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Abstract 

This paper concerns the drag-free and attitude control (DFAC) of the European Gravity field and steady-state Ocean 

Circulation Explorer satellite (GOCE), during the science phase. GOCE aims to determine the Earth’s gravity field with 

high accuracy and spatial resolution, through complementary space techniques such as gravity gradiometry and precise 

orbit determination. Both techniques rely on accurate attitude and drag-free control, especially in the gradiometer 

measurement bandwidth (5mHz to 100mHz), where non-gravitational forces must be counteracted down to 

micronewton, and spacecraft attitude must track the local orbital reference frame with micro-radian accuracy. DFAC 

aims to enable the gravity gradiometer to operate so as to determine the Earth’s gravity field especially in the so-called 

measurement bandwidth (5mHz to 100mHz), making use of ion and micro-thruster actuators. The DFAC unit has been 

designed entirely on a simplified discrete-time model (Embedded Model) derived from the fine dynamics of the 

spacecraft and its environment; the relevant control algorithms are implemented and tuned around the Embedded 

Model, which is the core of the control unit. The DFAC has been tested against uncertainties in spacecraft and 

environment and its code has been the preliminary model for final code development. The DFAC assumes an all-

propulsion command authority, partly abandoned by the actual GOCE control system because of electric micro-

propulsion not being fully developed. Since all-propulsion authority is expected to be imperative for future scientific 

and observation missions, design and simulated results are believed to be of interest to the space community.  

 ©  2008 Elsevier Ltd. All right reserved. 
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1 Introduction: the GOCE mission 

The scientific goal of the European space mission Gravity Field and Steady-state Ocean Circulation Explorer 

(GOCE) is to determine the stationary gravity field U, i.e. gravity anomalies ( ),gΔ θ λ  down to 1 mGal (=10 μm/s2), 

and geoid heights ( ),N θ λ  down to 1 cm, over the Earth’s surface defined by latitude θ and longitude λ at a spatial 

resolution better than 100 km. The geoid is defined as the gravity equipotential surface approximating an ideal ocean 

surface at rest, known as the mean sea level (Figure 1). The geoid heights N refer to an Earth’s reference ellipsoid and 

range from about –100 to 100 m. The geoid is the reference surface for all topography on land, ice and ocean. 
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Figure 1. Earth’s geoid and gravity anomaly 

The gravity anomaly is the difference between the magnitude ( ),g θ λ= g  of the actual gravity on the geoid and 

that of the normal gravity ( )0 0g λ= g  on a reference ellipsoid (Figure 1). Gravity anomalies are the surface mirror of 

the Earth’s interior processes. Geoid heights and gravity anomalies [1], [16], are related to the Earth’s gravitational 

potential U, which can be expanded into complex spherical harmonics ( ),nmY θ λ  of degree n and order m, scaled by 

their complex spectrum nmK  
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where R is the mean Earth radius, μ  is  the Earth gravitational constant, r R h= + , and h is the geodetic height.  

According to [4], the traditional techniques of gravity field determination have reached their intrinsic limits. Any 

advances must rely on space techniques, because only they can provide global, regular and dense data sets of high and 

uniform quality. This concept has lead to space missions like the U.S. GRACE [2], the German CHAMP [3] and the 

European GOCE. The latter will implement three main concepts. 
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1) Precise orbit determination by satellite-to-satellite tracking. A low-Earth orbiter is equipped with a 12 channel 

receiver for the U.S. Global Positioning System (GPS). Taking their orbits and the GPS measurements of the low-

Earth orbiter, the orbit of the spacecraft can be monitored to cm-precision without interruption. Satellite-to-satellite 

techniques are limited by the progressive attenuation of the gravitational field at satellite altitudes, which impedes 

the attainment of high spatial resolution. According to [4] at a low-Earth orbiter altitude 250 kmh =  the signal-to-

noise ratio attains unity in the harmonic expansion of Eq. (1) around degree n=75, corresponding to a half-

wavelength on the Earth’s surface of about / 2 250 kmEλ = .  

2) Satellite gravity gradiometry. An on-board gradiometer measures the components of the gravity gradient tensor 

( )2 , ,U r θ λ= ∇U  exploiting the classical differential approach to elucidate the effect of small-scale features. In this 

way, GOCE, the first gradiometry space mission, is expected to attain a unitary signal-to-noise ratio at a degree 

300n >  in Eq. (1), i.e. at a half-wavelength / 2 70 kmEλ < .  

3) Drag-free and attitude control (DFAC). To extract gravity field components from orbit and gradiometer 

measurements, non-gravitational forces must be compensated by a drag-free control mechanism (see [5], [6], [7] 

[15], [18], [20], and [21]), and the spacecraft attitude must be accurately aligned to the local orbital reference frame 

(LORF), to which gravity measurements will be referred. 

Satellite gradiometry and precise orbit determination by satellite-to-satellite tracking are complementary. By means 

of orbit determination it is possible to reconstruct the lower harmonics of the gravity field, while gradiometry provides 

better performance at medium and high harmonics. The intersection is somewhere close to 15n =  in Eq. (1), according 

to the analysis reported in [4]. This leads to the definition of a Measurement Bandwidth (MBW) for the gradiometer 

measurements, 

 { }1 1 20.005 0.1 Hzf f f= = ≤ ≤ =F , (2) 

i.e. the frequency region in which the measurement accuracy of the gravity gradient U  has to be maximized. In fact, for 

a low-Earth orbiter like GOCE, having an orbital velocity 7.8 km/sOv ≅ , a measurement frequency of 0.1 Hz 

corresponds to an on-ground, spatial half-wavelength of about / 2 78 kmEλ = , compatible with the resolution to be 

achieved, whereas 5 mHz corresponds to an on-ground separation of about 1560 km, which is the half-wavelength of 

the Earth potential harmonics of degree 13n =  in Eq. (1). 

The GOCE satellite will fly on a circular (eccentricity 0.005ε < ) sun-synchronous, dawn-dusk, quasi-polar orbit 

(inclination 96.5i = ° ) at a mean altitude 250 kmh ≅ , corresponding to the orbital rate 
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 / 2 ,  6630 km,   0.19 HzO O O Ov r f r fω π= = ≅ ≅ . (3) 

The launch is planned to take place in autumn 2008 and the overall mission will last at least 20 months. To reduce the 

thermosphere2 drag, the mission will take place during the early ascending leg of the solar activity cycle, whose 

minimum is foreseen to occur in the year 2007. The gradiometer measurements are planned to be collected in two or 

three phases of 6 months each. 

2 The Gravity Gradiometer 

The gravity gradiometer, developed by ONERA, France (see [23]), is an ensemble of three pairs of three-axial (3D) 

electrostatic accelerometers Ai (Figure 2). In each accelerometer a 0.32 kg proof mass is electro-statically suspended 

and actively positioned and aligned at the centre of a cage by means of voltages applied to electrodes machined on the 

internal walls of the cage. Capacitive sensors measure the proof mass displacement relative to the electrodes. The 

control voltages are proportional to the mass accelerations relative to the cage within the closed-loop control 

bandwidth 20 Hzaf ≅ . The 6 accelerometers are mounted two by two on three spacers, which keep the sensor centres 

apart at a fixed distance, the latter being known as the gradiometer baseline. An accelerometer pair AiAj, 14,25,36ij = , 

connected by its spacer, forms a one-axis gradiometer ijG . 
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Figure 2. Layout of the gravity gradiometer. 

On orbit, the cage-mass relative acceleration ,  1,...,6i i =a , to be detected, can be written as  

 ( ) 2i O i i i i i= − + × × + × + × + −a U r ω ω r ω r ω r d p  (4) 

where OU  is the gravity-gradient tensor expressed in LORF coordinates, ir  is the position of the accelerometer centre 

with respect to the satellite centre-of-mass (CoM), the 2nd to 4th terms are the centrifugal, Coriolis and linear 

                                                           
2 The neutral portion of the Earth’s atmosphere between about 90 km to 600 km above the Earth surface is known as the thermosphere. 
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accelerations, respectively, caused by the satellite angular rate ω , d  includes all non-gravitational accelerations acting 

on the spacecraft, and ip  accounts for self-gravity and electro-magnetic coupling. Extraction of the unknowns, namely 

,  OU d  and ω , is accomplished by computing the common-mode and differential accelerations ija  and ijΔa , 

respectively, of each one-axis gradiometer Gij 

 ( ) ( )/ 2,   / 2ij i j ij i jΔ= + = −a a a a a a . (5) 

Each common-mode vector measures the non-gravitational component l =a d  of the spacecraft CoM (linear) 

acceleration, whereas the differential terms measure the gravity gradient tensor OU  and the satellite angular 

acceleration a =a ω . Ideally, separation of non-gravitational acceleration from gravity gradient tensor would imply no 

active drag compensation, except for maintaining altitude. Actually, misalignments and deviations from the nominal 

position generate accelerometer cross-couplings, whose effects on measurement accuracy can only be attenuated by on-

orbit calibration and by active control of the spacecraft accelerations and attitude. Extensive studies have allocated the 

budget shown in  Table 1 to gradiometer error sources [4]. The root mean square (RMS) of the gradiometer error 

components is expressed in milliEötvös ( 12 -21 mE 10  s−= ). 

Table 1 Gradiometer error allocation [mE] 

Total DFAC residuals Spacecraft attitude Instrument Post-flight  

4 1 2 3 1 

3 DFAC technology and design steps 

The paper illustrates the design methodology and the relevant simulated results of the attitude and drag free control 

unit, designed and tested during the design phase as a prototype for the final code development by the prime contractor. 

Drag-free and attitude control aims to enable the gradiometer to operate for the mission’s scientific goals during the six-

month operational phases. Planned or fault-driven transitions from/to other control operations are not treated here (see 

[8]). The DFAC technology is based on the following actuators and sensors. 

1) A pair of ion thrusters, in cold redundancy, for along-track drag compensation (single-axis control). 
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2) Eight micro-thrusters, either electrical or cold-gas, for attitude tracking and compensation of lateral non-

gravitational forces and torque disturbances (five-axis control). In the early design stages electrical propulsion was 

selected instead of cold-gas to meet the low noise constraint3 (Section 4.3). 

3) Gravity gradiometer for linear and angular acceleration measurement. 

4) Two satellite-to-satellite (GPS) receivers, in cold redundancy, for the reference attitude determination from 

spacecraft CoM position and velocity.  

5) Two star-tracker units, in cold redundancy, for attitude determination. 

Sampling rate, range, digital resolution in number of bits and the time-step symbol of each control device are 

reported in Table 2. The following control issue follows from the same Table. 

Control Issue 1. A multi-rate control has to be designed. 

Table 2 DFAC actuators and sensors 

Device Sampling rate Time subscript  Range  Number of bits 

Ion thruster 10Hzif =  i 1.5÷20mN 11 

Micro thruster 2Hzkf =  k 0.002÷1.2mN (*) 10 

Gradiometer 10Hzif =  i 220μm/s±  16  

GPS receiver 1Hzjf =  j Sufficient 32  

Star tracker units 2Hzkf =  k ±1 (quaternion) 32 

DFAC 
c if f=  i NA NA 

(*) The range appears critical also for the forthcoming electrical micro-propulsion. 

NA = not applicable 

 

The DFAC was designed and implemented as an Embedded Model Control, a model/observer based design 

methodology inspired by [10] and treated in [11] (see also [22]). The design focal point is the construction of the 

discrete-time embedded model of the spacecraft to be controlled, and of the environment disturbance to be rejected. The 

model is embedded in the control unit, as the core of measurement and control algorithms.  

Accordingly, the main design steps are the following. 

1) Definition of drag-free and attitude control requirements in terms of some performance variables, derivation of 

sensor and actuator dynamics and noise, formulation of the class of the disturbance to be rejected (Section 4). 

                                                           
3 Actually electrical micro-propulsion, being not mature, was abandoned forcing downsizing of drag-free requirements [19]. Micro-thrusting is kept 

in this paper being the key technology of future drag-free missions. 
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2) Construction of the Embedded (or design) Model made by the controllable and disturbance dynamics, to be 

observable from the measures. Formulation of the control problems in terms of performance variables  and, only 

for attitude control, definition of the reference trajectories of the controllable state variables (Section 5). 

3) Design of the attitude trajectory generator providing the local orbital reference frame (LORF); design of the state 

predictor and eigenvalue tuning to guarantee ‘spacecraft’ closed–loop stability against neglected dynamics. First 

eigenvalue tuning might take advantage of simple input-output operators of the modelling errors (Section 6). 

4) Design of the DFAC algorithms in the form of state-feedback loops on the Embedded Model. Optimal drag-free 

and attitude command allocation  to ion and micro-thruster assembly (Section 7). 

5) Performance and robustness tests on the simulated spacecraft and environment (Section 8). 

In the literature, drag-free and attitude control has been approached in the frequency domain, either employing H∞ 

methodology (see [5] [12], [18], [20] and [21]) or simple PID strategies as in [13]. The frequency domain approach is 

attractive, because DFAC requirements are expressed in the same domain. The proposed formulation is mainly based on 

discrete-time state equations according to the cited methodology. Time-domain is essential for simulation and 

straightforward control algorithm design, implementation, set-up and testing. At first glance, it may appear to contrast 

with DFAC requirements as well as with disturbance classes, which are often formulated in the frequency domain 

through suitable PSD4 (see Table 3 and Figure 5), but the latter can be profitably converted to time domain (see Section 

5). 

4 Control requirements and sensor/actuator dynamics and noise 

This section illustrates the DFAC requirements which are referred to local orbital frame, as well as spacecraft 

dynamics and perturbations. Some details about sensor and actuator dynamics and noise are also provided. The 

resulting dynamic model to be simulated will be referred throughout as the ‘fine model’, as opposed to the design 

model. 

4.1 Reference frames and control requirements 

The inertial frame of the mission is the J2000 Equatorial Reference Frame { }, , ,J J J JO= i j kR . The mission 

measurement frame is the Local Orbital Reference Frame (LORF) { }, , ,O O O OC= i j kR . The origin C is the satellite 

CoM having inertial position r  and velocity =v r . The axes are defined by 

                                                           
4 PSD means the square root of unilateral Power Spectral Densities throughout. 
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 , ,O O O O O
×

= = = ×
×

v r vi j k i j
v r v

. (6) 

In other words, Oi  is aligned with the CoM velocity and points toward motion direction, Oj  is aligned with the orbital 

angular momentum, Ok  is slightly misaligned from r  due to the low orbit eccentricity. The matrix O O O O=R i j k  

is the LORF-to-inertial coordinates transformation, and defines the reference attitude to be tracked by the spacecraft 

during the mission. The orientation error Oe , caused by the on-line estimate ˆ
OR , can be defined as 

 

ˆ ,  

0
0 ,   

0

O O O O O

Oz Oy Ox

O Oz Ox O Oy

Oy Ox Oz

I

e e e
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Δ
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−
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−

R E R E E

E e
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Assuming circular orbit (eccentricity 0.005ε < ), Oe  can be shown to be related to position and velocity estimation 

errors Δr  and Δv  through 
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Figure 3. The Local Orbital Reference Frame. 

The satellite body frame is the Attitude Control Reference Frame { }, , ,C= i j kR , defined by spacecraft geometry and 

mass distribution. The spacecraft is a slender cylindrical body (about 5 m long) having octagonal cross-section with a 

diameter of about 1 m (Figure 4). The axis i  coincides with the cylinder axis and points in the direction of motion. The 

solar panels are hinged on two opposite sides along lines parallel to i , their mean plane defining k . The axis j  
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completes the frame and is positive opposite to the active side of the solar panels. The resulting frame is close to a 

principal axis frame, the products of inertia being less than 1%.  

Solar panel

Micro-thrusters

Micro-thrusters

k

j

Rear view

Solar panel

Ion Thrusters

i

kj

C

3D view

ϕ

ψ

θ

 

Figure 4. 3D view and enlarged rear section of the spacecraft. 

The spacecraft attitude { }, ,x y zq q q=q  is then defined by the body-to-LORF transformation 

 ( ) ( ) ( ) ( )z y xq q q=R q Z Y X  (9) 

where ( ) ( ),  x yq qX Y and ( )zqZ  are the usual roll, pitch and yaw rotations. The body frame is assumed to coincide 

with the gradiometer frame to which acceleration measurements are referred. 

DFAC requirements, reported in Table 3 and derived from the gradiometer error allocation in Table 1, concern: 

1) the residual non-gravitational CoM acceleration in body frame, 

2) the spacecraft angular acceleration a =a ω  and the angular rate ( )T
O OΔ ω= −ω ω R q j , where Oω  is the angular 

rate of the osculating Keplerian orbit, and ω  and ω  are in body coordinates, 

3)  the attitude q  with respect to the LORF,  

4) the LORF orientation error Oe . 

The symbols of the corresponding PSD are listed in Table 3: the underlined symbols, e.g. aS , denote the target 

bounds, which are shown in Figure 5 and are common to all components, whereas a second subscript, e.g. axS , selects a 

single component. The whole control frequency band, from zero frequency (DC) to / 2 5Hzcf = , has been partitioned 

into three regions: 

1) the low-frequency band { }0 1f f= ≤F , 

2) the MBW 1F  and 
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3)  the high-frequency band { }2 2 / 2cf f f= ≤ ≤F . 

Table 3 GOCE drag-free and attitude control requirements 

Variable PSD symbol PSD (RMS) unit 
0F  1F  2F  

la  lS  
22

μm μm 
ss Hz

⎛ ⎞
⎜ ⎟
⎝ ⎠

 
35 (0.5) 0.025 0.2 

a =a ω  aS  
22

μrad μrad 
ss Hz

⎛ ⎞
⎜ ⎟
⎝ ⎠

 
70 (1) 0.025 0.025 

Δω  Sω  μrad μrad 
ss Hz

⎛ ⎞
⎜ ⎟
⎝ ⎠

 
700 (10) 0.5 NA 

q  
qS  ( )μrad  μrad

Hz
 

26000 (370) 7.9 NA 

Oe  OS  ( )μrad  μrad
Hz

 
14000 (200) 4.3 NA 

 

As Table 3 and Figure 5 show, the most stringent requirements refer to MBW (solid lines in Figure 5), whereas 

relaxed requirements pertain to the low-frequency region, where the gravity field is estimated from precise orbit 

determination. The low-frequency bounds, originally expressed as RMS errors (values in brackets), have been 

converted to a constant PSD covering the region from DC to the 2nd orbital harmonics 2 0.4mHzOf ≅ , and are 

extrapolated toward the MBW by a decreasing line (about –40dB/decade steep). The resulting low-frequency bounds, 

shown as dashed lines in Figure 5, turn into requirements, which are more conservative yet reveal performance 

criticalities and margins as the result discussion will clarify (Section 8). 

0.0001 0.01[Hz]
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Figure 5. Piecewise PSD of the GOCE drag-free and attitude requirements. 

The main control issue follows. 
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Control Issue 2. The DFAC must guarantee the target requirements as in Table 3 andFigure 5, under expected 

spacecraft and environment uncertainties. 

4.2 Spacecraft dynamics and perturbations 

4.2.1 Orbital and attitude state equations 

The spacecraft motion is the combination of the inertial CoM orbital motion r  and of the attitude q  with respect to 

the LORF. The state equations of the spacecraft CoM motion are the following: 

 ( ) ( ) ( )

( ) ( )( )

0 0

0 0

( ) ( ),    ( )
( ) , ( ),  ( )

1( ) , , ,

E O l

l d

t t t
t t t t

t t t
m

= =

= − + =

= +

r v r r
v R g R r v R q a v v

a F r v q F

 (10) 

In Eq. (10), ( )EU= ∇g r  is the gravity acceleration converted into inertial coordinates by the Earth-fixed-to-inertial 

transformation ER , dF  is the body vector of the environment forces (mainly thermosphere drag and wind), F  is the 

body force actuated by the command thrusters, la  is the residual non-gravitational acceleration in body coordinates to 

be zeroed by DFAC, 1150kgm ≅  is the spacecraft mass. Drag-free control is only concerned with the last equation, 

written in body frame. The whole CoM dynamics in (10) is the basis for the LORF real-time estimation from GPS 

measurements.  

The attitude kinematics equation is obtained by expressing the angular rate Δω  in body coordinates and is given by 

 ( ) ( ) ( ) 0

0
( ) 0 ( ) ( ),  (0)

0

x

z y y

z

q
q q q t t t

q
Δ+ = =Z Y R q ω q q  (11) 

Under attitude control and neglecting coarse pointing not treated here, Eq. (11) can be simplified to be linear less higher 

order terms ( )2 ⋅o which are significant to simulation but not to design, i.e.  

 ( ) ( )2 0( ) , , (0)t tΔ Δ= + =q ω o q ω q q . (12) 

Finally, the attitude dynamic equation is given by 

 ( )1
0( ) ( ) ( ) ( ) ( ) ,  (0)t t t t tΔ Δ Δ Δ−= − × + + =ω J ω J ω D C ω ω  (13) 

together with the following notations. 

1) The inertia tensor J  holds 
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 2

153 23 6
2691 1  kgm

2653

x xy xz

xy y yz

xz yz z

J J J
J J J
J J J

= = − = −
= = =

=
J . (14) 

2) C  is the body-coordinate command torque which is actuated by the micro-thrusters. 

3) D  is the total environment torque in body coordinates, defined by 

 ( ) ( , , , ) ( ) ( )d g mt t t t= + +D C r v q C C . (15) 

4) dC  includes thermosphere drag and wind torques. 

5) gC  is the gravity gradient torque, which depends on the gravity gradient tensor OU .  Neglecting the products of 

inertia and linearizing around 0=q  leads to the approximation 

 ( ) ( )
( ) ( )

( ) ( )2 3
2( ) , 3 3

0

y z x

T T
g O O O z x y

J J q t
Jt J J q t

r
ω ω

− −
×

−
r rC R q R r v . (16) 

6) mC , the magnetic torque, is the effect of the spacecraft magnetic dipole moment μ , mainly due to ion-thruster 

current, coupled with the Earth’s magnetic field Eb  as follows 

 ( ) ( )( ) ( ) , ( , )T T
m O E Et t t= ×C μ R q R r v R b r . (17) 

Note the gravity gradient torque (16) makes pitch angle yq  locally unstable forcing the slender satellite to align with 

local Earth’s gravity. Stability with respect to LORF is guaranteed by attitude control. To increase survivability, local 

stability is passively reinforced by tail fins, ensuring pitch to remain within fractions of a radian, which is sufficient for 

one-week survival (see [22]). 

4.2.2 Environment forces and torques 

Three environment fields have important effects on the GOCE satellite motion:  

1) the Earth gravitational potential U and its anomalies (n>1 in Eq. (1)) determining the spacecraft orbit, under drag-

free conditions, and the gravity gradient torque gC , 

2) the thermosphere density and velocity field (wind) which couples with the orbital velocity v and the attitude q 

yielding the drag force dF  and torque dC ,  

3) the Earth magnetic field Eb  which couples with the spacecraft magnetic dipole moment μ , yielding the magnetic 

torque mC .  
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Other perturbations like luni-solar gravitation and solar pressure have minor effects. It is outside the scope of this 

paper to deal with the fine models of gravity, drag and magnetic perturbations. A first issue is that these models should 

be accurate enough in a frequency region from DC to / 2 5Hzcf = , to test DFAC performances in a realistic manner. 

Therefore large-scale models have been integrated with small-scale ones, such as those accounting for small-scale 

thermosphere density variations [24]. A second concern stems from environment and spacecraft uncertainties. For 

instance, delayed launch, as  will certainly occur, may severely affect drag magnitude, since this closely depends on 

solar activity. In addition, excessive drag magnitude might not be compatible with electrical propulsion. Uncertainty has 

been approached by defining nominal and worst-case perturbations and spacecraft. The performed analysis has shown 

that worst-case conditions do not affect accuracy performance but increase average and peak thrust, raising Control 

Issue 4 (see Section 4.3.1).  

The time history (about half a day) of the nominal along-track force and the relevant PSD are shown in Figure 6. The 

latter rolls off at about –40dB/decade beyond the 2nd orbital harmonics 2 0.4mHzOf ≅ . 
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Figure 6. The along-track thermosphere drag. Left: time history (abscissa: hours, ordinates: mN). Right: PSD and the 

corresponding target bound (Ordinates: mN/ Hz ) 

Comparison with the residual acceleration bounds reported in Table 3 and in Figure 5, and repeated in Figure 6, 

raises the following Control Issue. 

Control Issue 3. A DFAC bandwidth 2 0.1Hzxf f> =  (see Eq. (2)) is needed to compensate the along-track 

thermosphere drag dxF  below the target bound. A similar comparison suggests that DFAC bandwidths lower than xf  

may be employed for compensating the lateral non-gravitational forces dyF  and dzF  as well as torque perturbations. 

The residual angular acceleration PSD aS  resulting from torque compensation must be compatible with attitude and 

angular rate requirements qS  and Sω  (see Control Issue 7). 
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Table 4 summarizes the expected peak values of the force and torque components under worst-case (delayed launch) 

and nominal conditions (planned launch). 

Table 4 Peak force [mN] and torque [nNm] 

Case 
dxF  dyF  dzF  xD  yD  zD  

Worst 20.5 0.57 1.15 0.24 0.18 0.32 

Nominal 12.8 0.36 0.72 0.07 0.14 0.1 

4.3 Actuator and sensor dynamics and noise 

4.3.1 Thruster dynamics and noise 

Two types of thrusters are employed to actuate the DFAC (see Figure 7): 

1) a pair of ion thrusters, j=1,2, in cold redundancy, to counteract the along-track drag dxF  in a wide frequency band 

from DC (altitude keeping) to MBW; 

2) eight micro-thrusters, j=1,…,8, to counteract lateral non-gravitational forces dyF  and dzF  and to track the reference 

attitude defined by OR . 

k

i j
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ITA 2

MTA 5

MTA 2

MTA 6
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MTA 7

MTA 8

MTA 4

 

Figure 7. Layout of ion-thrusters (ITA 1 and 2) and micro-thrusters (MTA 1 to 8).  

Let ut denote the voltage command of the active ion-thruster and mu  the voltage command vector of the micro-

thrusters. By neglecting their dynamic response, because of small settling times (<100 ms), a static voltage-to-

force/torque relation may be written, depending on thruster geometry, scale factor and noise 



 
 
Acta Astronautica, 2009, 64, p. 325-344, 
 

15 
 

 
0

0

tx mxx

t tty mz ty

m mtz my mz

tq mq

BF
u vB KF

BF

Δ
Δ

Δ

⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠

B
B

u vB K
B BC

. (18) 

In Eq. (18) the force vector F has been decomposed into its components. The entries of the right-hand side first matrix 

depend on thruster geometry, while the prefix Δ indicates entries that should be zero from design. The second diagonal 

matrix contains the voltage-to-force scale factors. Finally vt and vm denote the thruster noise. 

For use in drag-free missions [9], micro-thruster technology should ensure sub-micronewton noise in the MBW. The 

target parameters of the noise PSD are listed in Table 5 and the simulated PSD profiles are compared in Figure 8 with 

the linear acceleration bound of Table 3. 

10
-5

10
-3

10
-1

10
1

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

Frequency [Hz]

 [m
ic

ro
N

/s
qr

t[H
z]

Micro-thrusters 

Ion thruster 

Linear acceleration bound 

 

Figure 8. PSD of the thruster noise. Ordinate: μN/ Hz . 

The number and layout of micro-thrusters (see Figure 7) enables average and peak thrust to be optimized. The 

former is proportional to power consumption, in case of electrical thrusters, or to propellant consumption, in case of 

cold gas. An excessive peak thrust might be very critical also for the forthcoming electrical micro-propulsion. Therefore 

a further Control Issue must be introduced. 

Control Issue 4. The average thrust 
1mu  and the largest peak m ∞

u , defined by   

 
( ){ }

( )

0 ,1 8

8

1 1 0

max

1
m t H j mj

H

m mjj

u t

u d
H

τ τ

≤ ≤ ≤ ≤∞

=

=

= ∑ ∫

u

u
. (19) 

have to be minimized, H  being the longest duration of the gradiometer measurement phases. 

Table 5 GOCE thruster noise requirements 
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Thruster Low frequency  High frequency 

 Region 

[mHz] 

Bound 

mN/ Hz⎡ ⎤
⎣ ⎦  

Region 

[mHz] 

Bound 

mN/ Hz⎡ ⎤
⎣ ⎦  

Ion thruster <2.8 5 >0.28 0.05 

Micro-thruster <0.34 0.5 >0.01 0.0006 

4.3.2 Gradiometer dynamics and noise 

As anticipated in Section 2, the accelerometer signal is the restoring voltage of a small proof-mass, driven by digital 

feedback [23]. A single-degree-of-freedom, simplified state equation of the overall closed-loop dynamics valid from 

MBW to gradiometer control rate (1 kHz) yields: 

 
2

2

0 1 0 0
( ) ( ) ( )

1 1

( ) ( ) ( )

u

y

y

a wx x
t t t

wv p p v

x
y t p p t w t

v

α

α

+
= +

− − −

= +

, (20) 

where x and v are the proof-mass position and velocity, a is the acceleration to be measured, y is the acceleration 

measure, wu is the driving electronics noise and wy is the sensor noise. The closed-loop bandwidth is given by 

( )/ 2 20Hzaf p π= ≅ . By assuming noise components to have constant power spectral densities 2
uS  and 2

yS , the 

spectral density 2S  of the overall noise can be approximated as  

 
4

2 2 2
1( ) ,   u y a

a

fS f S S f f f
f

⎛ ⎞
= + ≤ ≤⎜ ⎟

⎝ ⎠
. (21) 

The PSD of the linear acceleration noise, given in Figure 9, agrees with the approximate expression in Eq. (21), 

showing an increasing slope at higher frequencies ( 2f  noise). The same effect occurs in angular measurements, but it 

becomes significant at higher frequencies. Since gradiometer measures will be transmitted to DFAC at 10Hzcf = , the 

2f noise has to be appropriately filtered in order to avoid aliasing. A closer matching of gradiometer measurements to 

control strategies would have suggested including anti-aliasing in the DFAC chain, by feeding the latter with 

gradiometer raw measurements sampled at 1 kHz. On-board constraints prevented that solution, requiring anti-aliasing 

to be part of the gradiometer processing and raising the following issue.  
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Figure 9. PSD of the gradiometer noise for common-mode (linear) and differential measures (angular). 

Control Issue 5. DFAC strategies must be robust against delays and dynamics of the gradiometer and of the relevant 

data processing. They are aggravated by delays and dynamics of ion and micro-thrusters. 

In addition, as Figure 9 shows, gradiometer measures are affected by random drift and bias. Then, the equation of the 

sampled, real-valued measure ly  of the linear acceleration la can be written as 

 ( ) ( ) ( ) ( )l l l li i i i= + +y a v b  (22) 

where the measurement noise is written as the sum of lb  (drift and bias) and lv  (white and 2f  noise), and i is the 

gradiometer sampling time (see Table 2). A similar equation holds for the angular acceleration measure ay . 

4.3.3 Attitude and position measurements 

Tracking the local orbital frame (LORF) requires a pair of sensors: 

1) CoM inertial position and velocity sensor: two GPS receivers, in cold redundancy, are employed. The vectors 

py and vy  denote the sampled, real-valued position and velocity measurements, corrupted by the measurement 

noise vectors rv  and vv , respectively, as follows 

 ( ) ( ) ( ),   ( ) ( ) ( ) r r v vj j j j j j= + = +y r v y v v , (23) 

j being the GPS sampling time (see Table 2). 

2) Spacecraft inertial attitude sensor: a pair of star trackers, in cold redundancy, are employed. Let 

{ }, , ,s s s sC= i j kR be the instrument frame of the active star tracker. The measurement provided by a star tracker is 

the instrument-to-inertial frame transformation SR , defined by 

 0( ) ( ) ( ) ( )s O s sk k k k=R R R R V  (24) 
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where 0sR  is the calibrated instrument-to-body transformation, sV  is the rotation defined by the instrument 

calibration errors and noise vector sv  (the so-called noise equivalent angle), R  is the attitude matrix and k is the 

star-tracker sampling time (see Table 2). Using notations similar to Eq. (7), sV  can be approximated as 

s sI Δ= +V V . 

Timing and error properties of GPS and star tracker measures are summarized in Table 6 (see also  Table 2). 

GPS measurements are employed to on-line estimate the reference attitude frame OR . The contribution of the raw 

measurement noise rv  and vv  to the LORF orientation error Oe , can be computed from Eq. (8), by imposing rΔ =r v , 

vΔ =v v  and assuming the noise components being white, Gaussian and statistically independent. Then, denoting  the 

PSD of the k-th component of Oe  with OkS , we have 

 ( ) ( ) ( )22

/ 6.5
rad 12 / / 8.5 ,  0.5Hz

2Hz5.5/

r
Ox

Oy j r v
j

Oz v

rS
S f T r v f

T
S v

σ
μσ σ

σ

≅ + ≤ ≤ = , (25) 

having assumed rather conservative values as 30m,  0.03m/sr vσ σ= =  (see Table 6). Equation (25), showing values 

higher than Table 3, raises the following issue. 

Control Issue 6. The design of the on-line LORF estimator must be such as to recover target accuracy in the MBW. 

Table 6 GPS and star-tracker timing and errors. 

Parameter GPS Star tracker 1 (2) [μrad] 

 Range  Rate 
xq  yq  zq  

Noise (1σ) 30 m ( )rσ  0.03 m/s ( )vσ  20  ( )sxσ  45 (100) ( )syσ  100 (45) ( )szσ  

Bias Negligible ±150 μrad 

Delay Negligible 0.55 s 

 

Due to high noise - compare Table 6 to Table 3- star-tracker measurements must be averaged over time constants 

comparable to the MBW. In principle, this could prevent accurate attitude estimation, mainly because attitude will be 

affected by the integrated residual angular accelerations of the drag-free control. By allocating an equal attitude 

residual, say / 2qS , to both sources and by assuming the star-tracker measurements to be averaged by a 2nd order 

filter (see Section 7.2), worst case computation at 1 5mHzf f= =  yields: 

1) a new upper bound to residual angular acceleration (see Control Issue 3) 
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2) an upper bound to the cut-off frequency qf  of the attitude filter 
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the cut-off range depending on the attitude component. This raises the following issue. 

Control Issue 7. The design of attitude estimator and feedback control must trade off between star tracker noise 

filtering and gradiometer drift compensation, in order to guarantee attitude and rate accuracies (see Table 3) in the 

frequency region from DC to the MBW. 

5 The simplified design model 

5.1 Main variables and DFAC requirements 

The design model is a set of 42n =  discrete-time quasi-linear state equations forced by the thruster command vector 

T T
t mu=u u  and a white noise vector w , driving the dynamics of the unknown disturbance class D  to be 

counteracted by the DFAC. The model output 0y  is a vector of 15yn = state variables, namely the CoM position 

0r =y r  and velocity 0v =y v , the spacecraft attitude 0q =y q  and the gradiometer linear and angular measures 0ly  and 

0ay , free of low-frequency noise. The measurement vector y  is defined at any discrete-time step i as the model output 

0ly  corrupted by the noise v  and by the neglected dynamics operator ∂P  as follows 

 ( )( )0 0( ) ( ) ( ) ,i i i= + + ∂y y v P y u w , (28) 

where ∂P  is an input-output causal operator forced by the model output 0y  [11].  It can be interpreted as a fractional 

error dynamics, expressing in time and frequency domain the dynamic percentage error (see the Appendix). 

According to DFAC requirements in Table 3, the performance variables can be divided into: 

1) residual linear and angular accelerations la  and aa , 

2) spacecraft attitude q  and the residual attitude rate T
x O y zΔ ω ω ω ω= −ω  with respect to orbital rate Oω , 

3) the orientation error Oe  of the LORF OR  defining the reference attitude (see Section 4). 
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The DFAC must ‘ideally’ confine to zero the first two sets of variables and must estimate the LORF-to-inertial-

frame transformation OR . The reference trajectories are 

 0,   0,   0,  l a x z y Oω ω ω ω= = = = = =a a q . (29) 

5.2 Design model assumptions 

The design model is derived from the fine model in Section 4 through a series of assumptions and a careful 

description of the unknown disturbance class D  (see [14])Any disturbance class is modeled as a quasi-stationary 

random process forced by a white noise vector w through an asymptotically-stable state matrix ( )εF  whose 

eigenvalues ( )λ F  tend to the unit circle as far as 0ε → . Since it is assumed that ( )( )0lim 1ε λ ε→ =F , any disturbance 

component d might be described in the frequency domain by a PSD ( ) 0 / ,  0< 0.5 /m
d dS f S f f T= < , m being the order 

of the sub-matrix of F  relevant to d and 0dS  the PSD at 1f Hz= . Here m=2 is assumed.  

The resulting model is decomposed into two sub-models that are closely interconnected: the orbital dynamics and 

the attitude dynamics. For simplicity’s sake, their state equations are in turn split into thruster-to-gradiometer equations 

lP  and aP  and spacecraft equations gP  and qP , where subscripts a and q refer to attitude, whereas l and g refer to 

orbit. Figure 10shows the model block diagram, free of the negelcted dynamics. 

um

ut

vly0l yl

Btx

Btyz

Bmyz

Btq

Bmq J−1

1/m

−

r

v
al

Fx

dl

F

Fy,Fz

dg

yv

vr

vv
yr

wg

wl

wa
da

C aa Δω

2T
O iTR

y0q=q

vay0a ya

yq
vq

Micro 
thrusters

Ion 
thruster

LORF

Orbit

GPS 
receiver

g

delay adder
unknown disturbance driven by w

multivariate
univariate

nonlinear

Captions

Non-gravitational accelerations

Environment accelerations

2

1/3

Ti
2

α(r)/2

α(r)/2

wq dq

Gravity 
perturbations

Gradiometer
drift

Attitude

Star 
tracker

Common-mode 
gradiometer

Differential gradiometer

ua

ul

w Σ

R

−

−

Pa

Pl

R

ΣΣ

R

Σ Σ

Pg

Pq

 

Figure 10. Block diagram of the Embedded (or design) Model. 

The main assumptions relevant to both sub-models are the following, 
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1) Single rate (see Control Issue 1). The shortest time unit 0.1 siT T= =  is adopted throughout, the generic discrete 

time being denoted by i. The measurements sampled at lower rates, namely ,r vy y  and qy , are assumed to be 

sampled at T , but their valid samples are revealed at any time i by a vector ( )y iu  of Boolean variables. 

2) Thruster-to-gradiometer dynamics is approximated by a single-step delay, one for each linear and angular degree-

of-freedom. It is the simplest (1st order) discrete-time dynamics, which is parameter-independent (robust) and 

dynamically conservative (long delay). In view of Control Issue 5, worst-case unmodelled dynamics have to be 

defined for the linear and angular measurement channels. They must account for all thruster and gradiometer gain 

and delay uncertainties. 

3) Gradiometer noise. In the fine model (Section 4.3.2)  the gradiometer noise of the angular channels is the sum of a 

high-frequency component  av  and of a low-frequency drift ab . The former is treated as the sole  gradiometer 

noise, having a negligible impact on the DFAC performances (see Figure 9). The latter, on the contrary, if not 

adequately compensated by the DFAC, would drift the spacecraft attitude outside the prescribed tolerance. Since 

drift and bias are not observable from gradiometer measurements, but blend with the environment perturbations 

ad , the residual angular acceleration aa , at low frequencies, deviates from the real one acting on the spacecraft 

attitude. Such a deviations is corrected in the design model (see Figure 10) by adding an unknown disturbance 

q a= −d b  driven by qw  to the angular acceleration aa .  

4) Thruster noise. The fine-model noise vectors tv  and mv , are treated as unknown perturbations to be compensated 

by the DFAC and therefore are included either in ld  or in ad . The same applies, because of their low magnitude, 

to the cross-coupling effects of micro-thrusters on the along-track command force Fx.  

5) Thruster cross-coupling effects. The cross-coupling effects of the ion thruster on the lateral command forces yF  

and zF , and on the command torque C , are on the contrary explicitly modelled. As a matter of fact, they dominate 

the amplitude of zF , which would otherwise be negligible owing to low radial drag. 

6) Uniform scale. All state variables of each sub-model are scaled to the same unit, namely: (i) length units [m] apply 

to gP , (ii) angular units [rad] to qP , (iii) linear acceleration units [m/s2] to lP  and (iv) angular acceleration units 

[rad/s2] to aP . 
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5.3 Orbital dynamics 

State equations are split into two interconnected parts: (i) those modeling the thruster-to-gradiometer dynamics and 

(ii) those modelling the spacecraft CoM orbital motion in the inertial frame JR . Interconnection is assured by the 

residual acceleration la . Orbital dynamics, although not controlled, determines the reference attitude. 

5.3.1 Thruster-to-gradiometer state equation 

Let lx  be the state vector, of size ( )3 1 9l ln m= × + = , of the thruster-to-gradiometer dynamics lP , but restricted to 

the linear channels. The state equation holds  

 ( )( )
0

0

0

( 1) ( ) ( ) ( ),   (0)

( ) ( ) ( ) ,

( ) ( )

l l l l l l l l

l l l l l l l

l l l

i i i i

i i i

i i

+ = + + =

= + + ∂

=

x A x G w B u x x

y C x v P y u w

y C x

, (30) 

l∂P  is the modeling error, and the following notations, with the help of (18), apply 
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. (31) 

The 1st diagonal block of lA  is identically zero according to Assumption 2: a single-step delay models the thruster-to-

gradiometer dynamics. The vector lz  is the state modelling the unstable dynamics of the class of the unknown non-

gravitational accelerations 0l l l l l= +d H z G w . The size 3 6lm× =  of lz  has been designed to match the drag PSD (see 

Figure 8) especially in the MBW. The pair ( ),l lC A  is observable, while the pair ( ),l lA B  is neither controllable nor 

stabilizable, due to the unitary eigenvalues of lF  in Eq. (31). The residual linear acceleration la  is given by 

 ( )( ) ( ) ( ) / ( )l tl t ml m li u i i m i= + +a B B u d . (32) 

By neglecting thruster and gradiometer cross-couplings as well as weak non-linear effects, a generic diagonal 

element of the error dynamics l∂P , written in fractional form, can be approximated by (see the Appendix) 

 ( )
( )
( )

22
0

max220

0.55( ) ( ) ( )
0.5 ,  0.5 / 5Hz

( ) 0.05

j f
l l l

l
j fl

ey f y f v f
f f T f

y f e

π

π

−− −
∂ = ≅ ≤ = =

+
P . (33) 



 
 
Acta Astronautica, 2009, 64, p. 325-344, 
 

23 
 

The coefficients in (33) depend on the thruster and gradiometer scale factor errors, less than 10%, and on the 

gradiometer anti-aliasing dynamics. The harmonic magnitude is monotonically increasing (see Figure 14) and satisfies 

 ( ) ( )0 0.5/lim 1,    max 2f l lf Tf f→ ≤∂ << ∂ <P P . (34) 

Lower and higher frequency inequalities in Eq. (34) imply model error to increase in percentage from low to higher 

frequency as expected and to overcome the 100% threshold as the DFAC Nyquist frequency max 0.5 /f T=  is 

approached. 

5.3.2 Orbital state equations 

The main modeling issue, driven by Control Issue 7, concerns how to model the gravity acceleration g , avoiding the 

spherical harmonics expansion of Eq. (1), and favoring the reference trajectory generator (see Section 3) to recover the 

target accuracy of the orientation error Oe  in the MBW (Control Issue 7). This is obtained by expressing g  as the sum 

of a known function ( )0g r  of the orbital state variables, and of an unknown disturbance gd  driven by w . The accuracy 

of the latter component is affected by the LORF generator bandwidth, which has to be designed quite narrow, in order 

to filter out the noise of the GPS position and velocity measurements. The former component is only sensitive to the 

initial errors of the orbital state variables, which are completely recovered within the generator settling time. Therefore 

the gravity model is written as 

 

( ) ( ) ( )
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g g r d g r γ r r
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, (35) 

where Oω  is the average orbital angular rate and the terms like xδα  are corrections accounting for the variable satellite 

radius r and the J2 term of the spherical harmonics expansion (Earth’s polar flattening). 

Let gx  denote the overall state vector of the orbital dynamics gP , having size ( )3 2 12g gn m= × + = . Then the 

orbital state equation, which is driven by the white noise gw  and by the residual non-gravitational accelerations la , is 

written as  

 
( ) ( ) 0( 1) ( ) ( ) , ( ),  (0)

( ) ( ) ( ),    

g g g g g g l g g

r r r
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v v v

i i i i

i i i

+ = + + =
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x A r x G w B r v a x x

y C v
x

y C v
, (36) 

with the following notations 
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The vector gz  is the state vector modeling the unstable dynamics of the unknown gravitational perturbations 

g g g zv g= +d H z G w . The size 3 6gm× =  of gz  has been designed to match the PSD of the gravitational anomalies in 

the MBW. The pair ( ),T
r v gC C A  is observable and the pair ( ),g gA B  is neither controllable nor observable 

because of the unitary eigenvalues of the disturbance state matrix gF . Eq. (36) is affected by structured uncertainty 

because of the erroneous α  in (37); robust stability conditions are treated in [17] 

5.4 Attitude dynamics 

5.4.1 Thruster-to-gradiometer dynamics 

Let ax  be the state vector, of dimension ( )3 1 9a an m= × + = , of the thruster-to-gradiometer dynamics aP , restricted 

to angular accelerations. The relevant state equation and design considerations are the same as in Section 5.3.1, upon 

replacement of subscript l with a. 

5.4.2 Attitude dynamics  

The main assumptions are the following: 

1) Dynamic imbalance due to a non-spherical inertia tensor J  as in Eq. (14) and gravity gradient torque are not 

explicitly modeled, but included in ad . This is justified first by their low-frequency resonance, being of the same 

order of the orbital frequency 0.2 mHzOf ≅ , and second by the bound to angular rates , 30 μrad/sx zω ω ≤  (see 

Table 3). Treating them as an unknown disturbance, corresponds to affecting the design model with structured 

uncertainties, thus requesting stability proof. The latter is guaranteed by providing the attitude state predictor with a 

sufficient BW not lower than Of . Details are omitted (see [22] 

2) The attitude measurement white noise qv  accounts for a pair of error sources: the random components Sv  of the 

star-tracker errors (the so-called noise equivalent angle) and the LORF orientation error Oe . Using matrix notations 

introduced in Section 4, the attitude error matrix qV  can be shown to satisfy 

 0 0,    T
q q q s s s OI Δ Δ Δ Δ≅ + ≅ −V V V R V R E , (38) 
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implying the attitude noise statistics depends on the active unit. 

Let qx  denote the overall state vector of the attitude dynamics qP , having size ( )3 2q qn m= × + . Then the state 

equation driven by the residual angular accelerations aa  and the white noise qw , is: 

 
( ) 0( 1) ( ) ( ) ( ),  (0)

( ) ( ) ( ) 
q q q q q q a q q

q q q q

i i i i

i i i

+ = + + =

= +

x A x G w B q a x x

y C x v
, (39) 

with the following notations 
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. (40) 

6 Attitude and drag-free control  

6.1 Architecture  

Digital control design becomes a rather straightforward task, provided that the design model is available. A standard 

architecture, respecting the conceptual steps mentioned in Section 3, is pursued, including a reference trajectory 

generator providing the state variables to be tracked (the LORF), state predictors driven by measurements and 

commands, to provide the one-step prediction of the controllable states and of the unknown disturbances to be rejected, 

control laws creating the commands as a combination of the trajectory errors and of the known and predicted 

disturbance terms. When, as in this case, more actuators than necessary are available, the control law is also in charge of 

distributing the command components to them, according to some optimality criterion. We prefer to speak of state 

prediction rather than state observer, as the one-step prediction of the state must feed the control law to naturally 

recover the computation delay. 

Here, for simplicity, sensors and actuators are assumed to be sampled at the highest rate 1/T=10 Hz. The micro-

thruster command mu  is computed at the highest rate and then dispatched to micro-thrusters at their own rate. GPS and 

star-tracker measurements, actually sampled at a lower rate, are treated according to a predictor-corrector scheme. The 

predictor works at the highest rate, the corrector at the measurement rate (see Control Issue 1).  

Table 7 Threshold frequencies for attitude control. 

Variable Frequency Value Unit 

Angular rate fω  8 mHz 
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Attitude 
qf  9 mHz 

MBW lower limit 
1f  

5 mHz 

Two decomposition patterns are adopted to deal with model complexity. 

Hierarchical decomposition. The drag-free control, according to Control Issue 3, should be a wide-band inner 

feedback loop (gradiometer-to-thruster), which may be designed separately from attitude control. Attitude (and rate) 

control should rather be a narrow-band outer feedback loop (star-tracker to thrusters) to compensate slowly varying 

drifts (like gradiometer drift) below certain threshold frequencies, dictated among others by the star-tracker noise. With 

regard to attitude, such frequencies can be roughly estimated by equating attitude (and rate) target bounds to the PSD 

computed by integrating the acceleration bound in the MBW. Table 7 shows that such frequencies approach the lower 

extreme of the MBW, helping to solve Control Issue 6. 

Coordinate decomposition. Inner and outer feedback loops can be decomposed into three parallel loops, one for each 

spacecraft CoM and attitude coordinate. Cross-couplings are treated as known internal disturbances.  

The control block-diagram is shown in Figure 11. Distinction is made between real-valued commands and measures 

,u y , internal to control algorithms, and their digital values u , to be dispatched to thruster drivers, and y , received 

from sensors electronics. 
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Figure 11. Block diagram of the attitude and drag-free control. 
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6.2 Reference trajectory generator  

The reference trajectory generator is a state predictor estimating the inertial spacecraft CoM position r̂  and velocity v̂ . 

Thus, the LORF transformation ˆ
OR  is one-step predicted. The state predictor is a constrained-gain one [11], taking 

advantage of the coordinate decomposition and of the error-free kinematics. The key manoeuvre, to improve 

measurement noise filtering (Control Issue 7) is to constrain the correction vector to the form:

 
ˆ( ) ( )
ˆ( ) ( )

r r g
g r v

v v g

i i
i i

−
−

y C x
G L L

y C x
, (41) 

in other words to belong to  the range of qG , which is lower than the state space size. In this case, unlike  in the attitude 

state-predictor in Section 7.2, constraining the predictor gain does not jeopardize stability, because of the multivariate 

measures (position and velocity). The predictor state equation is thus 

 
( ) ( ) ( ) ( )

0

ˆ( ) ( )
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( 1) ( ) , ( ) ˆ( ) ( )

ˆ
ˆ ˆ ˆ( ) ( ),  ( ) ( ), (0)

ˆ

r r g
g g g g l g r v

v v g

r r r r r
g g g

v v v v v

i i
i i i

i i

i i i i
ρ
ρ

−
+ = + +

−

= = =

y C x
x A r x B r v a G L r L r

y C x

y C y y
x x x

y C y y

, (42) 

where ,r vρ ρ  are the quantization levels. Observer gain matrices ( ) ( )ˆ ˆ,r vL r L r  are shown to be dependent on the 

position estimate r̂ . This is necessary to keep constant the state-predictor eigenvalues, collected in the set gΛ . The 

LORF matrix ˆ
OR  and the orbital rate ˆOω  are then computed using equations (7) and (43) respectively. More details 

can be found in [17]. 

6.3 Drag-free control law and command distribution 

The drag-free control follows by forcing ( ) 0l i =a  in Eq. (32) as well as putting ( ) 0a i =a . Then, by introducing the 

one-step predictions ˆ ( )l id  and ˆ ( )a id  of the unknown disturbances and the attitude control torque qC , the control 

equation results: 

 

( )

( )

,min ,max

,max

ˆ( ) ( ) / ,  ( ) int ( ) / ,  ( )

ˆ 0
ˆ( ) ( ) ( ) ( ) 0 ( )  
ˆ

( ) int ( ) / , 0 ( )

t lx tx t t t t t t

lymy ty

m m mz m tz t lz

mq tq qa

m m m m m

u i md i B u i u i u u i u

mdB
i i B u i md i i

i i i

ρ

ρ

= − = ≤ ≤

= = − − +

= ≤ ≤

B
B u B u

B B CJd

u u u u

, (43) 

where ( )int ⋅  signifies rounding off, and tρ  and mρ are the command quantization levels. 
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The first equation can be directly solved in the command voltage ( )tu i  to be dispatched to ion-thruster after 

digitization. The second equation is a set of five linear equations in 8mn =  unknowns, namely the voltage commands to 

micro-thrusters collected in the vector ( )m iu . Control Issue 4 requires this equation to be solved by minimizing average 

and maximum thrust, which implies solving a linear programming (LP) problem at each step [22]. An efficient, fixed-

time solution minimizing the average thrust has been found by exploiting the lower dimensionality of the dual simplex 

and some peculiarities of mB  (LP strategy). Peak reduction is instead favored by the relaxed requirements on the cross-

axis residual linear accelerations ( ,ly lza a ) below the MBW and by the negligible effect on the orbit drift of the 

corresponding non-gravitational perturbations ,ly lzd d . To this end, the average and the orbital harmonics of ,ly lzd d  are 

filtered out from their estimates ˆ ˆ,ly lzd d  and therefore are not rejected (LF strategy) 

6.4 Attitude control law 

Attitude control must first stabilize Eq. (39) around the attitude and rate reference trajectories defined in Eq. (29). 

Then, it must force to zero the residual acceleration a q+a d , affected by the low-frequency drift and bias of the 

gradiometer noise. The feedback control law results 

 ( ) 2
1 2

ˆˆ ˆ( ) ( ) ( ) ( ) /q q ii i i i TΔ= − + −C J K q K ω d , (44) 

where, exploiting coordinate decomposition, the feedback gain matrices 1K  and 2K  become diagonal and their values 

depend on the closed-loop attitude eigenvalue set cqΛ . 

7 State predictors and eigenvalue tuning 

7.1 Acceleration state-predictor 

Referring to linear accelerations, the state-predictor follows directly from Eq. (30) and the following holds 

 
( )

0

ˆ ˆ ˆ( 1) ( ) ( ) ( ) ( )
ˆ ˆ ˆ ˆ( ) ( ),   ( ) ( ),   (0)

l l l l l l l l

l l l l l l l l

i i i i i
i i i iρ
+ = + − +

= = =

x A x L y C x B u
y C x y y x x

. (45) 

Exploiting coordinate decomposition, the gain matrix lL   includes only nine non-zero gains dependent on the predictor 

eigenvalue set lΛ . The same is valid also for the angular acceleration predictor.  
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7.2 Attitude state predictor 

The attitude predictor is a constrained-gain one [11], exploiting coordinate decomposition and error-free attitude 

kinematics. The key manoeuvre for improving measurement noise filtering is the same as that illustrated in Section 6.2 

for the LORF generator: to constrain the correction vector, expressed as ( )ˆ( ) ( )q q q q qi i−G L y C x , to belong to the range 

of qG , which is lower than the state space size. This implies the predictor can only be stabilized by a dynamic 

feedback, i.e. a further loop must be added, including the dynamics of the state vector qe , forced by the output error. 

Neglecting the star-tracker delay, the state predictor is as follows 

 
( )ˆ ˆ ˆ0 ˆ ( ) ( )

( 1) ( ) ( )
0 ˆ 00

ˆ ˆ( ) ( )  

q q q q q qa q q q eq

q q q qO

q q q

i i
i i i

I

i i

ω
−

+ = + +

=

x A x y C xa G L G LB q
e E e e

y C x
. (46) 

The eigenvalue set is denoted by qΛ . The attitude measure ( )q iy  is obtained from the attitude matrix (see Section 

4.3.3) 

 0
ˆ( ) ( ) ( ) T

q O s si i i=Y R R R . (47) 

7.3 Eigenvalue tuning 

Internal stability. The closed-loop system composed of the design model, free of modeling errors, and of the attitude 

and drag-free control laws (driven by the relevant state predictors), can be shown to be internally stable, if and only if 

the eigenvalue sets , , ,l a q gΛ Λ Λ Λ  and cqΛ  are within the unit disk. In this case, the unstable dynamics of the unknown 

disturbance classes become completely disconnected from the controllable dynamics, being replaced by the bounded 

and command-independent error ˆ ˆ( ) ( ) ( )i i i= −e x x  between the design model state vector x  and the predictor state x̂ .  

When the measurement vector ( )iy  is obtained from the real spacecraft, the assumptions guaranteeing internal 

stability cease to be valid because of the modeling error l∂P  in (30) and structured uncertainties mentioned in Section 

5.4.2. Their effects spill through plant measures y  making the estimation error ê  to be command-dependent via an 

uncertain dynamic operator ( )( )0ˆ ,x=e E y u w . By restricting our considerations to linear drag-free control, output error 

0ˆ ˆyl l l= −e y y , and model error l∂P , the operator can be expressed as  

 ( )( ) ( )( )( )0 0ˆ , ,yl yl l ol l l= = ∂e E y u w V P y u w  (48) 
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where olV  is the dynamic operator of the acceleration state-predictor, in Section 7.1, mapping  the measure oly  to the 

estimate ˆ ly . According to [10], one way to recover closed-loop stability in the presence of uncertain modeling errors,, 

is to assign the predictor eigenvalue set lΛ  to the unit disk so as to sufficiently bound the effect of ylE  on the 

estimation error ˆ yle . Formally, if the predictor operator olV  is designed such as to guarantee that ylE  satisfies the norm 

inequality 

 0 0 0ˆ ,    1,   <  yl y yη η η η< + < ∞e y , (49) 

the DFAC, designed by neglecting modeling errors, stabilizes the real closed-loop system. In practice, the state-

predictor design forces the ensemble ‘plant+state-predictor’, mapping u  to ˆ ly , to approach the design model so as to 

keep stability and performances as predicted by the model-based control laws (43) and (44). The scalar yη  is the norm 

of the operator ylE  and 0η  is a bound to w  effects. The inequality of Eq. (49), although sufficient to recover stability, 

is not sufficient to recover model-based performance. The latter can be recovered by lowering yη  and 0η . Because only 

approximate versions of inequality (49) can be obtained  analytically, the simulated fine model provides a test-bed of 

the critical and uncertain dynamics, whereby to guarantee a priori stability and performance. Analytic computation of 

yη  and 0η , made by a simple model of l∂P , like Eq. (33), may provide initial values of the control parameters to be 

refined by simulated runs. For instance, by employing H∞  norms as in Eq. (34), fixing the predictor eigenvalue set of a 

generic coordinate x to { }1 ,1 ,1 2lxΛ γ γ γ= − − −  and imposing some margin to Eq. (49), the relation 

 ( )1 2.5 2 1/ 5 1y ol lη γ γ
∞

= ⋅∂ ≅ − ≤ <V P  (50) 

suggests the eigenvalue set { }0.4,0.8,0.8lxΛ = . These values appear compatible with the requested closed-loop 

bandwidth (Control Issue 3). The range assigned to the eigenvalue sets is shown in Table 8. 

Table 8 Eigenvalue sets of the DFAC. 

Set ,l aΛ Λ  qΛ  gΛ  cqΛ  

Range 0.3÷0.8 0.999÷0.9995 0.998÷ 0.99995 0.95÷0.99 

Size 18 15 12 6 
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8 Simulated results 

Two main issues concerned the drag-free and attitude control design presented in this paper. The first is the 

robustness of DFAC accuracy performances faced with spacecraft and environment uncertainties, like mass and inertia 

variations, thrust misalignments, and thermosphere density variation due to delayed launch (Control Issue 2). Figure 12 

and Figure 13show the spectral densities of the residual linear accelerations and of the different attitude variables 

(angular accelerations, rates and attitude angles), under worst-case spacecraft and environment conditions. They are 

compared to the target bound profiles defined in Table 3.  
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Figure 12. SD of the residual linear accelerations compared to target bound. Ordinate: 2μm/s / Hz  

Target accuracy is met with a good margin in the most significant region for gradiometer measurements, i.e. from 

MBW up to / 2cf . Accuracy appears somewhat critical at low frequencies with regard to cross-axis residual 

accelerations ,ly lza a . But this is the price to pay for the thrust-peak minimizing strategy (LF strategy) in Section 6.3. 

The DC component of the attitude PSD is due to worst-case star-tracker bias. 
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Figure 13. PSDs of the satellite roll μrad/ Hz⎡ ⎤
⎣ ⎦ , of the relevant angular rate μrad/s/ Hz⎡ ⎤

⎣ ⎦  and residual angular 

acceleration 2μrad/s / Hz⎡ ⎤
⎣ ⎦ . 

The second issue is the compatibility and sizing of electric micro-propulsion to guarantee the required  thrust 

authority with some margin. Table 9 shows the progressive reduction of the average and peak thrust of the micro-

thruster assembly (Control Issue 4), which may be obtained by applying the LP and LF command distribution strategies. 

LF strategy is very effective in peak and average thrust reduction. LP allows a saving of about 25% of 

propellant/energy. 

Table 9 Comparison of command distribution strategies. 

Strategy Ion-thruster  [mN] Micro-thruster [mN] 

LF LP Average Peak Average Peak 

No No 9.78 

 

20.55 

 

2.49 1.06 

No Yes 1.88 0.99 

Yes No 1.26 0.55 

Yes Yes 0.93 0.51 

9 Conclusions 

In this paper, the DFAC (Drag-Free and Attitude Control) architecture of the European GOCE (Gravity field and 

steady-state Ocean Circulation Explorer) satellite was presented: no transition among the several mission phases is 

considered, and only the science phase is treated in detail. GOCE aims to determine with high accuracy and spatial 

resolution the Earth’s gravity field, through gravity gradiometry and precise orbit determination: the use of these 

complementary space techniques was explained and discussed in order to establish the requirements for control 

purpose. 

The DFAC is intended to enable operation of the gradiometer for the mission’s scientific goals during the six-month 

operational phases. The Earth’s gravity field must be determined in the measurement bandwidth (5mHz to 100mHz), 

where non-gravitational forces must be counteracted down to micronewton, and spacecraft attitude must track the 

LORF (Local Orbital Reference Frame) with micro-radian accuracy. In the early GOCE design phase, the DFAC was 

designed using ion and micro-thrusters as actuators. Then electrical micro-propulsion was abandoned as not being 

mature, renouncing lateral drag-free control and recovering attitude through magnetic control. 

Although still critical from a technology standpoint – to the authors’ knowledge electrical micro-thrusters have never 

flown-, all-propulsion DFAC looks to be the only solution for many future scientific and observation missions, 
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including next generation gravity missions based on satellite formations. Accordingly,  the proposed design and 

simulated results, to be complemented with formation control as required, are believed to be of interest to the space 

community.  

A further reason of interest may be the control design methodology, built around a discrete-time model of the whole 

spacecraft and environment dynamics, to be embedded in the control unit itself. Control architecture follows directly 

and is implemented around the Embedded Model. The resulting architecture is rather similar to Linear Quadratic 

Gaussian control, but noise statistics does not enter explicitly into the control algorithms, which are thus simpler and 

more generic; it may however be employed for eigenvalue tuning. Optimization is only sought when command 

authority has appropriate degrees-of-freedom, as in the case of micro-thruster assembly. Tuning is done by fixing the 

control-law and state-predictor eigenvalues so as to respect requirements and robustness against model uncertainties.  

10 Appendix 

10.1 Neglected dynamics  

Assume the thruster dynamics to be 2nd order plus a delay as follows 

 
( )

( ) 1
2 ,  0.01 ,  2 10 Hz, 0.7

/ 2 / 1

ts

t t t t
t t t

e s
s s

τ

τ ω π ζ
ω ζ ω

−
−= = = =

+ +
P . (51) 

Then assume a 4th order anti-aliasing filter designed to avoid any folding of the 2f  noise of the gradiometer 

measurements, as follows 

 ( ) ( ) ( )
( )

4 3 2
1 2 1

1

/ / / / 1

0.01 ; 2 5 Hz
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a a a a

a a

e
s s s s

s
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−

=
+ + + +

= =

P
. (52) 

The overall thruster-to-gradiometer dynamics lP  can be written as follows, upon introducing a fractional gain error b∂ : 

 ( )1 , 0.09l t ab b= + ∂ ∂ <P P P . (53) 

Assuming a pure delay in the design model, i.e.  

 , 0.1sT
l e T s−= =M , (54) 

 the fractional error dynamics ∂P  can be written as 

 ( ) 11 1l t a lb −∂ = + ∂ −P P P M . (55) 
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Converting Eq. (55) into Z-transform, under assumption of zero-order-hold interpolation, and making some 

approximations, yields the expression in Eq. (33). The harmonic response in Eq. (33) – open-loop error dynamics - and 

the same filtered by the state-predictor transfer-function olV  as in Eq. (50) – closed-loop error dynamics - are shown in 

Figure 14. The closed-loop amplitude ( )2j fT
ol l e π⋅∂V P  is always less than 0.2, which guarantees robust closed-loop 

stability versus uncertainties of ∂P . 
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Figure 14. Open-loop and closed-loop fractional error dynamics. 
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