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Abstract  
This paper describes the system submitted by Politecnico di 
Torino for the 2007 NIST Language Recognition Evaluation. 
The system, which was among the best participants in this 
evaluation, is a combination of classifiers based on three 
acoustic models and on two sets of Parallel Phone tokenizers. It 
exploits several state-of-the-art techniques that have been 
successfully applied in recent years both in speaker and in 
language recognition. 
We illustrate the models, the classification techniques and the 
performance of the system components, and of their 
combination, in the NIST-07 close-set 30 sec General Language 
Recognition task. We also highlight the difficulties in setting 
appropriate decision thresholds whenever the training data of a 
language are scarce, or the test data are collected through 
previously unseen channels.  
 
Index Terms: Spoken Language Recognition, LID, Feature 
compensation, Phone tokenizers 

1. Introduction 
In the recent years a substantial reduction of the error rates in 
spoken language recognition has been obtained [1]. This 
progress has been achieved by more accurate acoustic and 
phonetic language models, by introducing inter-speaker and 
channel compensation techniques [2-5], and by exploiting 
discriminative training approaches [6-8]. 

In this paper we present a successful fusion of these 
techniques in a system that was submitted for the 2007 NIST 
Language Recognition Evaluation (LRE) [9]. The system is the 
combination of classifiers based on two sets of Parallel Phone 
tokenizers exploiting high order multigrams, and on three 
acoustic models, Phonetic GMMs [2], classical GMMs [10], and 
the latter in combination with SVM classifiers [5],  
In the following, we describe the system components, the 
training and development databases, and the experimental 
results obtained in the LRE07 General Language Recognition 
close-set 30 sec task, highlighting some still open problems 
such as the quality or the lack of training/test data for a 
language.  

2. Acoustic models 
Gaussian Mixture Models used in combination with Maximum 
A Posteriori (MAP) adaptation represent the core technology of 
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most state of the art text-independent speaker recognition 
systems [10]. Although it is possible to train reliably a GMM of 
a language by Maximum Likelihood estimation, due to the large 
amount of training data usually available, we perform MAP 
adaptation from a Universal Background Model (UBM) even 
for language models. The main reason for this choice is that 
language models deriving from a common UBM are required by 
our GMM-SVM approach, and by our frame based inter-speaker 
variation compensation approach [4], which computes its 
speaker factors using the UBM. Moreover, fast Gaussian 
selection is performed in training and test using the UBM. 

2.1. GMM system 

In the experiments described in this paper, the UBM and the 
language GMMs consist of mixtures of 1024 Gaussians. The 
observation vector includes 56 parameters: the first 7 Mel 
frequency cepstral coefficients and their 7-1-3-7 Shifted Delta 
(SDC) coefficients [11]. Gender dependent UBMs have been 
trained on the LDC Callfriend corpus, including approximately 
450 hours of telephone conversations in 12 languages [12].  

To reduce inter-speaker variability within the same 
language we have shown in [2] that significant performance 
improvement in LID can be obtained using factor analysis. We 
estimate an inter-speaker subspace that represents the distortions 
due to inter-speaker variability, and compensate these 
distortions in the domain of the features. The details of this 
approach are given in [2] and [4]. 

Using compensated features, we trained a gender-dependent 
model for each of the 12 target languages in the NIST corpora 
using the training and development sets of the CallFriend 
corpus. The conversations in this corpus were split into 8172 
segments of approximately 150s. The same data sets were used 
for training all other types of models. 

2.2. Phonetic GMM system 

The Phonetic GMM (PGMM) system used for LRE07 has the 
same architecture of the system, described in [2], which was 
used for the NIST 2006 Speaker Recognition Evaluation. The 
only difference is that we use the same speaker-compensated 
Shifted Delta features of the language recognition GMMs.  

We decode an utterance, both in enrollment and in 
recognition, producing phonetic labeled segments. The decoder, 
described in Section 3, is trained to recognize 11 language 
independent broad phone classes: silence, liquids, nasals, 
fricatives, affricates, voiced and unvoiced plosives, diphthongs, 
front, central, and back vowels. Each broad class is modeled by 
a single state that has associated a GMM. These models have 
been trained with 20 hours of speech in 10 different languages, 



using Macrophone [12] for US English, and the SpeechDat 2 
corpora [13] for (Dutch, French, German, Greek, Italian, 
Portuguese, Spanish, Swedish, and UK English).  

The UBM and the language models, obtained adapting the 
UBM, consist of the union of the phonetic GMMs associated 
with each phone class. For each state, the maximum number of 
(diagonal covariance) Gaussians per mixture is 128, and the 
total number of Gaussians of this system is 1280 (because the 
silence model is excluded). The UBM for the PGMMs has been 
trained using the Callfriend corpus, and another 100 hours of 
telephone speech from Italian, Portuguese, and Swedish 
SpeechDat 2 corpora. 

In enrollment, the labels and the boundaries of the phonetic 
segments are used for MAP adaptation of the parameters of the 
gender and class-dependent GMMs. In recognition, the 
phonetically labeled audio segments are scored against their 
corresponding GMMs. Thus, the likelihood of a given 
observation vector is computed by selecting the GMM 
corresponding to the phone class decoded at that time frame. 

Both the gender dependent GMMs and the PGMMs are 
discriminatively trained by means of Maximum Mutual 
Information Estimation [7]. 

The Phonetic UBM is also used as a speech activity detector 
for all the acoustic systems, by discarding the speech intervals 
recognized as silence. 

2.3. SVMs using GMM supervectors  

Gaussian Mixture Models in combination with a Support Vector 
Machine classifier (GMM-SVM) have been shown to give 
excellent classification accuracy in speaker recognition [2], and 
in language identification [6], [8]. 

For the GMM-SVM approach we doubled the number of 
mixtures of the models because we estimated gender 
independent GMMs. Thus, 2048 Gaussian models are obtained 
by MAP adaptation, with a small relevance factor, from a 
common UBM trained using the training and development sets 
of the Callfriend data. A specific GMM is trained for each 
segment of a language, both in training and in testing. A 
supervector that maps a segment to a high dimensional space is 
obtained by appending the adapted mean value of all the 
Gaussians of a GMM in a single stream, after appropriate 
rescaling [2]. The normalized supervectors are used as samples 
for training linear SVM classifiers. 

3. Phone models 
Since the combination of acoustic and phonetic systems is 
known to give good performance [7],[14], we exploited the 
availability of several languages in the Loquendo-ASR 
recognizer [15] to implement  a phonetic system based on the 
Parallel Phone tokenizer-SVM approach, which was first 
proposed for speaker recognition [16],[17]. 

3.1. Parallel Phone tokenizers 

The Loquendo-ASR uses a hybrid HMM-ANN model, where 
each phonetic unit is described in terms of a single or double 
state left-to-right automaton with self-loops. The models are 
based on a set of gender independent units, consisting of 
stationary context independent phones and diphone models. The 
ANN is a three layer Multilayer Perceptron that estimates the 
posterior probability of each unit state, given a context window 

of 7 frames consisting of acoustic feature vectors including 13 
RASTA PLP parameters and their first and second derivatives. 
The ANN has 315 units for the first hidden layer, and 300 for 
the second hidden layer. Softmax normalization is applied to the 
output layer, which includes a language dependent number of 
states (~700 - 1000). 

For these experiments, a phone-loop grammar with diphone 
transition constraints has been used, and the statistics of the n-
gram phone occurrences in each segment were collected from 
the best decoded string only. Each train and test segment has 
been transcribed by 9 different decoders for the following 
languages: Catalan, German, French, Italian, Polish, Spanish, 
Swedish, UK and US English. 

3.2. Language recognition SVM 

The SVM approach, proposed in [17] for speaker recognition, 
uses the phone streams of several utterances of a speaker to 
produce her/his target model. We applied the same technique to 
language identification [8]. 

Given a phone sequence produced by a phonetic transcriber, 
the frequency of the n-grams within the sequence is computed. 
The frequency of each n-gram is normalized by the square root 
of its frequency in the whole training set. By appending in a 
single vector all these normalized n-gram frequencies, we 
obtain the so called Term Frequency Log-Likelihood Ratio 
(TFLLR) kernel [17]. A linear SVM model of a target language 
is trained by using the vectors computed for each segment of the 
target language as positive examples, and the set of the vectors 
of all the other language segments as negative examples. 

3.2.1. Multigrams 

Usually, the TFLLR kernel include all n-grams n=0,1,…N that 
appear in the sequences of the training set. The total number of 
the different n-grams (up to order 3) that appear in our training 
corpus for the 9 language transcribers is shown in line 1 of 
Table 1. The dimension of the normalized vector is potentially 
huge, but since we use relatively short segments, the resulting 
vectors are sparse.  

For this evaluation, we used two different TFLLR kernels, 
the first one based on trigrams, and the second one relying on 
pruned multigrams. The use of multigrams can provide useful 
information about the language by capturing regularities of 
variable length within the sequences [18]. We prune the list of 
the n-grams appearing in the training set according to a simple 
criterion. For each phonetic transcriber, we discard all the n-
grams appearing in the training set less than a preset percentage 
of the average occurrence of the unigrams in the training 
corpus. The threshold has been fixed to 0.05% in these 
experiments. Line 2 of Table 1 shows the distribution of the 
number of n-grams resulting by the application of this threshold. 
It is interesting noting that the total number of trigrams and 
four-grams is balanced, and that a fair amount of high order n-
grams exist that possibly describe words or sub-words. 

A single score is produced by a phone model because we 
include in a single vector the normalized frequencies of the n-
grams of all the phonetic transcribers. 

4. Training and development data 
We trained a gender-dependent model for each of the target 
languages/dialects in the NIST LRE07 [9] (and a gender- 



Table 1. Total number of different n-grams in the 
training set for 9 language transcribers. 

N-gram 1 2 3 4 5 6 All 
Not-pruned 344 8785 232091 - - - 241220 

Pruned 344 8525 90451 90979 8995 112 199406 
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Figure 1. Range of Min DCFs as a function of the number of 
fused tokenizers. 

 
independent model for the GMM-SVM approach) using the 
following corpora: 
• All data of the 12 languages in the Callfriend corpus. 
• Half of the NIST LRE07 development corpus. 
• Half of the OHSU corpus provided by NIST for LRE05. 
• The Russian through switched telephone network [12]. 
• Since we estimated that the development data provided by 

NIST for Bengali and Thai were not sufficient, we searched 
a source of audio file in these languages in the net. We 
found in [19] such a source, where streams of religious 
readings excerpts are available. Although these data do not 
match the conditions of the other corpora because they 
consist of read, microphone speech collected through an 
unusual channel, our experiments on the development sets 
seemed to support the idea that the models of the these two 
languages were more effective.  

For development we used the following data sets: 
• The second half of the development corpus provided by 

NIST for the LRE07 evaluation, divided into two sets for 
estimating the backend parameters. 

• Half of the OHSU corpus provided by NIST for LRE05, 
halved again into two development sets. 

• Development and test set provided by NIST for LRE03. 
• About 6 hours of Farsi and 1 hour of Vietnamese excerpts 

from [19] have been selected to enrich the development set, 
which for these languages included segments that were (too) 
easily recognized.   

5. Score combination 
The five scores produced by the acoustic models (two gender 
dependent GMMs and PGMMs, and one gender independent 
GMM-SVM) and the two scores of the phonetic models are 
combined by means of a linear SVM backend to produce the 
final score. The final backend for the evaluation is trained on 
the set of scores obtained by the models on all the development 
data described in Section 4. 
The scores of the segments of all the other languages/dialects in 
the close set are negative examples for training a target  
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Figure 2. Performance comparison of the acoustic and 

phonetic systems, alone and in combination. 

language SVM model. The score for the current language model 
is T-normalized by computing the statistics on the other 
language GMMs. The final score is then obtained by log-
likelihood normalization [2][3].  

According to the LRE07 evaluation plan [9], for each pair 
<test segment – language model> a decision True/False must be 
given in the result file, based on the final score produced by 
each model. Thus, a threshold must be evaluated on the 
development sets. Using one development subset for estimating 
the backend parameters, and testing on the other one, we 
evaluated for each task defined in [9] the threshold that 
optimized the cost performance. Inverting the role of the 
development subsets, another threshold is obtained. Our 
decision threshold is simply the mean of these two values. 

6. Experiments 
We present the results of a set of post-evaluation experiments 
aiming at analyzing the relative performance of the acoustic and 
phonetic systems and their combination. All the results refer to 
the close–set 30 sec General Language Recognition condition 
[9], where the task was to discriminate among 14 languages.  

The first set of experiments evaluated the performance 
improvement due to the combination of different tokenizers. 
Figure 1 shows the range of the Decision Cost Functions (DCF) 
[9] obtained fusing a given number of tokenizers of different 
languages. It is worth noting that most of the gain is obtained 
fusing 3 or 4 tokenizers, and that the identity of the tokenizer 
languages is of minor importance when more than three of them 
are involved in the fusion. However, appreciable improvement 
is obtained by fusing more and more tokenizers. 

The comparison of the performance of the acoustic and 
phonetic systems, alone and in combination, is summarized in 
Figure 2. The first three bars show the minimum DCF of the 
three acoustic systems alone. The next pair of bars gives the 
results of the combination of the GMM and GMM-SVM 
models, and their combination with the PGMM system 
respectively. The phonetic scores, shown in the next two bars of 
the figure, are far better than the acoustic ones for this 
condition. Moreover, the pruned multigram models are better 
than the trigram models, and as effective as the combination 
with the other systems. This does not happen for the shorter 
duration tests. For the shorter duration conditions, the PGMM 
system performs better than the ones based on GMMs. The last 
2 bars represent the results of the combination of all the systems 
on the actual and development tests respectively. 

Figure 3 shows the results of the fusion of the acoustic 
systems, of the phonetic systems, and their overall combination  
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Figure 3. Comparison of the performance of the systems 

on two development sets and on the LRE07 test set. 
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Figure 4. Min (dashed) and actual DCF per language 

Table 2. Min and actual (official) DCFs for the closed 
set tests we participated in LRE07. 

Languages 3s 10s 30s 
General LR  

(14 languages) 
0.1331 
0.1436 

 0.0442 
 0.0548 

0.0112  
0.0195 

English  
(American-Indian) 

0.2031 
0.2172 

 0.1203  
 0.1437 

 0.0813 
 0.1094 

Chinese 
 (Cantonese, Mandarin, Min,Wu) 

0.1699 
0.1878 

 0.0620 
 0.0737 

 0.0217 
 0.0304 

Mandarin  
(Mainland, Taiwan) 

0.2577 
0.2672 

0.1197  
0.1788 

 0.0891 
 0.1135 

Hindustani  
(Hindi, Urdu) 

0.3609 
0.3781 

 0.3406 
 0.3984 

 0.3188 
 0.3484 

 
using the LRE07 tests and the development sets described in 
Section 4.Comparing the first three bars, it can be noticed that 
the acoustic models evaluated on the two development sets did 
not generalize well to the LRE07 tests, whereas the phonetic 
models do not show such performance degradation (see the 
second set of bars in the figure). The results of the fusion of the 
phonetic and acoustic systems, represented by the last set of 
three bars, shows that although the acoustic systems were not as 
good as the phonetic systems in this condition, their 
contribution is substantial to the overall performance. 

Figure 4 summarizes the results obtained for the 14 
languages of the LRE07 30 sec tests. Globally, a min DCF of 
0.0110 has been obtained. The relevant gap in the average 
actual DCF of 0.0195 is mainly due to an erroneous setting of 
the decision threshold for Vietnamese. The results highlight the 
difficulties in setting appropriate decision thresholds whenever 
the training data of a language are scarce (see Bengali, Thai), or 
the test data are collected through previously unseen channels 
(see Farsi, Russian, and in particular Vietnamese). 

Table 2 shows the min and actual DCFs obtained by our 
system in all the closed set tests of LRE07. Particularly 
interesting are the results for the Chinese languages considering 
that we did not use any oriental language phonetic transcriber. 

 

7. Conclusions 
The components and the performance of a system, exploiting 
state-of-the art techniques have been presented. 
From the LRE07 evaluation we have learned that using data not 
homogeneous with the LRE corpora used by NIST in the 
evaluations is not the best choice. This leaves open the problem 
of language recognition in highly mismatched conditions. 

8. References 
[1] A.F. Martin, and A.N. Le, “NIST 2007 Language Recognition 

Evaluation”, in Proc. Odyssey 2008,”, 2008. 
[2] W.M. Campbell, J.R. Campbell, D.A. Reynolds, E. Singer and 

P.A. Torres-Carrasquillo, “Support Vector Machines for Speaker 
and Language Recognition”, in Computer Speech and Language, 
Vol. 20, pp. 210-229, 2006. 

[3] F. Castaldo, D. Colibro, E. Dalmasso, P. Laface, C. Vair, 
“Compensation of Nuisance Factors for Speaker and Language 
Recognition”, IEEE Trans. on Audio, Speech, and Language 
Processing. Vol. 15-7, pp. 1969-1978, 2007. 

[4] F. Castaldo, D. Colibro, E. Dalmasso, P. Laface and C. Vair, 
“Language Identification using Acoustic Models and Speaker 
Compensated Cepstral-Time Matrices”, Proc. ICASSP 2007, Vol. 
IV, pp. 1013–1066, 2007. 

[5] W. M. Campbell, D. E. Sturim, and D. A. Reynolds, “Support 
vector machines using GMM supervectors for speaker 
verification,” IEEE Signal Process. Lett., vol. 13, no. 5, pp. 308–
311, May 2006. 

[6] W.M. Campbell, J.R. Campbell, D.A. Reynolds, E. Singer and 
P.A. Torres-Carrasquillo, “Support Vector Machines for Speaker 
and Language Recognition”, Computer Speech and Language, 
Vol. 20, pp. 210-229, 2006.  

[7] L. Burget, P. Matejka, and J. Cernocky, “Discriminative Training 
Techniques for Acoustic Language Identification,” in Proc. 
ICASSP 2006, Vol. I, pp. 209-212, 2006. 

[8] F. Castaldo, E. Dalmasso, P. Laface , D. Colibro, C. Vair, 
“Acoustic Language Identification Using Fast Discriminative 
Training”, Proc. Interspeech 2007, pp. 346-349, 2007. 

[9] Avaliable at www.nist.gov/speech/tests/lang/2007/ 
[10] D. A. Reynolds, T. F. Quatieri and R. B. Dunn, Speaker 

Verification Using Adapted Gaussian Mixture Models, Digital 
Signal Processing, Vol. 10, pp. 19-41, 2000. 

[11] P.A. Torres-Carrasquillo, E. Singer, M. A. Kohler, R. Greene, D. 
A. Reynolds, and J. R. Deller Jr., “Approaches to Language 
Identification using Gaussian Mixture Models and Shifted Delta 
Cepstral Features,” in Proc. ICSLP 2002, pp. 90-93, 2002. 

[12] Available at http://www.ldc.upenn.edu/Catalog. 
[13] Available at http://www.speechdat.org/SpeechDat.html. 
[14] W. Campbell, T. Gleason, J. Navratil, D. Reynolds, W. Shen, E. 

Singer, and P. Torres-Carrasquillo, “Advanced Language 
Recognition using Cepstra and Phonotactics," IEEE Odyssey 
Speaker and Language Recognition Workshop, Puerto Rico, 2006. 

[15] http://www.loquendo.com/en/technology/asr.htm 
[16] W.M. Campbell, J.R.Campbell, D.A. Reynolds, D.A. Jones and 

T.R. Leek, “High-level Speaker Verification with Support Vector 
Machines”, in Proc. ICASSP 2004, Vol I, pp. 73-76, 2004. 

[17] W. M. Campbell, J. P. Campbell, T. P. Gleason, D. A. Reynolds, 
W, Shen, “Speaker Verification Using Support Vector Machines 
and  High-Level Features”, IEEE Trans. on Audio, Speech and 
Language Proc., vol. 15, n. 7,  pp. 2085-2094, September 2007. 

[18] S. Deligne, F. Bimbot, “Inference of variable-length linguistic and 
acoustic units by multigrams”, Speech Communication vol. 23, pp. 
223–241, 1997. 

[19] /http://globalrecordings.net, “Telling the story of Jesus in every 
language”, Global Recordings Network. 


