
18 June 2025

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Applying March Tests to K-Way Set-Associative Cache Memories / Alpe, Simone; DI CARLO, Stefano; Prinetto, Paolo
Ernesto; Savino, Alessandro. - STAMPA. - (2008), pp. 77-83. (Intervento presentato al convegno IEEE 13th European
Test Symposium (ETS) tenutosi a Verbania, IT nel 25-29 May 2008) [10.1109/ETS.2008.25].

Original

Applying March Tests to K-Way Set-Associative Cache Memories

Publisher:

Published
DOI:10.1109/ETS.2008.25

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1845184 since:

IEEE Computer Society

Applying March Tests to K-Way Set-Associative Cache Memories

Simone Alpe, Stefano Di Carlo, Paolo Prinetto, Alessandro Savino
Politecnico di Torino, Dep. of Control and Computer Engineering

Torino, Italy
e-mail: {simone.alpe, stefano.dicarlo, paolo.prinetto, alessandro.savino}@polito.it

Abstract

Embedded microprocessor cache memories suffer
from limited observability and controllability creating
problems during in-system test. The application of test
algorithms for SRAM memories to cache memories
thus requires opportune transformations.

In this paper we present a procedure to adapt
traditional march tests to testing the data and the di-
rectory array of k-way set-associative cache memories
with LRU replacement. The basic idea is to translate
each march test operation into an equivalent sequence
of cache operations able to reproduce the desired
marching sequence into the data and the directory
array of the cache.

1. Introduction

Today’s modern computer system performances
mainly relies on a large capacity memory subsystem
including up to four level of caches [1]. Cache memo-
ries are small, high-speed buffers used to temporarily
hold information (e.g., portions of the main memory)
which are (believed to be) currently in use. As a result,
larger and larger portions of die area are occupied by
cache memories. For instance, 50% of Pentium 4 chip
area and 60% of StrongARM chip area are allocated
to cache structures [2]. These considerations lead to
the conclusion that efficient test procedures for cache
memories are essential to guarantee the quality of
modern computer systems.

Only few publications addressed the problem of
cache testing. In [2] the authors propose a very ex-
haustive study of new functional fault models for
particular cache technologies (drowsy SRAM caches)
and propose a new march test (March DWOM) to
cover them. The main drawback of this algorithm is
that it reduces the problem of cache testing to the
problem of testing generic word-oriented memories.

It thus requires a specific design to allow cell-by-cell
addressing of the cache.

Some cache testing approaches have been proposed
as part of microprocessor software-based self-testing
methodologies. They consider caches embedded into
microprocessors and face the problem of their limited
accessibility. [3] presents a random approach for test-
ing the PowerPC microprocessor cache whereas [4] in-
troduces a systematic approach to on-chip cache testing
as part of the memory subsystem of a microprocessor.
The main drawback is that the cache testing is only
outlined, and a single test algorithm based on the well
known March B [5] is presented.

[6] generalizes the methodology introduced in [4]
proposing a march like test procedure taking into
account whether the cache is used to store data or
instructions. The main drawback of the paper is that a
clear explanation of how to extend the proposed test to
new fault models is missing, and moreover the appli-
cation of the test requires particular hardware features
that may, in turn, require hardware modifications in the
cache.

To face the problem of new memory fault models,
[7] proposes a methodology to translate generic march
tests into test sequences for the directory array of cache
memories. The procedure allows preserving the same
fault detection as the original test but it is limited to
direct-mapped caches with write-back policy. Even if
the authors suggest that the same procedure is easily
adaptable to set-associative caches, how this is possible
is not detailed and moreover write-through caches are
not considered.

In this paper we propose a methodology to translate
generic march tests into equivalent versions for in-
system testing of both directory and data array of
set-associative caches with write-back or write-through
policy. Among the different types of replacement al-
gorithms for set-associative caches we focus on mem-
ories implementing the Last Recently Used (LRU)
replacement. The main goal is to propose a translation

13th European Test Symposium

1530-1877/08 $25.00 © 2008 IEEE
DOI 10.1109/ETS.2008.25

77

methodology providing tests that preserve both the
original fault coverage and (wherever possible) the
complexity of the original march test.

The paper is organized as follows: Section 2
overviews basic notions about cache memories
whereas Section 3 proposes the translation procedure.
Section 4 applies the proposed methodology to a real
march test and proposes some considerations about the
complexity of the translated tests, and finally Section
5 summarizes the main contributions of the paper and
outlines future works.

2. Cache memories overview

The purpose of cache memories is to speed up
the microprocessor memory access by storing recently
used data. During any processor reference to mem-
ory the cache checks whether it already stores the
requested location (cache hit) or no (cache miss).

The internal organization usually comprises two
memory arrays: the data array and the directory array
(or tags array). The data array holds the actual data to
store in the cache. The size of the data array determines
the size of the cache. Rather than reading a single word
or byte from main memory at a time, each cache entry
usually holds a certain number of words, known as a
cache line or way. The address space is thus divided
into blocks to be mapped to the different cache lines.
The directory array is a small and fast memory that
stores portions (tags) of the main memory addresses
related to data stored in the data array.

The way data are cached depends on the cache map-
ping schema. We consider in this paper two mapping
schema: direct-mapped and set-associative caches.

In a direct-mapped cache (see Figure 1) the cache
location for a given N bits memory address is deter-
mined as follows: if the cache line size is 2O memory
words then the bottom O address bits correspond to
an offset within the cache line. If the cache holds 2I

lines then the next I address bits, called index, give the
cache location (line). The remaining top N−I−O bits
represent the tag to store in the directory array along
with the entry. In this schema, there is no choice of
which cache line to replace on a cache miss since a
given memory block b can only be stored in the cache
line with index equal to b mod 2I .

In a set-associative cache (see Figure 2) each N bits
memory address is mapped to a certain set of cache
lines. Again, the bottom O bits represent an offset in
the cache line. In this case the index (middle I bits
of the address) identifies the set where the address is
located. In a k-ways set-associative cache with 2I sets,
each set has k cache lines. In this case the cache lines

Dir.
Array

Data
Array

2I

= N-I-O I O

CPU

Tag Index Offset

Cache LineTag

2O

N

Figure 1. Direct-mapped architecture

are also referred to as ways. A memory block b is
mapped to the set with index b mod 2I and may be
stored in any of the k cache lines in that set with its
upper T = N − I − O address bits used as tag. To
determine whether the block b is in the cache or not,
the set b mod 2I is searched associatively for the tag.
In the sequel of the paper, in order to select the line
to be replaced in case of cache miss, we shall adopt
the Least Recently Used (LRU) replacement algorithm,
which discards the least recently used lines first. A
direct-mapped cache is a special instance of a set-
associative cache with a single way for each set.

Data Tags Data Tags

2I

=

CPU

N-I-O I O

Tag Index Offset
=

2-way

Set

cache line cache line

2O

N

Figure 2. 2-ways set-associative architecture

To conclude cache memories can also be classified
based on their write policy into two categories:
• Write-Back: when the system writes to a mem-

ory location that is currently held in cache, it
only writes the new information to the appro-
priate cache line. When the cache line is even-
tually needed for some other memory address,
the changed data is written back to the system
memory. This type of cache provides better per-
formance than a write-through cache, because it
saves on (time-consuming) write cycles to mem-
ory;

• Write-Through: when the system writes to a mem-
ory location that is currently held in cache, it

78

writes the new information both to the appropriate
cache line and the memory location itself at
the same time. This type of caching provides
worse performance than write-back, but is simpler
to implement and has the advantage of internal
consistency, because the cache is never out of
sync with the memory the way it is with a write-
back cache.

3. March test translation

This section introduces the actual march test trans-
lation procedure.

As introduced in Section 2, cache memories are
composed of two different arrays: the data array and
the directory array. March tests detect faults by per-
forming write and read and verify operations on the
memory under test [5]. While this approach is easily
applicable with only few modifications to the data
array, the situation is different for the directory array,
since it is not directly accessible by the user. For
this reason, we will provide two different translation
procedures. A single march test will be thus translated
into two different tests, targeting the data array and the
directory array, respectively.

Before illustrating the translation procedure, we
need to introduce some definitions and notations to
extend traditional march tests. First of all we have
to remember that we consider a k-way set-associative
cache with LRU replacement. In this situation an N
bits address is split into three fields (see Section 2):
• TAG: composed of T bits;
• INDEX: composed of I bits;
• OFFSET: composed of O bits.

We will have S = 2I sets in the cache, with k cache
lines in each set.

With this assumptions, we can define the following
basic operations:
• w(αt,DB): represents a write operation of a

cache line. DB is a data background pattern [8] to
write in the data array of the cache, i.e., a generic
sequence of O bits with the only constraint that
for each DB a complemented pattern DB, ob-
tained from DB by complementing its bits, must
be defined. t represents the tag to write in the
directory array of the cache, and α is the index
that identifies the set of the cache were the line
has to be written;

• r(αt,DB): represents a read and verify opera-
tion. The cache line belonging to the set with
index α and associated with the tag t is read
and compared with the expected data background
pattern DB;

• r(αt): represents a simple read operation, it be-
haves as the read and verify operation but the
result of the read is not verified. This operation
will be used in Section 3.2 to introduce the so
called re-ordering operations.

Moreover we define two new addressing orders
called way-in-index addressing orders :
• ↑S−1

α=0↑ki=1: it identifies an ascending addressing
order in terms of sets (the first arrow) and ways
(cache lines) composing each set (the second
arrow);

• ↓S−1
α=0↓ki=1: it identifies a descending addressing

order in terms of sets and ways as above.
Using this new notation the next subsections will

overview the march test translation procedure for the
data and the directory array, respectively.

3.1. Data Array

By using the previously introduced extended march
test notation, translating a traditional march test into
an equivalent one for the data array of a memory
cache is straightforward. Table 1 reports a one to
one correspondence between the traditional march test
notation and the cache memory notation for the data
array.

Table 1. Data array translation table

Traditional notation Cache notation
w1 w(αti, DB)

w0 w(αti, DB)

r1 r(αti, DB)

r0 r(αti, DB)

⇑ ↑S−1
α=0↑

k
i=1

⇓ ↓S−1
α=0↓

k
i=1

The only consideration about this translation schema
concerns the definition of the tags to use during the test
operations. The translation of the traditional addressing
orders into the way-in-index addressing orders implies
the ability of addressing by a given sequence the
cache lines belonging to a single set (second arrow
of the symbol). According to the LRU replacement
algorithm, starting with an empty cache, and given k
cache lines belonging to the same set, k consecutive
write operations will be performed on different lines
only if they contain k different tags. After k operations
the set will be full, the oldest line will be replaced
and the same addressing sequence will be reproduced
again. A set of k different tags is thus required for
a k-way set-associative cache in order to address for

79

each set all the cache lines. The notation ti in Table 1
refers to the ith tag in this set.

Table 2 shows an example of tags for a 4-way set-
associative cache. The actual value of the tags is not
relevant. In this test, the tags represent an indirect
addressing mechanism that allows moving among the
lines of a given set, but the actual addressing mecha-
nism is managed by the replacement algorithm (LRU in
our case). It allocates cache lines based on the diversity
of the tags and not on their absolute value. Obviously
faults can influence this mechanism but since tags are
contained in the directory array they will be addressed
in Section 3.2 dealing with the directory array. In this
context, the only requirement is the number of different
tags.

Table 2. Example of (data) tags for a 4-way set
associative cache

Tag Bit representation (T -bits)
t0 0 . . . 000

t1 0 . . . 001

t2 0 . . . 010

t3 0 . . . 011

Using this translation schema, Table 3 shows an
example of two simple march elements translation.

Table 3. Data array translation example

⇑ {r1, w0, . . .} 7−→↑S−1
α=0↑

k
i=1 {r(αti, DB), w(αti, DB), . . .}

⇓ {r1, w0, . . .} 7−→↓S−1
α=0↓

k
i=1 {r(αti, DB), w(αti, DB), . . .}

This translation schema allows translating any type
of march test and, the introduction of the way-in-index
addressing orders allows to apply the march test to the
data array in such a way that both intra-set and extra-
set coupling faults can be considered.

Data Data

4-way

Set 1

Data Data

Set 2

... INTRA SET

EXTRA SET

Figure 3. Intra and extra set coupling faults

Moreover, by translating march tests developed for
word-oriented memories [8], it is possible to detect
intra-word faults in the single cache lines.

3.2. Directory Array

The first important thing to underline when dealing
with the march test translation for the directory array

is that both write and read operations can be only
performed in a indirect way working on the data array.
In this situation the actual test patterns are represented
by tags. When applying a march test to the directory
array, tags need to change properly in order to generate
the desired marching sequence.

Table 4 introduces the translation rules in the case of
directory array testing where the symbol ’−’ denotes
that the value written in the cache line is not relevant.

Table 4. Directory array translation table

Traditional notation Cache notation
w1 w(αti,−)

w0 w(αti,−)

r1 r(αti,−)

r0 r(αti,−)

⇑ ↑S−1
α=0↑

k
i=1

⇓ ↓S−1
α=0↓

k
i=1

As already highlighted for the data array, when
translating an addressing order into the corresponding
way-in-index addressing order we need to address with
a given sequence the tags belonging to a single set.
Again this is possible by using a number of different
tags equal to the number of cache lines contained
in a single set (LRU replacement). Moreover, in this
case, since the tag represents the actual test pattern,
according to the march test theory we need to be able
to generate both a test pattern and a complemented
test patterns. For each tag we thus need to define a
complemented tag. Table 5 shows an example of tags
for a 4-ways set-associative cache.

Table 5. Example of Tags for a 4-way set
associative cache

Tag Bit representation
(T -bits) Tag Bit representation

(T -bits)
t0 1 . . . 111 t̄0 0 . . . 000

t1 1 . . . 110 t̄1 0 . . . 001

t2 1 . . . 101 t̄2 0 . . . 010

t3 1 . . . 100 t̄3 0 . . . 011

The proposed approach still presents some problems
that need to be analyzed and solved.

The first issue concern the execution of a read and
verify operation. When working with the directory
array there is no way to read and verify the value of the
stored tags. Faults into the directory array lead to a set
of tags different from the expected one. Any tentative
of reading the content of lines associated to a missing
tag will generate unexpected cache misses that have to

80

be interpreted as a detected fault. The actual problem
is how to identify a cache miss.

In general, in order to identify a cache miss we
have to be able to generate a discrepancy between
the content of a cache line and the content of the
corresponding main memory location. In this situation,
in case of miss, the value read from the main memory
is different from the one expected in the cache and the
miss can be easily identified. Depending on the write
policy of the cache this condition can be obtained in
two different ways.

In a write-through cache, the cache content is always
consistent with the main memory content. This is
the worst situation. The only way to have different
values between the cache and the main memory is
to temporarily disable the cache to explicitly write a
given value in the main memory. Most of the modern
microprocessors (e.g. Pentium, PowerPC) allow this
operation using particular instructions.

In this situation the translation rules proposed in
Table 4 have to be modified according to Table 6 where
the notation d·e represents an operation performed with
the cache disabled and the data background patterns
(DB) are used to identify a cache miss.

Table 6. Write-Through Translation

Traditional notation Cache notation
w1 w(αti, DB)dw(αti, DB)e
w0 w(αti, DB)dw(αti, DB)e
r1 r(αti, DB)

r0 r(αti, DB)

In the case of write-back policy the cache already
comprises the possibility of having an inconsistency
between the cache and the main memory content.
This inconsistency can be generated by the following
modifications to the translation rules proposed in Table
4:
• Each write operation must include a data back-

ground pattern complemented with respect to the
one used during the previous write operation of
the same type (i.e w0 or w1) in the original march
test;

• Each read and verify operation must include the
expected data background pattern provided by the
cache;

• An initialization march element has to be in-
cluded: it uses a data background pattern com-
plemented with respect to the one used by the
first write operation of the march test.

In addition to these two solutions, some micro-
processors provide hardware features to measure the

number of cache misses both in the data and in the in-
struction cache. For example the Intel Pentium Family
provides a set of performance monitoring facilities ac-
cessible through the RDMSR instruction that include
the possibility of counting the number of cache misses
during the execution of an instruction or a sequence of
instructions [9]. Obviously this solution is applicable
both to write-back and write-through caches.

The proposed translation schema still has two major
issues related to the LRU replacement mechanism that
have to be addressed:
• It is not possible to directly perform two write

operations (or a read operation followed by a
write operation) with different tags on the same
cache line;

• It is not directly possible to address cache lines
belonging to a set in a reverse addressing order.

A simple solution to this problem consists in in-
troducing a set of additional read operations in order
to artificially modify the access time of the cache
lines belonging to a set and to produce the desired
addressing sequence.

We introduce an additional march test operation
called re-ordering defined as:

RO(αPt) = {r(αtk),∀tk ∈ Pt} (1)

where Pt is the set of tags associated with the cache
lines of the set α with access time older than the cache
line containing the tag t. This operation generates a
sequence of reads (without verification) that access the
cache lines used before the one containing the tag t.
In this way the access time of all these lines is set
properly in order to make sure the next operation will
be performed on the cache line associated with t.

The re-ordering operation has to be included in
general before each write operation of the march test
with the following two exceptions:
• If the first march element starts with a write oper-

ation and has an ascending addressing order, the
write operation does not require the re-ordering;

• If the march element begins with a write operation
and its addressing order is equal to the addressing
order of the previous march element, the first
write operation does not require the re-ordering.

This solution obviously introduces a certain over-
head in the final march test complexity. The number
of additional read operations is proportional to the
number of lines contained in a set which is usually
lower then the number of sets of a cache. A possible
way to keep this overhead as low as possible is to
start wherever possible from a Single Order Addressing
(SOA) march test [10] in order to avoid the re-ordering

81

sequence at the beginning of the march elements
starting with write operations.

4. Experimental results

To show the applicability of the proposed method-
ology we applied the translation technique to the SOA
March C– proposed in [10] considering a generic k-
way set-associative cache. We will show the results of
both the data and the directory array translation.

Figure 4 shows the original march test. Its com-
plexity is 10N , where N is the number of memory
cells/words composing the memory under test.

⇑ (w1)
M0

;⇑ (r1, w0, w1)
M1

;⇑ (r1, w0)
M2

;⇑ (r0, w1, w0)
M3

;⇑ (r0)
M4

Figure 4. SOA March C–

According to the translation rules proposed in Sec-
tion 3.1, the corresponding data array march test is
reported in Figure 5.

↑S−1
α=0↑

k
i=1 w(αti, DB)

M0

;

↑S−1
α=0↑

k
i=1 r(αti, DB), w(αti, DB), w(αti, DB)

M1

;

↑S−1
α=0↑

k
i=1 r(αti, DB), w(αti, DB)

M2

;

↑S−1
α=0↑

k
i=1 r(αti, DB), w(αti, DB), w(αti, DB)

M3

;

↑S−1
α=0↑

k
i=1 r(αti, DB)

M4

Figure 5. Data Array March C– for a k-way set-
associative cache

The complexity of the test is expressed by eq. 2
where S is the number of sets of the cache, k is the
number of ways (i.e., cache lines per set), #ME is the
number of march elements composing the march test
and #OPMEj is the number of operations composing
the jth march element (in the original march test):

Cdata =

#MEX
j=1

h
#OPMEj · k · S

i
= kS
M0

+ 3kS
M1

+ 2kS
M2

+ 3kS
M3

+ kS
M4

= 10kS

(2)

Looking at eq. 2 it is possible to note that the com-
plexity of the new generated march test, in terms of
memory operations, is equivalent to the original one.
In fact a k-way set-associative cache with S sets is
equivalent to a conventional memory with N = k · S
memory words. In our example we started from a 10N
march test and after the translation process we obtained
a 10kS march test equivalent in terms of complexity.

The directory array translation is more complex, due
to the introduction of the re-ordering sequences and to
the different translation rules depending on the write
policy of the cache. Figure 6 and Figure 7 propose the
March C– translated to test the directory array of a
generic k-way set-associative cache with write-trough
and write-back write policy respectively.

↑S−1
α=0↑

k
i=1 w(αti, DB)dw(αti, DB)e

M0

;

↑S−1
α=0↑

k
i=1 r(αti, DB)RO(Pt̄i

), w(αti, DB)dw(αti, DB)e

RO(Pti
), w(αti, DB)dw(αti, DB)e

M1

;

↑S−1
α=0↑

k
i=1 r(αti, DB),RO(Pt̄i

), w(αti, DB)dw(αti, DB)e
M2

;

↑S−1
α=0↑

k
i=1 r(αt̄i, DB)RO(Pti

), w(αti, DB)dw(αti, DB)e,

RO(Pt̄i
), w(αti, DB)dw(αti, DB)e)

M3

;

↑S−1
α=0↑

k
i=1 r(αt̄i, DB)

M4

Figure 6. Directory Array March C– for a write-
through k-way set-associative cache

↑S−1
α=0↑

k
i=1 w(αti, DB), w(αti, DB)

M−1

;

↑S−1
α=0↑

k
i=1 w(αti, DB)

M0

;

↑S−1
α=0↑

k
i=1 r(αti, DB)RO(Pt̄i

), w(αt̄i, DB),

RO(Pti
), w(αti, DB)
M1

;

↑S−1
α=0↑

k
i=1 r(αti, DB),RO(Pt̄i

), w(αt̄i, DB)
M2

;

↑S−1
α=0↑

k
i=1 r(αt̄i, DB)RO(Pti

), w(αti, DB),

RO(Pt̄i
), w(αt̄i, DB)
M3

;

↑S−1
α=0↑

k
i=1 r(αt̄i, DB)

M4

Figure 7. Directory Array March C– for a write-
back k-way set-associative cache

Using the same formalism used for the data array
we can compute the complexity of the directory array
march test according to eq. 3 where #WriteMEj

denotes the number of write operations contained in
the jth march element of the original march test. This
term has to be included only in case of write-through
cache in order to consider the extra write operations
performed in main memory.

Cdir=

#MEX
j=1

2664
0BB@#OPMEj

write−throughz }| {
+#WriteMEj

1CCA · k · S + CROj

3775

+

write−backz }| {
2 · k · S

(3)

CROj is the complexity introduced by the re-
ordering sequences in the jth march element and can

82

be computed according to eq. 4 where AOj represents
the addressing order of the jth march element in the
original test.

CROj =

(#OPMEj−1)S

k−1X
i=1

i

if AOj =⇑ and j = 1

or
AOj = AOj−1

#OPMEjS

k−1X
i=1

i

if AOj =⇓ and j = 1

or
AOj 6= AOj−1

(4)

By applying this calculation to the march tests of
Figure 6 and Figure 7 we obtain the complexities
reported by eq. 5.

Cdirwrite−trough = (10 + 6)kS + 5S

k−1X
i=1

i

Cdirwrite−back = 2kS + (10)kS + 5S

k−1X
i=1

i

(5)

Looking at eq. 5, in both cases we have an increased
complexity due to the extra reads introduced by the re-
ordering sequences. This contribution increases with
the increasing of the number of ways of the cache
(in case of a direct-mapped cache it is equal to
zero). Moreover, in the write-trough case we have an
additional complexity of 6kS due to the additional
write operations performed directly in main memory
(this term is proportional to the number of writes
contained in the original march test) whereas for the
write-back cache we have a fixed overhead of 2kS due
to the additional initialization sequence. In both cases
this overhead can be reduced to zero if the system
under test provides an hardware facility to detect cache
misses (see Section 3).

To conclude our experiments we need to introduce
some considerations about the coverage of the new
tests. By construction the new generated march tests
replicate exactly the same marching sequences of the
original march test thus they guarantee to maintain the
same coverage. There is only one exception to this rule
represented by the introduction of extra read operations
due to the re-ordering sequences. The introduction
of additional read operations can reduce the overall
coverage when dealing with complex dynamic faults.

5. Conclusion

This paper presented a procedure to translate tradi-
tional march tests developed for single chip memories
into equivalent versions to target both the data and
the directory array of a generic k-way set-associative
cache with LRU replacement algorithm. The proposed
translation technique allows to maintain, wherever pos-
sible, the same coverage and tries to minimize the

overhead in term of complexity. Moreover it can be
applied to cache memories with both write-back and
write-through policy.

Future works will include the consideration of new
fault models specifically designed for cache memory
and the extension of our methodology to caches with
different replacement algorithm (e.g. pseudo-random,
pseudo LRU, etc.).

References
[1] R. Stacpoole and T. Jamil, “Cache memories,” Poten-

tials, IEEE, vol. 19, no. 2, pp. 24–29, Apr/May 2000.

[2] W. Pei, W.-B. Jone, and Y. Hu, “Fault modeling and
detection for drowsy sram caches,” Computer-Aided
Design of Integrated Circuits and Systems, IEEE Trans-
actions on, vol. 26, no. 6, pp. 1084–1100, June 2007.

[3] R. Raina, R.; Molyneaux, “Random self-test method
applications on powerpcTMmicroprocessor cachestm
microprocessor caches,” in VLSI, 1998. Proceedings of
the 8th Great Lakes Symposium on, 19-21 Feb 1998,
pp. 222–229.

[4] T. Verhallen and A. van de Goor, “Functional testing
of modern microprocessors,” in Design Automation,
1992. Proceedings. [3rd] European Conference on, 16-
19 Mar 1992, pp. 350–354.

[5] A. Van De Goor, “Using march tests to test srams,”
Design & Test of Computers, IEEE, vol. 10, no. 1, pp.
8–14, Mar 1993.

[6] J. Sosnowski, “In-system testing of cache memories,”
in Test Conference, 1995. Proceedings., International,
21-25 Oct 1995, pp. 384–393.

[7] S. Al-Harbi and S. Gupta, “A methodology for trans-
forming memory tests for in-system testing of direct
mapped cache tags,” in Proceedings. 16th IEEE VLSI
Test Symposium, 1998., 26-30 Apr 1998, pp. 394–400.

[8] A. Van De Goor, I. Tlili, and S. Hamdioui, “Convert-
ing march tests for bit-oriented memories into tests
for word-oriented memories,” in Memory Technology,
Design and Testing, 1998. Proceedings. International
Workshop on, 24-25 Aug 1998, pp. 46–52.

[9] J. Bhandarkar, D.; Ding, “Performance characterization
of the pentium pro processor,” in Third International
Symposium on High-Performance Computer Architec-
ture, 1997, 1-5 Feb 1997, pp. 288–297.

[10] A. van de Goor and Y. Zorian, “Effective march algo-
rithms for testing single-order addressed memories,” in
Design Automation, 1993, with the European Event in
ASIC Design. Proceedings. [4th] European Conference
on, 22-25 Feb 1993, pp. 499–505.

83

