Room temperature plastic flow localization in a Mn-alloyed austenitic steel

Original
Room temperature plastic flow localization in a Mn-alloyed austenitic steel / D. FIRRAO; P. MATTEIS; G.M.M. MORTARINO; P. RUSSO SPENA; SCAVINO G.; F. D’AIUTO. - (2008).

Availability:
This version is available at: 11583/1840165 since:

Publisher:

Published
DOI:

Terms of use:
openAccess
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)
Room Temperature Plastic Flow Localization in a Mn-Alloyed Austenitic Steel

D. Firrao¹, P. Matteis¹, G. Mortarino¹,
P. Russo Spena¹, G. Scavino¹, F. D’Aiuto²

¹ Politecnico di Torino, Dipartimento di scienza dei materiali e ingegneria chimica, Italy
² FIAT Auto, Engineering & Design, Torino, Italy

Prof. Donato Firrao
Politecnico di Torino, Italy
Automotive Structural Steels (I)

desired properties of automotive steel structures:

- **Lower weight**
 - Lower fuel consumption
 - Lower pollution emission (Euro 4 – 5 …)
 - Increase useful load (commercial vehicle)
 - Lower cost

- **Increased safety**
 - Better crash energy absorption

- **Dent resistance** of automotive body components
Automotive Structural Steels (II)

- Current high-strength automotive steels:
 - HSLA (High Strength Low Alloy steel)
 - Dual Phase
 - TRIP (TRansformation Induced Plasticity)

- Recently proposed:
 - TWIP (TWinning Induced Plasticity)

 - High strength
 - High ductility
 - High energy absorption

Examined here: medium-C TWIP steel (CTWIP)
Automotive Structural Steels (III)

typical tensile curves

70th birthday of Enrico Evangelista – 22/25 June 2008 – Como (Italy)
Deep drawing

Localized deformation bands
Aesthetic defect

70th birthday of Enrico Evangelista – 22/25 June 2008 – Como (Italy)
Examined CTWIP steel

<table>
<thead>
<tr>
<th>steel</th>
<th>C</th>
<th>Mn</th>
<th>Ni</th>
<th>Si</th>
<th>Cr</th>
<th>P</th>
<th>S</th>
<th>V</th>
<th>Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTWIP</td>
<td>0.48</td>
<td>23.5</td>
<td>0.05</td>
<td>0.16</td>
<td>0.13</td>
<td>0.025</td>
<td><0.001</td>
<td>0.22</td>
<td><0.001</td>
</tr>
</tbody>
</table>

C: increases YS and UTS \n*Mn*: stabilizes austenite, decreases SFE (→ twinning)

average grain size = 2.5 µm
<table>
<thead>
<tr>
<th>Cross-head speed</th>
<th>Strain rate (mean)</th>
<th>Yield strength</th>
<th>Tensile strength</th>
<th>Uniform elongation</th>
<th>Strain hardening exponent</th>
<th>ε_{PL}^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm/s</td>
<td>s$^{-1}$</td>
<td>MPa</td>
<td>MPa</td>
<td>%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.06</td>
<td>0.0004</td>
<td>555</td>
<td>1180</td>
<td>65</td>
<td>0.35</td>
<td>0.2</td>
</tr>
<tr>
<td>0.5</td>
<td>0.004</td>
<td>540</td>
<td>1125</td>
<td>70</td>
<td>0.37</td>
<td>0.33</td>
</tr>
<tr>
<td>5</td>
<td>0.04</td>
<td>552</td>
<td>1100</td>
<td>72</td>
<td>0.37</td>
<td>0.52</td>
</tr>
<tr>
<td>40</td>
<td>0.4</td>
<td>557</td>
<td>1065</td>
<td>56</td>
<td>0.34</td>
<td>Not observed</td>
</tr>
</tbody>
</table>

ε_{PL}: strain at onset of Plastic Localization (PL)
Tensile Stress-Strain curves

Strain calculated from the cross-head displacement

Average strain rate (s^{-1})
- 0.0004
- 0.004
- 0.04
- 0.4

70th birthday of Enrico Evangelista – 22/25 June 2008 – Como (Italy)
Type I Plastic Localizations

Transit of a type I band through the gage length

Strain calculated from the gage displacement

polished spec.

TYPE I BAND

0.04 s\(^{-1}\)

850
900
950
1000
1050
1100
1150
1200
0.15 0.20 0.25 0.30 0.35 0.40 0.45

\(s\) [MPa]

\(\varepsilon\)
Type II Plastic Localizations

Crossed type II stationary bands

Strain calculated from the gage displacement

70th birthday of Enrico Evangelista – 22/25 June 2008 – Como (Italy)
Macroscopic Fracture Mode

0.0004 s$^{-1}$

0.004 s$^{-1}$

0.04 s$^{-1}$

0.4 s$^{-1}$
SEM analyses

Fracture surface (microvoids)

Plastic deformation relief on the previously polished specimen surface

70th birthday of Enrico Evangelista – 22/25 June 2008 – Como (Italy)
X-Ray Diffraction

aust. (111)

aust. (200)

aust. (220)

aust. (311)

aust. (222)

before tensile test

after tensile test

70th birthday of Enrico Evangelista – 22/25 June 2008 – Como (Italy)
Discussion - Portevin-Le Chatelier (PLC) Effect

- Plastic instabilities due to inhomogeneous plastic deformation
- occurring in limited strain-rate and temperature ranges
- due to a negative strain rate sensitivity
- in turn possibly due to Dynamic Strain Aging (DSA)

Known band types:
- **A**: propagate continuously along the tensile axis
- **B**: oscillatory / intermittent propagation
- **C**: appear suddenly and do not propagate
Conclusions

- The CTWIP steel exhibit a favorable combination of strength and ductility.
- It also exhibit PLC effect at R.T. for strain rates less than 0.4 s\(^{-1}\).
- Both type A and C (I and II herein) bands were observed.
- This may arise from interactions between solute C atoms and mobile dislocations, yielding a negative strain rate sensitivity.