if the sum of gij is constant with respect to
i, i.e. all the nodes have identical degree k [6]:

∑N
j=1gij = gs

∑N
j=1aij = gs k (6)

The evolution of the synchronous state is then described by
the following system of ordinary differential equations:

ξ̇∗(t) = f(ξ∗)− kgs(x∗ − Vs)Γ(ξ∗) (7)

The Master Stability Equation (MSE) associated to Eq. (5) is
(for details see [11], [15])

ζ̇(t) =


Df(ξ∗) +



−kgsγ(x∗) 0 0

0 0 0
0 0 0


 +

+ (α + ıβ)




(x∗ − Vs)[dγ
dx (x∗)] 0 0

0 0 0
0 0 0





 ζ

(8)

where Df(ξ∗) is the Jacobian matrix of the function f
estimated on the synchronization manifold ξ∗, x∗ is the first
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Fig. 1. Sign of the modified MSF with bounds on the second eigenvalue of
G (dotted lines) and synchronization region (dashed bold line) corresponding
to η = η̄.

component of the synchronization manifold, dγ
dx (x∗) is the

derivative of γ(x) with respect to x evaluated in x∗, and α+ıβ
are the eigenvalues of the weighted adjacency matrix G. The
largest Lyapunov exponent Λ = Λ(α, β) of the MSE is known
as the Master Stability Function (MSF) and it allows one to
identify the synchronous conditions: the synchronous state is
stable, i.e. the network synchronizes, if all the eigenvalues of
the weighted adjacency matrix G = gsA (apart the largest
one) lie in the so-called synchronization region, that is the
region where the MSF Λ(α, β) is negative. In the case under
investigation, G is symmetric. It follows that its eigenvalues
are real and both the MSE, Eq. (8), and the MSF do not depend
on β, i.e. Λ = Λ(α). Furthermore, the eigenvalues of G can
be expressed as gsλi, being λi a generic eigenvalue of the
adjacency matrix A. Differently from the original MSF [11],
a global parameter related to the structure of the network can
be identified in Eqs. (7) and (8): the product between gs and
k. Defining η = kgs, a modified MSE is obtained, which is
hence a function of both α and η, namely Λ = Λ(α, η). Fig. 1
shows the curve where Λ(α, η) = 0. It was obtained (a) by
using the algorithm described in [16] to evaluate the largest
Lyapunov exponent Λ of Eq. 8 as α and η are varied, with
β = 0, and (b) by determining the values of α and η for
which Λ(α, η) = 0 via a bisection method. It turns out that,
for a given value η̄ of η, the synchronization region is the
vertical straight line below the curve Λ = 0, passing through
the considered value η̄ (dashed bold line in Fig. 1). This result
is valid for other values of the neuron parameters as well.
Hence, the considered networks of Hindmarsh-Rose neurons
are Class-A networks (see [15]): for a given value of η = η̄,
they synchronize if gsλ2 < ᾱ where ᾱ = α(η̄) is the value
of the Λ = 0 curve of Fig. 1 at η = η̄, and λ2 is the second
largest eigenvalue of the adjacency matrix A, whose spectrum
is λ1 ≥ λ2 ≥ . . . ≥ λN .

IV. SYNCHRONIZATION PROPERTIES

Thanks to the results obtained in the previous Section, fixed
a network, i.e. its topology (described by A) and its coupling
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strength gs, the synchronization conditions can be evaluated
and in this Section they will be investigated in details. Since
we are dealing with class-A networks, the synchronous behav-
ior is controlled by the second largest eigenvalue gsλ2. Hence,
given an adjacency matrix A and a coupling strength gs, it is
possible to predict the synchronization behavior of the network
as follows: (a) compute the second eigenvalue λ2 of A and
the row sum k; (b) in Fig. 1 locate the synchronization region
corresponding to the resulting value of η = gsk. If the point
(gsλ2, gsk) lies inside this region, then the network is expected
to synchronize. Recall that the first eigenvalue λ1 of A is k,
so the largest eigenvalue of G is gsλ1 = gsk = η, hence
the straight line α = gsk = η bounds the whole spectrum
of G from above. Moreover λ2, the second eigenvalue of A,
always satisfies the inequality (see [17]) : λ2 ≥ −k/(N − 1),
so the second eigenvalue of G is always greater or equal to
−η/(N−1), where N is the number of neurons in the network.
In Fig. 1, the straight lines α = η and α = −η/(N − 1) for
N = 3, 10 and 100 are superimposed (dotted lines) to the
Λ = 0 curve. From this figure, it is easy to see that - to a
good approximation - for η > 1.285 the second eigenvalue of
G is always in the stable region for every value of N and
k, and hence, to a first approximation, synchrony does not
depend on topology. This is coherent with [6], [8], where the
estimated synchronization condition

gs > gc
s/k (9)

is suggested, being gc
s = 1.285 the critical value to get

synchronization in a network composed of two mutually
coupled neurons (k = 1). However, since the straight line
η = 1.285 does not exactly coincide with the curve Λ = 0,
for small N (3 or 4 for example) the limit to obtain stable
synchronization can be a little lower. Hence, to a higher degree
of approximation, we may expect that (i) synchronization is
possible even for η < 1.285 and (ii) topology still influences
synchronization to some extent. These interesting features will
be highlighted in some of the examples of Section VI.

V. BIFURCATION DIAGRAM

In the case of synaptic coupling, the synchronous equa-
tion (7) is not equal to the equation of an isolated Hindmarsh-
Rose neuron (2) any more. Then, if the synchronization condi-
tion is verified, the state variables of all the cells synchronize,
but the time evolution of the synchronous state is not known
and depends on the parameter η, which accounts for coupling
strength and cell degree (see. Eq. (7)). This fact motivates the
investigation of the dynamic behavior when η is varied, i.e. of
the bifurcation diagram with respect the parameter η. Using
η as bifurcation parameter, we have thoroughly investigated
the synchronous behavior by extensive numerical simulations
of Eq. (7). Fig. 2 shows a simplified version of the bifurca-
tion diagram in which only a qualitative description of the
attractors has been reported. By looking at the time evolution
of the membrane potential x(t) (Eq. (1)), it was possible to
identify five different types of attractors in five not overlapping
intervals and one isolated point at η = 0. In the isolated point
R0 (η = 0) and in R2 region (η ∈ (1.224, 1.285)) a spiking
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Fig. 2. Simplified bifurcation diagram, reporting only the attractors, of the
synchronous state equation with respect to η parameter.

burst behavior is exhibited, i.e. there is a succession of two
alternating phases (bursts) and the spikes are only in the active
ones. Note that the point R0 corresponds to an isolated HR
neuron. In R1 region (η ∈ (0.00, 1.224)) a spike behavior takes
place. The synchronous behavior is composed of oscillations
on bursts in region R3 (η ∈ (1.285, 1.80)). The synchronous
state exhibits a periodic behavior (only burst phases) in R4
region (η ∈ (1.80, 2.88)). Finally, in R5 region the behavior
reduces to a stable equilibrium point. It is worth pointing
out that, due to results obtained in the previous Section, the
behavior of region R1 can never be observed. This analysis
reveals that one of the most interesting behaviors, the spiking
on bursts, is reached in the windows between 1.224 and 1.285.
Fig. 1 reveals that, for small network, synchronization can be
achieved even for these values of η.

As a final remark, let us stress that the results of this
and the previous Sections were obtained for a broad range
of values of α and η, i.e. are valid for different topologies,
values of coupling strength and node degree. So Fig. 1 and
Fig. 2 allow us to analyze a given network, saying whether it
can synchronize or not and on which particular synchronous
state. This will be illustrated in the examples of the following
Section.

VI. EXAMPLES

As a first example, let us consider a network composed of
just four Hindmarsh-Rose neurons (N = 4), whose topology
is described by the following adjacency matrix

A =




0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0


 (10)

from which k = 2, λ1 = 2, λ2,3 = 0, and λ4 = −2. If
the coupling strength is gs = 0.50, the η parameter is η̄ =
kgs = 1.0 and, from the Λ = 0 curve, ᾱ = α(η̄) = −1.45. It
follows that the network cannot synchronize because gsλ2 =
0 ≮ ᾱ = −1.45. Fig. 3 shows the time evolution of the first
state variable of the first neuron and the global error err(t),
defined as

err(t) = std2(x(t)) + std2(y(t)) + std2(z(t)), (11)

where std(·) is the standard deviation and x(t), y(t), z(t) are,
respectively, the N -dimensional time-varying vectors of the
first, second and third state variables of the N cells. In par-
ticular, err(t) → 0 if and only if the cells synchronize on the
same behavior. In this example the error does not converge to
zero and hence the network does not synchronize, as predicted.
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Fig. 3. Time evolution of the first state variable of the first neuron (upper) and
global error (lower) of the network with gs = 0.50 and adjacency matrix (10).

Fig. 4. Time evolution of the first state variable of the first neuron (upper) and
global error (lower) of the network with gs = 0.70 and adjacency matrix (10).

On the other hand, if the coupling strength is increased to
gs = 0.70, the η parameter is η̄ = kgs = 1.40 and, from the
Λ = 0 curve, ᾱ = α(η̄) = 1.30. It follows that the network
synchronizes because gsλ2 = 0 < ᾱ = 1.30. Furthermore, the
synchronous behavior is composed of damped oscillations on
burst, as described by the bifurcation diagram: η̄ ∈ R3. These
results are confirmed by the simulations shown in Fig. 4.

As a second example, we consider a network which fails to
satisfy the approximate condition of Eq. (9) but satisfies the
condition given by the MSF/MSE approach of Fig. 1. Consider
a network of three neurons mutually coupled in an all-to-all
configuration, so that its adjacency matrix is

A =




0 1 1
1 0 1
1 1 0


 (12)

from which k = 2, λ1 = 2 and λ2,3 = −1. With gs = 0.6305,
we have η̄ = gsk = 1.261 < 1.285, and hence the approxi-
mated condition of Eq. (9), as it is a sufficient one, provides
no information about the synchronization properties. On the
contrary, the more precise criterion obtained from Fig. 1
gives gsλ2 = −0.6395 < α(η̄) = −0.5917 and hence this
simple network should synchronize. Moreover, the bifurcation
diagram predicts spikes on bursts as synchronous behavior.
Numerical simulations of this network, shown in Fig. 5,
confirm our forecast. As a last example, let us consider classes
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Fig. 5. Time evolution of the first state variable (upper, transient dropped
off) and of the global error (lower) for a network of neurons with A as in
Eq. (12) and gs = 0.6305.

of networks of Hindmarsh-Rose neurons N(N, k) defined as
the set of networks characterized by the same number of nodes
N and the same node degree k and take the class N(16, 3) and
the coupling strength gs = 0.4287. The ᾱ value is estimated
from the curve Λ = 0 of Fig. 1: ᾱ ' 1.06. It follows that a
network synchronizes if and only if gsλ2 < ᾱ ' 1.06. Let us

(a) (b)

Fig. 6. Two networks belonging the class N(16, 3) with different topologies.
The cells are numbered clockwise starting from the black one.

consider a first network belonging to N(16, 3), characterized
by the topology shown in Fig. 6(a): the adjacency matrix A,
not reported for lack of space, has been computed numbering
clockwise the cells starting from the black one. The two
largest eigenvalues of the associated adjacency matrix are
λ1 = 3.0, λ2 = 2.4142. It follows that the considered
network synchronizes because gsλ2 ' 1.035 < ᾱ ' 1.06.
The evolution of the state variables of the cell 1 and the global
error are reported, respectively, in Fig. 7 and Fig. 8: the states
of the cells synchronize because the global error converge to
zero. Furthermore, since gsk = 1.2861, the time evolution
shows oscillations on burst, as predicted by the bifurcation
diagram of Fig. 2. The second network is characterized by the
topology shown in Fig. 6(b) in which the cells are numbered
following the same rule used for the previous example. The
three largest eigenvalues of the associated adjacency matrix
are λ1 = 3.0, λ2 = λ3 = 2.7093. It follows that the
considered network should not synchronize because gsλ2 '
1.161 > ᾱ ' 1.06. In fact, the states of the cells do not
synchronize as evidenced by Figs. 9 and 10. These figures
show the evolution, after a sufficient long transient, of the state
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Fig. 7. State evolution of the cell 1 of the network whose topology is reported
in Fig. 6(a).

Fig. 8. Global error of the evolution of the network whose topology is
reported in Fig. 6(a).

Fig. 9. Enlargement of the state evolution, after the transient, of two cells
of the network whose topology is reported in Fig. 6(b): the solid line refers
to cell 1 and the dotted line to cell 9.

x of cells 1 and 9, respectively, and the corresponding global
error in a suitable time interval to point out the differences. In
conclusion, networks belonging to the same class and with the
same coupling strength may behave differently, depending on
their topology, that still influences synchronization properties.

VII. CONCLUSION

In this work, using the technique due to Pecora and Carroll,
based on the MSE and the MSF, we have investigated the
existence of synchronous states and the bifurcation diagram
of networks of synaptically coupled neurons described by the
Hindmarsh-Rose model. In a quite natural way, the bifurcation
parameter, used for both the generation of a modified MSF
and the bifurcation diagram, turns out to be the product of
the coupling strength gs by the node degree k. Through the

Fig. 10. Enlargement of the global error of the evolution of the network
whose topology is reported in Fig. 6(b) in the same time interval used in
Fig. 9.

analysis of the bifurcation diagram and of the modified MSF
as the bifurcation parameter is varied, the different dynamics
of the possible synchronous states have been evidenced. Fur-
thermore, the influence of the topology on the synchronization
properties of the network has been shown through an example.
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