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March Test Generation Revealed
Alfredo Benso, Senior Member, IEEE, Alberto Bosio, Member, IEEE, Stefano Di Carlo, Member, IEEE,

Giorgio Di Natale, Member, IEEE, and Paolo Prinetto, Member, IEEE

Abstract—Memory testing commonly faces two issues: the characterization of detailed and realistic fault models and the definition of

time-efficient test algorithms. Among the different types of algorithms proposed for testing Static Random Access Memories,

march tests have proven to be faster, simpler, and regularly structured. The majority of the published march tests have been manually

generated. Unfortunately, the continuous evolution of the memory technology introduces new classes of faults such as dynamic and

linked faults and makes the task of handwriting test algorithms harder and not always leading to optimal results. Although some

researchers published handmade march tests able to deal with new fault models, the problem of a comprehensive methodology to

automatically generate march tests addressing both classic and new fault models is still an open issue. This paper proposes a new

polynomial algorithm to automatically generate march tests. The formal model adopted to represent memory faults allows the definition

of a general methodology to deal with static, dynamic, and linked faults. Experimental results show that the new automatically

generated march tests reduce the test complexity and, therefore, the test time, compared to the well-known state of the art in

memory testing.

Index Terms—Automatic test generation, memory test, memory fault modeling, march tests.
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1 INTRODUCTION

MEMORIES are the predominant majority in semiconduc-
tor device production, with also the fastest growing

technology [1]. The complex nature of their internal
behavior and the very high density of their cell arrays
make memories extremely vulnerable to physical defects.
The challenge of memory testing stems from the difficulty
of defining realistic fault models and designing time-
efficient test algorithms [2].

In the last years, the so-called static faults (i.e., faults
sensitized by the execution of just a single memory
operation) [3] have been the predominant class of fault
models addressed by researchers and the industry. Un-
fortunately, the latest technologies show new faulty beha-
viors like dynamic [4] and linked faults [5] that need to be
considered as well.

March tests [2] are an efficient class of memory tests with
low time complexity and high fault coverage. Several hand-
designed and automatically generated march tests have
been proposed in the literature.

One of the first march test generation algorithms is
presented in [6]. It is based on the notion of a transition tree
where each path from the root to a leaf corresponds to a
certain march test able to cover a target set of faults. The
main drawback of this approach is that the transition tree is

unbounded and the search process is of exponential
complexity in general. Several improvements to this
technique have been proposed. Zarrineh et al. [7] restricts
the search process to the parts of the tree where a solution
exists using the notion of primitive march tests, whereas in
[8], a branch-and-bound approach and a fault-collapsing
procedure are used to limit the search space. Al-Harbi and
Gupta [9] applies the methodology presented in [8] to
generate march tests detecting linked faults. The generation
process is not detailed, and only one march test is generated.

All these solutions consider a limited set of static fault
models, and the extension to new faults is complex.
Niggemeyer and Rudnick [10] presents a generation
algorithm for the test and diagnosis of memory faults based
on a fault description able to model the complete set of
single-cell and two-cell static faults. It suffers from the same
problems as [6] since it is still based on transition trees, but
it theoretically allows covering all possible static faults,
even if only stuck-at faults (SAFs), transition faults (TFs),
and idempotent and inversion coupling faults (CFid and
CFinv) are considered in the paper.

Wu et al. [11] presents a completely different approach,
named Test Algorithm Generation by Simulation (TAGS).
Several known march tests of different lengths are
generated, and their fault coverage is evaluated using the
RAMSES fault simulator [12]. The approach allows high
flexibility in terms of fault models, but its complexity is still
exponential since it requires an exhaustive search. The
authors also propose heuristics to overcome the complexity
issue, but in this case, they cannot guarantee the optimality
of the results.

In [13], we presented a generation algorithm based on a
Test Pattern Graph (TPG) to model static memory faults.
The generation problem is thus a search problem on the
graph. The main contribution of [13] is the extended set of
addressed functional faults. Its main drawback is the
computational complexity that reduces the number of total
faults that can be included in the target fault list.
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In [14], we introduced a generation algorithm able to
manage both static and dynamic unlinked faults. It is based
on a graph representation where the set of edges represents
the fault models. March tests are generated by traversing
each edge of the graph. Despite its effectiveness, the
proposed approach lacks of a rigorous formalization, and
in the worst case, it has a nonpolynomial complexity.

In this paper, we propose a new approach to auto-
matically generate march tests targeting static, dynamic,
and linked faults. The main contributions of this work are,
from one side, a formal fault model representation that
extends the fault primitive notation proposed in [3] and a
completely new march test generation algorithm with a
polynomial complexity that strongly reduces the generation
time.

The paper is organized as follows: Section 2 introduces
the memory model and the fault model used to automati-
cally generate the march test, whereas Section 3 details the
steps of the automatic generation process. Section 4 presents
the results obtained by using the proposed algorithm.
Section 5 proposes some optimizations, and finally, Section 6
summarizes the main contributions of the paper.

2 FORMAL MODELS

The generation algorithm proposed in this paper relies on
the use of formal models to describe both the good and the
faulty memory behaviors.

2.1 Memory Model

This section introduces the formal model adopted to
represent the memory under test. In this paper, we focus
on bit-oriented memories only. The extension of the
obtained march tests to word-oriented memories can be
easily done according to the algorithm proposed in [15].

Definition 1. An N-cell 1-bit memory can be formally defined as
a 4-upla:

hA;N;M;X0i; ð1Þ

where

. A ¼ f0; 1g is the set of possible states of a memory cell,

. N is the number of cells,

. M ¼ ðc0; c1; c2; . . . ; cN�1Þjci 2 A; 0 � i � N � 1 i s
the array of N cells, and

. X0 ¼ fri; widj0 � i � N � 1; d 2 Ag is the set of
possible memory operations, where ri means a read
operation on the cell i, whereas wid means a write
operation of the value d 2 A on the ith cell.

The behavior of an N-cell 1-bit memory (Definition 1) can
be formally represented by an Edge-Labeled Directed
Graph (ELDG) G defined as

G ¼ ðV ;E; LeÞ; ð2Þ

where

. V is the set of 2N vertices representing the possible
states of the memory,

. E ¼ fðu; vÞju; v 2 V g is the set of edges, each one
representing one of the possible memory opera-
tions that cause the transition from a vertex u to a
vertex v, and

. Le : E ! flabelsg is a label function that maps edges
to labels, where given the edge ðu; vÞ, the corre-
sponding label is defined as follows:

label ¼ x=k; ð3Þ

where

– x 2 X0 (Definition 1) is the memory operation
able to fire the transition from u to v, and

– k 2 f0; 1; Ug is the corresponding memory out-
put, where the symbol U denotes the unknown
value at the memory data output signals when a
write operation is performed.

The proposed model is a modification of the mealy
automata model proposed in [16]. The use of the ELDG
allows modeling faulty situations where the result of a read
operation is incorrect even if the content of the memory is
correct. These situations were not representable using the
model presented in [16].

As an example, Fig. 1 shows the model of a two-cell
memory where the letters i and j are used to identify the
first and the second cell, respectively. The ELDG has four
states corresponding to the four possible combinations of
the values stored into the cells. For the sake of readability,
edges having the same initial and final state have been
represented as a single edge with multiple labels.

2.2 Fault Model

This section introduces the formalism used to represent the
target memory functional faults. Faults are modeled
starting from Faulty Behaviors (FBs), i.e., deviations of the
memory behavior from the expected one. An FB is
expressed using the following notation:

. Di represents a faulty value D 2 A (Definition 1)
stored in the cell i.

. Ri
D represents an erroneous output D 2 A

(Definition 1) obtained while reading the content of
the cell i. This formalism is needed to represent classes
of faults where a read operation returns an erroneous
value, while the content of the memory cell is correct.
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For example, 0i means that the ith cell assumes an

erroneous value 0, while Ri
1 means that a read operation on

cell i returns the value 1 even if the content of the cell is 0.
The set of faulty memory cells involved in the faulty

behavior is called f-cells. Based on the f-cells cardinality

ðjf-cellsjÞ, faults can be clustered into the following classes:

. Single-cell faults ðjf-cellsj ¼ 1Þ.

. Two-cell faults ðjf-cellsj ¼ 2Þ. In this case, we can
distinguish between an aggressor cell ða-cellÞ and a
victim cell ðv-cellÞ. The former is the cell that
sensitizes the FB, and the latter is the cell that shows
the effect of the FB;

. Multiple-cell faults ðjf-cellsj � 2Þ. Not all multiple-cell
faults are detectable using march tests. Our model
allows describing multiple-cell faults, but the pro-
posed generation algorithm will be able to produce
results only for those faults detectable using march
tests, i.e., faults described by two-cell FBs sharing the
same aggressor cell, for example, three-cell linked
faults [5].

An FB is sensitized by the application of a sequence of

stimuli on the f-cells. A stimulus S is composed of an initial

condition C of the f-cells, followed by an optional sequence

of memory operations op1; op2; . . . ; opm:

S ¼ ðC; op1; op2; . . . ; opmÞjopi 2 X;m � 0; ð4Þ

where

. C¼ðs1; s2; . . . ; skÞjsi2A[f�g, 1�k�jf-cellsj, where
si identifies one of the f-cells, and “�” denotes a don’t
care condition, i.e., the initial value of that cell does not
influence the faulty behavior,

. opi 2 X ¼ X0 [ fridj0 � i � N � 1; d 2 Ag, where X0

is defined in Definition 1, and rid is a read-and-verify
operation performed on the ith cell. The value d
means “read the content of the cell i and verify that its
value is equal to d.” The sequence of memory
operations can be omitted when an FB is sensitized
just by the f-cells being in a certain condition (e.g.,
State Coupling fault [17]).

According to the number of operations in the

sequence ðmÞ, the fault is classified as Static ðm � 1Þ or

Dynamic ðm > 1Þ.
Examples of possible stimuli are the following:

. S ¼ 0i corresponds to an FB sensitized by the state of
the faulty cell i equal to 0.

. S ¼ �, wi1corresponds to an FB sensitized by writing
1 into the faulty cell i, regardless of the current state
of the cell.

. S ¼ 1i, wi1r
i corresponds to an FB sensitized by a

write operation of the value 1 on the faulty cell i,
immediately followed by a read operation on the
same cell. In this case, the FB is sensitized only if the
two operations are applied starting with the cell i
containing the value 1.

Definition 2. A Functional Fault Primitive (FFP) represents

the difference between an expected (fault-free) and the observed

(faulty) memory behavior under a set of performed operations,
denoted by

FFP ¼ hS=FBi; ð5Þ

where S (4) and FB represent a stimulus and a faulty behavior,
respectively.

A functional memory fault model is a nonempty set of
FFPs. For example, the Inversion Coupling Fault (a transition
performed on an aggressor cell a causes the inversion of the
logic value stored in a victim cell v [2]) can be described by
the following two FFPs:

Cinv ¼
�
FFP1 ¼ h0a0v; wa1|fflfflfflffl{zfflfflfflffl}

S

= 1v|{z}
FB

i;

FFP2 ¼ h0a1v; wa1|fflfflfflffl{zfflfflfflffl}
S

= 0v|{z}
FB

i
�
:

ð6Þ

3 AUTOMATIC TEST GENERATION METHODOLOGY

The proposed march test generation methodology is based
on the functional memory model introduced in Section 2.1
and on the definition of functional faults in terms of FFPs
(Section 2.2). The main steps of the generation process are
summarized as follows:

1. Fault list representation. Translate each FFP in the
fault list into an “operational” representation of the
faulty behavior, referred to as Addressed FFP, or
AFFP (Section 3.1).

2. Test pattern (TP) generation. Generate the set of TPs
able to cover each AFFP. Each TP is represented by
an additional edge on the ELDG modeling the
memory (Section 3.2).

3. March test generation. Traverse the ELDG to generate
the march test.

3.1 Fault List Representation

The FFP formalism describes the conditions to sensitize
and detect FBs by considering the f-cells only. It does not
consider the actual position of these cells in a generic
N-cell memory. To map an FFP into a generic N-cell
memory model, we therefore introduce the concept of
AFFP. An AFFP is an instantiation of an FFP with an
explicit indication of the addresses of the involved cells
and both the faulty and the fault-free final memory state,
after applying the stimulus S defined in the FFP (see
Definition 2). The AFFP formalism strictly depends on
both the number of memory cells involved in the fault
ðjf-cellsjÞ and on the size N of the target memory. It can be
formalized as

AFFP ¼ hI; Es; Fv; Gvi; ð7Þ

where

. I ¼ ði0; i1; i2; . . . ; iN�1Þjik 2 A [ f�g, 0 � k � N � 1 is
the initial state of the memory, i.e., the values stored
in the N cells of the target memory as defined by the
initial conditions of the FFP. The first value
corresponds to the less significant bit (i.e., the
memory cell with the lowest address).
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. Es ¼ ðop1; op2; . . . ; opmÞjopi 2 X, 1 � i � m is the
sequence of m operations, performed on the aggres-
sor cell, needed to sensitize the fault, according to
the stimulus defined in the FFP. Each operation
belongs to the alphabet X defined in (4).

. Fv ¼ ðf0; f1; . . . ; fN�1Þjfk 2 A [ fUg, 0 � k � N � 1
are the logical values (faulty state) stored in the
memory cells after applying Es in case of a faulty
memory.

. Gv ¼ ðg0; g1; . . . ; gN�1Þjgk 2 A [ fUg, 0 � k � N � 1
are the logical values (expected state) stored in the
memory cells after applying Es on a fault-free
memory.

SinceN does not necessarily corresponds to the number of

involved faulty memory cells ðjf-cellsjÞ, each FFP can

generate several AFFPs. For example, considering the

Inversion Coupling fault FFPs defined in (6) applied to the

two-cell memory represented in Fig. 1 ðN ¼ 2; i ¼ address

of the first cell; j ¼ address of the second cellÞ, we obtain the

following AFFPs:

FFP1 ¼ 0a0v; wa1=1v
� � AFFP1 ¼ 00; wi1; 11; 10

� �
;

AFFP2 ¼ 00; wj1; 11; 01
D E

;

8<
:

FFP2 ¼ 0a1v; wa1=0v
� � AFFP3 ¼ 01; wi1; 10; 11

� �
;

AFFP4 ¼ 10; wj1; 01; 11
D E

:

8<
:

ð8Þ

3.2 Test Pattern Generation

From an AFFP, it is easy to define the sequence of memory

operations, TP, used to detect the corresponding faulty

behavior as

TP ¼ hAFFP;Osi; ð9Þ

where AFFP is the target AFFP, and Os ¼ fridg is the read-

and-verify operation (4) performed on the victim cell,

needed to observe the fault effect.
For example, the four AFFPs defined in (8) are covered by

the following TPs in a two-cell memory:

AFFP1 ¼ 00; wi1; 11; 10
� �

! TP1 ¼ 00; wi1; 11; 10
� �

; rj0

D E
;

AFFP2 ¼ 00; wj1; 11; 01
D E

! TP2 ¼ 00; wj1; 11; 01
D E

; ri0

D E
;

AFFP3 ¼ 01; wi1; 10; 11
� �

! TP3 ¼ 01; wi1; 10; 11
� �

; rj1

D E
;

AFFP4 ¼ 10; wj1; 01; 11
D E

! TP4 ¼ 10; wj1; 01; 11
D E

; ri1

D E
:

ð10Þ

Each TP can be represented by an additional directed edge

(faulty edge) from the state I to the state Gv defined in (7) on

the memory model introduced in Section 2.1. The faulty

edge label is defined as Es, Os, where Es is the sequence of

sensitizing operations, and Os is the read-and-verify

operation required to detect the fault, as defined in (7)

and (9), respectively. The ELDG including the faulty edges

is named Pattern Graph (PG) and is defined as

PG ¼ ðV ;E [ F;Le [ LfÞ; ð11Þ

where each vertex v 2 V is associated to one of the 2N

memory states (1), E is the set of edges modeling the fault-

free memory (1), F is the set of faulty edges, Le is the label

function for the fault-free edges (2), and Lf is the label

function for the faulty edges.
It is clear that considering a real N-cell memory, the

complexity of the model explodes due to the number of

nodes of the PG. Anyway, a march test covering an n-cell

fault can detect the same fault on any memory of size

N � n [2]. In general, the minimum number of required

states of the PG can be defined as 2MaxF , where MaxF is

the maximum number of faulty cells involved in the FFPs

defined in the fault list. As stated in Section 2.2, the

proposed algorithm is designed to work with faults

described by two-cell FBs only, thus requiring a four-

state PG.
Fig. 2 shows the PG (named PGCF in the sequel)

modeling the four TPs defined in (10). Bold edges represent

the faulty edges.

3.3 March Test Generation Algorithm

In this section, the PG introduced in Section 3.2 is used to

generate a march test detecting the set of faults described in

the graph.

Definition 3. A march test consists of a sequence of march

elements (MEs). An ME consists of a sequence of operations

applied to each cell in the memory based on a given addressing

order (AO) (* for the up AO, + for the down AO, and m for

any AO) [2].

The generation problem consists of finding a sequence of

TPs (i.e., memory operations) able to detect the target set of

memory faults while respecting the definition of march test

(see Definition 3).

Definition 4. Given an ELDG G ¼ ðV ;E; LeÞ, a directed path

ðv0; viÞ with v0, vi 2 V is an ordered sequence of vertices and

edges ðv0; e0; v1; e1; . . . ; vi�1; ei�1; viÞ, where each edge ej 2 E

BENSO ET AL.: MARCH TEST GENERATION REVEALED 1707
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is incident from vj and incident to vjþ1 ð0 � j < i� 1Þ. We
represent a directed path as

DP ¼ ðv0; ‘‘e0’’; ‘‘e1’’; . . . ; ‘‘ei�1’’Þ; ð12Þ

where v0 is the starting vertex, and ‘‘e0’’; ‘‘e1’’; . . . ; ‘‘ei�1’’ is
the ordered set of edges that have to be traversed in order to
reach the final vertex of the path.

Considering a PG representing a faulty memory (11) and
considering that each faulty edge in the PG represents a TP
able to detect one of the FFPs in the target fault list, the
problem of generating a march test is equivalent to the
problem of finding a directed path in PG (i.e., a sequence of
TPs) traversing all the faulty edges. The labels on the edges
of the path represent the operations needed to sensitize and
to observe the target faults. This sequence of operations has
to respect the march test definition (see Definition 3).

For example, let us consider the PG in Fig. 3, where
faulty edges are in bold.

A directed path starting from the state “00” and
including all the faulty edges is

DP ¼ ð00; ‘‘wj
1r

j; ri0’’; ‘‘wj
0’’; ‘‘ri; rj0’’; ‘‘wi1; r

j
0’’; ‘‘wj

1; r
i
1’’Þ: ð13Þ

The sequence of operations identified by DP does not
identify a march test since it is not composed of operations
applied on every memory cell before considering the next
sequence (MEs). From this consideration, it is clear that only
a subset of the possible directed paths traversing the faulty
edges actually identifies a march test. The goal of the
proposed algorithm is to find a minimal directed path in the
PG (i.e., a DP where faulty edges are traversed only once)
that can be converted into a march test.

To solve this problem, we have to formalize the
conditions that make possible the transformation of a
directed path into a march test.

Let us consider the following ME: * ðr0w1Þ. It identifies
the following sequence of memory operations: ðr0

0; w
0
1; r

1
0;

w1
1; . . . ; rN�1

0 ; wN�1
1 Þ. The sequence includes the operations

composing the ME repeated N times, one per memory cell
in ascending order, i.e., starting from cell 0 to cell N � 1.

The order in which cells are addressed corresponds to
the AO of the ME. From this example, the following lemma
is clear.

Lemma 1. A Sequence of Memory Test Operations (SMTO)
is march-able (i.e., it can be transformed into an ME) if and
only if it can be described by the same set of operations repeated
on every cell of the memory in a given order.

In order to generate a march test, we try to build one ME
at a time. This procedure consists of traversing the edges of
the PG in such a way that the labels on the edges identify a
march-able SMTO. When a march-able SMTO cannot be
further expanded i.e., no other faulty edges can be traversed
without violating the march-ability constraint, it is trans-
lated into an ME by specifying its AO (“* ” if the sequence
of addresses in the SMTO starts from the address 0 and “+ ”
if the sequence of addresses in the SMTO starts from the
address N � 1). The algorithm exits when all faulty edges
are traversed.

In this paper, we consider only classical up and down
AOs. For this reason, we cannot generate tests detecting
fault models requiring a specific AO to be sensitized (e.g.,
the fault model proposed in [18]). The extension to
additional AOs can be considered by increasing the number
of states of the PG in order to be able to model the required
sequence of addresses and by modifying the way the AO is
determined, thus increasing the complexity of the genera-
tion process.

To understand how the algorithm traverses the PG, some
additional definitions are required.

Definition 5. FEv is the set of faulty edges incident from the
state v. FEv ¼ fTP jI ¼ vg. It represents the set of TPs
(Section 3.2) having the initialization state I (7) equal to the
state v.

Referring to the example in Fig. 3, we have four sets
of faulty edges: FE00 ¼ f‘‘wj

1r
j; ri0’’; ‘‘ri; r j0 ’’; ‘‘wi1; r

j
0 ’’g,

FE01¼f�g, FE10 ¼ f‘‘wj
1; r

i
1’’g, and FE11 ¼ f�g.

Definition 6. FEi
v is the set of faulty edges incident from state v,

with an aggressor cell equal to i, 0 � i � N � 1, FEi
v ¼

fTP jI ¼ v; a-cell ¼ ig (Section 3.2). It represents the subset
of TPs having the initialization state equal to state v and the
aggressor cell address equal to i.

According to Definition 6, we can split the set FEv into
several subsets, each one identified by an aggressor cell,
and we can define FEv in terms of FEi

v as

FEv ¼
[N�1

i¼0

FEi
v: ð14Þ

Referring to the example in Fig. 3, we can build the
following sets of faulty edges:

FEi
00 ¼ ‘‘ri; r j0 ’’; ‘‘wi1; r

j
0 ’’

n o
; FEj

00 ¼ ‘‘wj
1r

j; ri0’’
n o

;

FEi
10 ¼f�g; FE

j
10 ¼ ‘‘wj

1 ; r
i
1’’

n o
:

ð15Þ

Definition 7. FEi
v1!v2

is the set of faulty edges incident from the
state v1 and incident to the state v2, with an aggressor cell
equal to i, 0 � i � N � 1, FEi

v1!v2
¼ fTP jI ¼ v1; G ¼ v2;

a-cell ¼ ig (Section 3.2).
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It represents the set of TPs with the same aggressor cell and
for which the application of the sensitizing operations changes
the memory state from v1 to v2.

We call transition a TP that belongs to FEi
v1!v2 with

v1 6¼ v2, while we call loop a TP that belongs to FEi
v1!v2 with

v1 ¼ v2.

As an example, let us consider the two TPs, TP1 ¼
hh00; wi1; 11; 10i; rj0i and TP2 ¼ hh00; ri; 01; 00i; rj0i. Both TP1

and TP2 have the same aggressor cell ðiÞ. After applying
TP1, the memory state changes from 00 to 01. According to
Definition 7, TP1 is a transition, while TP2 is a loop.

We can define FEi
v in terms of FEi

v1!v2 as

FEi
v ¼ FEi

v!v

zfflfflffl}|fflfflffl{Loops [ [
8vj 6¼v

FEi
v!vj

h izfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{Transitions
0
BB@

1
CCA: ð16Þ

We actually split the set of faulty edges into two sets: the
former representing the set of faulty edges incident from v
and incident to v (the loops set) and the latter being the
union of the sets of faulty edges incident from v and
incident to a node vj different from v (the transition set).

Definition 8. We define the cardinality of a set FEv (written as
#ðFEvÞ) as the number of elements in the set and the cost ($)
of a set FEv as

$ðFEvÞ ¼
XN�1

i¼0

$ FEi
v

� �
: ð17Þ

The cost of the ith component FEi
v is defined as the cost of the

loop set ðFEi
v!vÞ plus the cost of the transition set:

$ FEi
v

� �
¼ $ FEi

v!v
� �

þ
X
8w2H1

$ FEi
v!wjw 6¼ v

� �
; ð18Þ

where H1 is the set of nodes reachable from v by traversing a
single faulty edge.

The cost of the loop set corresponds to its cardinality:
$ðFEi

v!vÞ ¼ #ðFEi
v!vÞ. The cost of the transition set is

defined as 0 if the set is empty and as 1 plus the cost of the
ith component of the destination state if the set is not
empty. The value 1 represents the cost of the operation
needed to move from state v to state w:

$ FEi
v!w

� �
¼ 1þ $ FEi

w

� �
if # FEi

v!w
� �

> 0;
0 if # FEi

v!w
� �

¼ 0:

	
ð19Þ

We now have all the elements and the definitions
required to present the generation algorithm, whose main
steps are summarized in Fig. 4 and described in the
following.

The first operation required by the algorithm (step 1 in
Fig. 4) is to select the initial state. Due to the march test
characteristics (see Definition 3), the only valid initial states
are the ones with all memory cells initialized with the same
value (i.e., all “0” or all “1”). Among them, the algorithm
chooses the state V with the maximum number of faulty
edges incident from it, i.e., maxð#ðFEvÞÞ8v. An empty ME
is initialized (step 2 in Fig. 4). At this point, no AO is
specified for the current ME. The algorithm has to select one
faulty edge ðfeÞ incident from the current state V (step 4 in
Fig. 4).

To select the new fe the get_fe function is invoked
(Fig. 5). This function identifies the FEi

V (see Definition 6)
with the maximum cost (step 2 in Fig. 5). Since no AO is still
selected and since we consider classic up and down AOs
only, the only choice the algorithm has to generate a march-
able sequence of operations (see Lemma 1) is to select an fe
with an a-cell equal to the first or to the last cell of the given
memory model.

First, the algorithm tries to select a loop that still needs to
be traversed (if more than one loop exists, then the choice is
random) (steps 16 and 17 in Fig. 5); otherwise, one of the

BENSO ET AL.: MARCH TEST GENERATION REVEALED 1709

Fig. 4. March test generation algorithm.

Fig. 5. Function get_fe ðFEvÞ: returns the selected fe.



transitions is selected (again, the choice among the transi-

tions is random) (steps 19 and 20 in Fig. 5). The selected

faulty edge automatically determines the AO (steps 3-7 in

Fig. 5). From this point to the end of the ME generation,

only operations performed on the first cell of the identified
addressing sequence (the first cell in case of * and the last

cell in case of + ) can be added (steps 9-13 in Fig. 5).
This constraint guarantees that the resulting ME is a

march-able SMTO (see Lemma 1). Every time a faulty edge

is traversed, the operations in its label are added to the ME

(step 11 in Fig. 4). If not already present in the ME (due to

previous operations), also the read-and-verify operation

needed to observe the fault is added. At this point, the new

memory state is calculated according to the fault-free

memory model (step 12 in Fig. 4), and the faulty edge is

deleted from the graph (the fault is detected) (step 13 in

Fig. 4).
The ME generation ends if no faulty edges can be

selected from the current state V (step 5 in Fig. 4). Before

completing the generation of the ME (step 7 in Fig. 4), the

close_me function (Fig. 7) is invoked (step 6 in Fig. 4). It

simulates the application of the operations in the ME on

each memory cell of the target memory model. Starting

from V , the initial state of the current ME, each operation is

applied, and the current state is updated according to the

memory model of the fault-free memory (step 2 in Fig. 7). If

during this operation additional faulty edges are traversed,

they are marked as detected and removed from the graph
(step 3 in Fig. 7).

At this point, we have reached the final state of the ME.
The ME is completely defined, and if there are still faulty

edges to traverse (step 15—Fig. 4), the next ME is initialized,

and the process is repeated.
Each time a faulty edge is selected the put_fe_in_me

(Fig. 6) function is invoked to append the faulty edge label

to the ME. Before adding the operations needed to sensitize

and observe the target fault (step 2 in Fig. 6), the function

checks whether the ME already contains the required

operations (step 1 in Fig. 6). If it does, then no operations
are added.

After the sensitizing operations, the read and verify must
be inserted. Two cases may occur:

. The a-cell is equal to the v-cell (i.e., a single-cell fault)
(step 5 in Fig. 6). The read-and-verify operation is
placed after the sensitizing operations (if it does not
already exists) (step 6 in Fig. 6).

. The a-cell differs from the v-cells (i.e., an n-cell fault
with a single aggressor cell and a set of victim cells):

— If a-cell > v-cells and the AO is * (or a-cell <
v-cells and AO is + ) (step 7 in Fig. 6), the read
operation is inserted at the beginning of the ME
(step 8 in Fig. 6).

— Otherwise, the ME is closed, and the read
operation is added as the first operation of the
next ME according to [6] (step 10 in Fig. 6).

The behavior of the algorithm is greedy since it tries to
insert in each ME the highest possible number of faulty
edges. A key point is the faulty edge selection (step 4 in
Fig. 4). The basic idea is to choose the faulty edges from the
FEi

v having the highest cost (step 2 in Fig. 5), where, in fact,
the cost corresponds to the number of loops and transitions.
This actually means selecting the FEi

v allowing the highest
number of movements (transitions) on the PG.

When the current memory state has an empty FEV , the
algorithm needs to move to a new memory state v1 having
the highest $ðFEv1Þ (step 9 in Fig. 4). The function
get_new_state (Fig. 8) performs this operation by traversing
the fault-free edges of the graph and by appending the
corresponding operations (labels) to the ME. In other
words, the algorithm builds an initialization ME to reach
the target state v1.

To better understand the generation algorithm, we will

show its application on the PG in Fig. 3. The initial selected

state is V ¼ 00, since #ðFE00Þ ¼ 3 (00 is the state with the

highest number of faulty edges incident from it). We have

to choose one faulty edge, so we calculate the cost of the

different sets of faulty edges: FEi
00 ¼ f‘‘ri; r

j
0’’; ‘‘wi1; r

j
0 ’’g,

$ðFEi
00Þ ¼ 2, FEj

00 ¼ f‘‘w
j
1r
j; ri0’’g, and $ðFEj

00Þ ¼ 1. The

algorithm chooses FEi
00 (up AO as defined in steps 3-7 in

Fig. 5), and ‘‘ri, rj0’’ (loop set) is selected and added to the

ME, which becomes ðri0Þ with the current memory state still

equal to “00.” At this point, the algorithm chooses the only
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Fig. 6. Function put_fe_in_me (fe, ME).

Fig. 7. Function close_me (ME).

Fig. 8. Function get_new_state(): returns the new memory state.



remaining choice in FEi
00 represented by ‘‘wi1, rj0’’. wi1

(sensitizing sequence) is added to the ME, which becomes

ðri0wi1Þ, while the observation is not required since it is

already present.
The new state is now v ¼ 10. FEi

10 ¼ f�g, so the
algorithm closes the ME and generates the corresponding
ME: * ðr0w1Þ. It then simulates the operations of the ME on
cell j. The simulation shows that also ‘‘wj

1, ri1’’ (from state
“10”) is traversed. The read-and-verify operation performed
on cell i is added to the next ME, which becomes ðri1Þ again
with up AO (step 10 in Fig. 6).

The current state is now v ¼ 11. Since FE11 is empty, the
ME is closed, and the corresponding ME is generated:
* ðr1Þ. We now must change state to “00,” which is the only
state still having faulty edges. The operation to move to
“00” is wi0, it is added to the new ME, which becomes ðwi0Þ
with up AO. The ME is closed, and the corresponding
generated ME is * ðw0Þ. Now, the algorithm traverses the
last faulty edge, and it adds the operations on its label into a
new ME, obtaining an ME equal to ðwj

1r
j
1Þ with down AO. It

also inserts the read-and-verify operation, obtaining an ME
equal to ðr j0w

j
1r

j
1Þ. At this point, all the faulty edges are

traversed, the ME is closed, and the generated ME is
+ ðr0w1r1Þ. The algorithm ends, and the final generated
march test is * ðw0Þ * ðr0w1Þ * ðr1Þ * ðw0Þ + ðr0w1r1Þ, where
the first ME allows initializing the memory in the selected
initial state.

4 EXPERIMENTAL RESULTS

This section reports some experimental results obtained by
applying the proposed generation algorithm to different
fault lists. Tables 1 and 2 report the generated march tests
for different sets of target unlinked static and dynamic
faults. For each march test, we report the name (column 1),
the algorithm (column 2), the complexity in terms of the
number of operations (column 3), and the target fault list
(column 4).

Table 1 reports march tests targeting different sets of
static unlinked faults. Static faults have been deeply studied
in the last years, and all the algorithms generated by the tool
were already published in previous works.

When we move to the more complex dynamic unlinked
faults, the proposed algorithm demonstrates its real value.
In this case, we have been able to generate tests shorter than

the ones already published. We started from the set of
dynamic faults described in [20]. These faults are consid-
ered to be some of the most realistic ones for current
memory technologies.

March AB1 (Table 2), with a complexity of 11n, is able
to detect the entire set of single-cell two-operation dynamic
faults [20]; compared with March RAW1 (13n), which was
manually designed, it guarantees the same fault coverage
but reduces the test length by two operations or
18.18 percent. March AB (Table 2), with a complexity of
22n, is able to detect the entire set of realistic two-cell two-
operation dynamic faults [20]; compared with March RAW
(26n), again manually designed, it provides the same fault
coverage but reduces the test length by four operations or
15.38 percent. Finally, we propose three new march tests,
March AB2, March AB3, and March AB4, generated for
particular subsets of dynamic faults in order to demon-
strate the freedom in choosing the target fault list.

We also applied the proposed algorithm, after applying
the modification to the PG proposed in [22] to model linked
faults, to the set of realistic linked faults presented in [5]. In
Table 3, Fault List #1 includes single-, two- and three-cell
linked faults proposed in [5], whereas Fault List #2 includes
all single-cell linked faults proposed in [5].
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TABLE 1
Generated March Tests for Unlinked Static Faults

TABLE 2
Generated March Tests for Unlinked Dynamic Faults

TABLE 3
Generated March Tests for Linked Faults



We compared our new generated march tests with
already published algorithms targeting the same fault list.
In particular, we considered the following:

. 43n March test [9]. It is automatically generated and
deals only with a subset of faults defined in Fault
List #1.

. 41n March SL [5]. It is the state of the art in the
class of hand-generated march tests. It covers Fault
List #1.

. 23n March MSL [23]. It is automatically generated,
and it reduces the complexity of March SL. It covers
Fault List #1.

. 11n March LF1 [5]. It is one of the most used march
tests, and it is able to cover Fault List #2.

March AB of complexity 22n, targeting Fault List #1,
reduces the test time by 48.8 percent with respect to the 43n
march test, 46.3 percent with respect to March SL, and
4.35 percent with respect to March MSL. Similarly, March
ABL1, which targets Fault List #2, reduces the test length by
18.1 percent with respect to March LF1 (the state of the art
for the same list of faults).

It is relevant to note that using our algorithm, we have
been able to generate a new test, March AB, able to detect
both dynamic and linked faults. Moreover, the same
algorithm is also able to detect the full list of static unlinked
faults detected by the 22n March SS. In all the experiments,
the generation process was shorter than 1 second of CPU
time. All generated march tests have been verified by fault
simulation using the memory fault simulator published in
[24] and [25] to validate the correctness of the test with
respect to the target fault list.

5 OPTIMIZATIONS

March tests are critical components in any ATE-based or
BIST Memory test architecture. In the latter case, it has been
shown that the BIST hardware overhead can be reduced if
the march test shows some particular characteristics such as
uniformity [8] (a constant number of operations in each
ME), symmetry [2] (particularly important on transparent
march tests), or single AO. The proposed march test
generation algorithm already produces, if possible, sym-
metric march tests (see Table 3). Additional constraints can
be very easily added in the generation phase performed by
traversing the ELDG. We successfully implemented the
possibility of generating single-AO march tests, by adding
this additional constraint in the get_fe function (see Fig. 5),
which is the function defining the AO. Using this
optimization, we have been able to generate the single-AO
march test proposed in Table 4. Other constraints can be
easily implemented; the only drawback is that they can lead
to situations where no solutions can be generated.

6 CONCLUSIONS

This paper addresses two very important issues usually
faced by researchers and test engineers in the field of
memory testing. It provides a clear and flexible formalism
to model memories and faulty behaviors, and it proposes an
efficient algorithm to automatically generate march tests.
The flexibility of the fault model formalism allows describ-
ing not only traditional static and dynamic faults but also
linked and user-defined faults. This feature makes the
proposed research very appealing for both memory
manufacturers and users. With respect to previously
presented approaches, our methodology allows generating
shorter march tests in a very low computation time, without
exhaustive searches. The paper presents march tests for the
complete set of static faults and for most of the known
dynamic faults, obtaining both already published and new
test algorithms. What emerges from the experimental
results is the efficiency of the algorithm, which is able to
significantly reduce the march test length and, therefore, the
test time for many significant fault lists. Ongoing research
activities are focusing on the extension of the model to
multiport memory faults and on the possibility of introdu-
cing additional constraints on the generated march tests.
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