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Behavioral Modeling of Digital Devices Via
Composite Local Linear State–Space Relations

Igor S. Stievano, Member, IEEE, Claudio Siviero, Member, IEEE,
Flavio G. Canavero, Fellow, IEEE, and Ivan A. Maio, Member, IEEE

Abstract—This paper addresses the generation of accurate and
efficient behavioral models of digital ICs. The proposed approach
is based on the approximation of the device port characteristics
by means of composite local linear state–space relations whose
parameters can effectively be estimated from device port transient
responses via well-established system identification techniques.
The proposed models have been proven to overcome some inherent
limitations of the state-of-the-art models used so far, and they can
effectively be implemented in any commercial tool as Simulation
Program with Integrated Circuit Emphasis (SPICE) subcircuits
or VHDL-AMS hardware descriptions. A systematic study of the
performances of the proposed state–space models is carried out on
a synthetic test device. The effectiveness of the proposed approach
has been demonstrated on a real application problem involving
commercial devices and a data link of a mobile phone.

Index Terms—Circuit modeling, digital ICs, electromagnetic
compatibility (EMC), I/O ports, macromodeling, signal integrity,
system identification.

I. INTRODUCTION

NOWADAYS, the design of modern high-performance
electronic systems requires, in the early stage of the de-

sign process, the accurate prediction of signals propagating on
system interconnects. Such a prediction, which allows design-
ers to perform both signal integrity analyses and electromag-
netic compatibility assessments, is mainly carried out via the
numerical simulation of critical interconnection paths such as
high-speed serial links. Within this framework, the availability
of accurate and efficient models of digital ICs plays a key role.
IC port behavior can neither be considered ideal any longer
nor be represented by a lumped linear termination. Hence,
suitable behavioral models (or macromodels) accounting for the
nonideal analog operation of device ports are required.

Device models are currently based on equivalent circuits
representing a simplification of their internal structure, as sug-
gested by the I/O Information Specification (IBIS) [1]. Re-
cently, other approaches to IC macromodeling that complement
the IBIS resource and provide improved accuracy for recent
device technologies have been proposed [2], [3]. These ap-
proaches are based on the estimation of parametric relations
from port voltage and current responses to a suitable set of
stimuli applied to the IC ports. The parametric relations used
so far for the generation of IC models have been sought for
within the class of discrete-time Nonlinear Auto Regressive
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with eXtra input (NARX) parametric relations expressed in
terms of Gaussian or sigmoidal expansions. This choice arises
from the large availability of methods for parameter estimation,
as well as from the nice features of these models to approximate
almost any nonlinear dynamical system [6]. NARX parametric
relations have been proven to accurately reproduce the behavior
of a wide class of commercial devices [2], [3]. In addition, they
turn out to be very compact, i.e., leading to models with a very
small size. Owing to this, the estimated models, which were
implemented in a simulation environment, are very efficient.

They allow one to speed up the simulation of the devices,
with simulation times that are 10 to 1000 times faster than
the those required to simulate the transistor-level models of
devices. In spite of these advantages, NARX relations have
some inherent limitations: 1) The stability of the models cannot
easily be imposed a priori or even during the training process
without impact on model accuracy. It is worth remarking that
locally unstable models must be avoided, even if they reproduce
the reference responses used in the model estimation well. In
fact, numerical simulation of these models for different signal
and load conditions may lead to poor results. 2) Fully nonlinear
optimization algorithms are required for the computation of
model parameters, and model accuracy depends on the initial
guess of parameters and on the local minima of the cost
function. 3) Higher order dynamical effects may not readily
be represented by these models. 4) Model estimation for real
devices with multiple ports is troublesome and has an impact
on the quality of the estimated models. As an example, the
generation of device port models, including the effects of the
neighboring ports, suffers from the increase in complexity of
the approximation problem.

To address the previous limitations, along with the require-
ment of avoiding the use of complex model structures, which
have an impact on the simulation efficiency, model represen-
tations based on composite local linear state–space (LLSS)
models [12] are assessed. LLSS models are nonlinear discrete-
time state–space parametric equations defined by a weighted
sum of linear state–space models that can effectively be used to
approximate the port behavior of a nonlinear dynamic system
and whose parameters can automatically be computed from
system responses only. LLSS models provide a very good
compromise between model accuracy and model efficiency for
the modeling of real systems with a complex dynamic behavior
and are good candidates to be used for the modeling problem at
hand. Preliminary results on the application of LLSS models
for the behavioral modeling of digital devices are reported
in [16].

0018-9456/$25.00 © 2008 IEEE
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Fig. 1. Typical IC output buffer with its relevant electrical variables.

The rest of this paper is organized as follows: Section II in-
troduces the model structures suggested in the literature for the
behavioral characterization of the IC ports. Section III briefly
reviews the basic theory of local linear state–space models
applied to system identification problems. Section IV deals with
the systematic analysis of the performances of the state-of-
the art NARX relations considered so far and of the proposed
state–space relations in approximating the port behavior of
a test device. Finally, Section V summarizes the results on
the application of the proposed approach to a real application
problem involving commercial devices and a typical mobile
data link. Summary and conclusions are given in Section VI.

II. MODEL STRUCTURE

For the sake of simplicity, the following discussion is based
on single-ended output buffers, such as those shown in Fig. 1.
The results, however, are extensible to input and supply ports
and different device technologies [2]–[4]. A macromodel for
output buffers reproduces the electric behavior of the port
current i(t) and voltage v(t) variables and is defined by the
following two-piece relation [2], [3]:

i(t) = wH(t)iH (v(t), d/dt) + wL(t)iL (v(t), d/dt) (1)

where iH and iL are submodels describing the nonlinear dy-
namic behavior of the port in the fixed high and low logic
states, respectively, and wH and wL are weighting signals
describing state transitions (they play the same role as internal
nonmeasurable variables driving the buffer state).

The estimation of model (1) amounts to selecting a model
representation for submodels iH and iL and computing the
model parameters. It is worth noting that the selection of the
model representation, along with a good algorithm for the esti-
mation of model parameters, is the most critical step of the
modeling process. Many possible choices are available in the
literature, as shown in the succeeding sections and in past
contributions on the modeling of digital devices [2]–[4].

Once the model representation for submodels iH and iL is
selected, the model parameters are obtained by fitting the model
responses to the reference device responses. As an example,
Fig. 2 shows the ideal setup required to collect the device port
responses carrying the information on the device behavior at
fixed high output state, thus allowing the computation of the
model parameters of iH . The port responses are computed
while the driver is forced in fixed high output state, and as

Fig. 2. Ideal setup for generation of the port responses required by the
estimation of submodel iH of (1).

suggested in the system identification literature [9], a noisy
multilevel signal is used for voltage source vs(t). More details
on the proper design of the estimation signals for this class of
devices are out of the scope of this paper and can be found
in [3].

When the submodels are identified, the computation of
weighting coefficients wH and wL in (1) is carried out by a
simple linear inversion of the model equation. This is done from
voltage and current waveforms recorded during state transitions
events, as suggested in [2].

Finally, the last step of the modeling process amounts to
coding the model equations in a simulation environment. This
can be done by representing (1) in terms of an equivalent circuit
and then implementing the equivalent as a Simulation Program
with Integrated Circuit Emphasis (SPICE)-like subcircuit. The
circuit interpretation of model equations is a standard procedure
that is based on the use of resistors, capacitors, and controlled
source elements. As an example, the SPICE-like implementa-
tion of a generic nonlinear dynamic parametric model is dis-
cussed in [2] and [3]. As an alternative, model (1) can directly
be plugged into a mixed-signal simulation environment by
describing model equations via hardware description languages
such as Verilog-AMS or VHDL-AMS.

As outlined in the introduction, NARX relations based on
gaussian or sigmoidal expansions have widely been used for
submodels iH and iL in (1). They have successfully been
applied to real application problems, as demonstrated by the
results published in [2]–[4]. However, to address the inherent
limitations of this class of representations, the LLSS models
are considered to possibly be good candidates to complement
the previous relations and thus to improve the estimated models
for the applications at hand.

III. LLSSS

The idea underlying the LLSS modeling methodology is the
approximation of the complex dynamic behavior of a nonlinear
dynamic system by means of the composition of local linear
models [11], [12]. The whole operating range of the system
is partitioned into smaller operating regions, where the system
behavior is approximated by a linear state–space equation. Even
if this idea is not completely new and has already been inves-
tigated in past literature, the implementation of [11] and [12]
has several strengths, including the nice feature of providing
the automatic computation of local linear models, as well as the
generation of the weights for the local models from I/O system
responses only.

As an example, for submodel iH(v(t), d/dt) in (1), an
LLSS representation is defined by the following discrete-time
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Fig. 3. Equivalent circuit defining the one-port nonlinear dynamic modeling test case in Section IV.

state–space equation:




x(k)=
p∑

j=1

ρj (s(k − 1)) (Ajx(k − 1) + bjv(k − 1) + oj)

iH(k)=
p∑

j=1

ρj (s(k))
(
cT

j x(k) + djv(k) + qj

)
(2)

where p is the number of local linear models, and ρj(·) is
the weighting coefficient of the jth local state–space model.
Each local model is defined by state matrix Aj ; vectors bj ,
oj , and cj ; and scalar coefficients dj and qj . Vector x =
[x1, . . . , xn]T defines the n internal states of the state–space
relation. The argument of the weights, i.e., scheduling vector
s(k), corresponds to the operating point of the system and is, in
general, a function of both the input and state variables. Among
the possible choices for s(k), a common solution in local linear
modeling (also used in [11] and [12]) amounts to collecting
the present and past samples of input sequence v(k) only as
follows:

s(k) = [v(k), v(k − 1), . . . , v(k − r)]T (3)

where r is the number of past samples of the input variable.
In this paper, the scheduling vector (3) of the LLSS models
is chosen to be the simplest possible vector, which turns out
to be composed of the present sample of the input signal only
(i.e., r = 0).

In addition, as suggested in [11] and [12], the following
normalized radial basis functions are considered for weight
coefficients ρj(s(k)):

ρj (s(k)) =
φj (s(k))

p∑
i=1

φi (s(k))
(4)

where φj(·) is the jth radial basis function defined as

φj (s(k)) = exp

(
−‖s(k) − tj‖2

β2
j

)
. (5)

Each coefficient defined by (4) varies between zero and one,
and their sum is forced to be one at each operation point of
the system. From (5), the parameters defining each radial basis
function are its position in the space of the scheduling vector
(center tj) and its spreading (scale parameter βj).

Since the computation of model parameters in (2), i.e.,
the local model parameters in (2) and the parameters defin-
ing the weights in (5), requires the solution of a nonlinear
nonconvex approximation problem, a modified version of the
Levenberg–Marquardt (LM) iterative method is proposed in
[12]. The basic version of this algorithm has suitably been
modified to handle the nonuniqueness of a state–space repre-
sentation that may cause ill conditioning of matrices during
model estimation. Parameter initialization is carried out by
means of a deterministic procedure, thus avoiding the depen-
dence of the estimated model to the initial guess of param-
eters. In addition, the initial guess of the matrices defining the
local models is set equal to the matrices of a single global stable
linear model. The parameters of the global linear model are
computed by means of the application of an efficient subspace
identification method of the state–space subspace system iden-
tification (4SID) class [13], [14]. The latter subspace method
also provides automatic computation of the number of internal
state variables, i.e., the size of vector x in (2). In addition, the
initial radial weighting functions ρi are uniformly distributed
over the range of the input sequence. It is worth remarking that,
in the proposed implementation of the algorithm, no additional
constraints are included to enforce stable models during the
training phase, and stability is only verified a posteriori. How-
ever, for the modeling problems at hand, the proposed approach
has been verified to generate stable models. This is a practical
advantage when the models are estimated from real measured
data, where the measurement errors or possible perturbations
of the measurement setup might increase the risk of obtaining
unstable models exhibiting unphysical dynamical behaviors.

IV. MODEL ASSESSMENT

This section summarizes the results of the assessment of the
performances of different possible parametric model represen-
tations that can be used for submodels iH and iL in (1). The
representations we considered in this paper are the state-of-the-
art NARX parametric relations expressed in terms of sigmoidal
expansions [3], [6] (SBF models hereinafter) and the LLSS
relations introduced in Section III.

The assessment is based on the synthetic one-port test device
shown in Fig. 3. This example test case has been devised as a
simplified device port equivalent circuit where the parameters
can be tuned to create a stiff modeling example. The example
test circuit behaves like a driver in a fixed high state, and it can
be represented by submodel iH in (1) only. The results of these
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modeling experiments, however, apply to both submodels of the
two-piece structure (1).

The reference responses of the circuit in Fig. 3, which are
used for both computation of model parameters and model
validation, are obtained via the implementation of the cir-
cuit equations as ordinary differential equations and the use
of the standard integration functions available in the Matlab
environment.

A. One-Port Test Device

The one-port test device in Fig. 3 is composed of the cas-
cade connection of a two-port element representing a realistic
package of a digital IC and a one-port element representing
the nonlinear functional part of the driver circuit. The external
port voltage and current variables v and i play the same role as
the voltage and current signals of the output port of a driver.
The package is modeled by a lumped network of elements
Rpkg, Lpkg, and Cpkg, whose values are representative for a
standard package of the class TSSOP48. On the other hand, the
functional part is mainly characterized by voltage-controlled
current source f1(v1), accounting for the static characteristic
of the output port of a driver in a fixed high logic state. Voltage-
controlled current source f2(v2) accounts for the protection
circuitry. In a real device, f2 is a diode that contributes to
reduce output current i1 whenever port voltage v1 is larger than
power supply battery VDD. Finally, capacitor C represents the
equivalent port capacitance of the silicon part of the device, and
R and L account for the bonding wire link between battery VDD

and f2.
For the sake of simplicity, we considered VDD = 1 V and

the static characteristics f1 and f2 defined by the following
functions: {

f1(v1) = a1 − a2e
−a3v1 − a4v1

f2(v2) = b1e
b2(v2−VDD) (6)

where parameters a1,2,3,4 and b1,2 have been tuned to approx-
imate the characteristics of a real digital device used in high-
speed data communication links (see Fig. 4). It is also worth
noting that the static curve defining f1(v1) does not include
the actual behavior of real devices for voltages v1 < 0 V.
This simplified assumption is done since, in a real operating
condition, a device in the high logic state has voltage values
v(t) [or, equivalently, v1(t)] of larger than zero and, in general,
in a region close to the VDD value. To allow one to reproduce
the results of this section, Table I collects the values of the
parameters defining the static characteristics f1 and f2 of (6)
and of the passive circuit elements of the test circuit.

B. Modeling Setup

Once the test circuit has completely been defined, the differ-
ent selected model representations can be estimated by fitting
the model responses to the reference responses. As outlined in
Section II, the reference port transient responses are obtained
by means of the test setup in Fig. 2, where the driver in
high state is replaced by the one-port circuit element. Voltage
source vs is a multilevel signal with superimposed small noise

Fig. 4. Characteristics of the voltage-controlled current sources of the one-
port test device in Fig. 3. (Top) f1(v1) and (Bottom) f2(v2) are defined by (6)
and the values in Table I.

TABLE I
VALUES OF THE PARAMETERS IN (6) AND OF THE PASSIVE COMPONENTS

COMPOSING THE TEST DEVICE IN FIG. 3

exciting the dynamic behavior of the device for values within
all possible operating voltages. For this test, Rs = 50 Ω, and
voltage source vs is composed of 30 levels spanning the range
[0 V, VDD + ∆], where ∆ = 0.5 V is the accepted overvoltage.
The superimposed signal is a white Gaussian noise with a
standard deviation of 0.1 mV. The flat parts of the signal last
6 ns, which is a sufficient duration to allow the port to reach
steady-state operation. The duration of different transitions is
instead set to 200 ps, i.e., a typical value for the switching time
of modern high-speed devices. Finally, the sampling period
used to discretize the signals is Ts = 10 ps. Fig. 5 shows the
waveform of the multilevel voltage source vs and the corre-
sponding device port voltage and current signals used for model
parameter estimation. It is worth remarking that the values of
the port voltage response v(t) are within the range [0.4,1.3] V,
thus confirming the hypothesis that the device is stimulated in a
realistic operation region, with voltage values larger than zero
and around the nominal power supply value VDD.

As outlined in [3], the design of a multilevel stimulus re-
quired by the identification of nonlinear dynamical systems is
a matter of repeated experiments. For the modeling of digital
devices, we performed a systematic set of experiments that
confirms that the quality of the estimated models is weakly
sensitive to the parameters defining the multilevel signals [5].
As an example, a number of levels in the range of five to some
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Fig. 5. (Top) Voltage signal vs(t) of the Thevenin source (estimation test)
applied to the one-port test circuit in Fig. 3 and the corresponding (middle) port
voltage vs(t) and (bottom) current i(t) responses used for model estimation.

tens are sufficient to yield accurate models reproducing the
original system response well.

C. Parameter Estimation and Performance Assessment

The parameters of the different models have been computed
from the identification voltage and current responses shown
in Fig. 5 by means of the application of standard estimation
algorithms selected among those available in the literature. In
particular, the SBF models are obtained by applying either a
static [7] or a dynamic [8] estimation routine. On the other hand,
the LLSS models are obtained via the modified version of the
LM algorithm outlined in Section III.

To assess the quality of the obtained models, the same test
circuit in Fig. 2 is considered, where the voltage source pro-
duces a multilevel signal that is different from the one used for
the estimation of model parameters. Fig. 6 shows the waveform
of the multilevel stimulus vs(t) and of the corresponding port
voltage and the current waveforms used as the reference signals
for model validation.

As first comparison, Fig. 7 shows the reference port current
response in Fig. 6 and the responses of 20 NARX models
(whose estimation differs only for the random initialization of
model parameters and the application of the different estimation
algorithms [7], [8]). From this first test, it is clear that the
SBF models produce a band of waveforms around the reference
response. Even if the quality of the best model in reproducing
the reference behavior of the system is good, the variability
of the curves is an indication of the strong dependence of the
model quality to the initial guess of model parameters. In a
similar way, Fig. 8 shows the same comparison for the case of
the LLSS model, thus highlighting the good accuracy of LLSS
models in reproducing the reference responses of the system.
For the latter case, the initialization of model parameters for
the estimation of the LLSS models relies on a deterministic
initialization (4SID methods [13], [14]), and the solution of the
optimization problem is unique.

To point out the differences among the estimated models,
Table II collects the main figures of the performances related

Fig. 6. (Top) Voltage signal vs(t) of the Thevenin source (validation test)
applied to the one-port test circuit in Fig. 3 and the corresponding (middle) port
voltage vs(t) and (bottom) current i(t) responses.

Fig. 7. SBF model validation. (Solid lines) Reference current response in
Fig. 6 and responses of the 20 different SBF models in Table II (dashed line:
SBF model (#3), dotted line: other SBF models).

Fig. 8. LLSS model validation. (Solid line) Reference current response in
Fig. 6 and (dashed line) response of LLSS model #21 in Table II.

to either the SBF or the LLSS model. Table II is organized as
follows: The first two columns report the label of the estimated
models (#1 to #21), the model class (SBF or LLSS), and the
estimation algorithm used to compute the model parameters.
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TABLE II
SBF AND LLSS MODEL PERFORMANCES. THE DIFFERENT COLUMNS (FROM LEFT TO RIGHT) CORRESPOND TO THE RUN NUMBER, MODEL CLASS, AND

ESTIMATION ALGORITHM; MODEL SIZE p, i.e., THE NUMBER OF BASIS FUNCTIONS IN THE MODEL (SBF CLASS) OR THE NUMBER OF LOCAL LINEAR

MODELS (LLSS CLASS); MSE BETWEEN THE REFERENCE AND MODEL RESPONSES FOR THE ESTIMATION AND VALIDATION CASES; CPU TIME

REQUIRED FOR MODEL ESTIMATION; AND PERCENTAGE OF POLES WITHIN THE UNITARY CIRCLE (LOCAL STABILITY ANALYSIS [17]).
THE BEST SBF MODEL #3 AND LLSS MODEL #21 ARE HIGHLIGHTED IN BOLD TEXT

The third column collects the number of sigmoidal basis func-
tions included in the model for the SBF class or the number
of local state–space models for the alternate LLSS class. It is
worth noting that the number of the internal states of the LLSS
model has automatically been computed during the initializa-
tion phase via the 4SID routine and turns out to be 4. The fourth
and fifth columns quantify the model accuracy in reproducing
the identification and the validation signals shown in Figs. 5
and 6, respectively. The accuracy is quantified by the mean
square errors (MSEs) between the reference responses of the
example circuit and the predicted responses. The sixth column
collects the CPU time required for the model estimation (all the
estimation algorithms have been implemented in Matlab on a
desktop PC running at 2 GHz). Finally, the last column provides
an additional performance evaluation, which is aimed at the
assessment of model stability. This is done by means of the
analysis of the eigenvalues of the linearized model equations.
The eigenvalues are computed for each point explored by the

voltage and current responses during the transient simulations
of the validation test, as suggested by [17] (see the Appendix
for more details). The index in Table II shows the percentage
of the poles within the unitary circle of the real-imaginary plot
and provides an indication on the local stability of models.

The figures in Table II highlight that the random initialization
of the SBF algorithms does not affect the estimation accuracy of
the SBF models since all the models have comparable values of
the MSE in the estimation phase. On the contrary, the column
of the MSE values computed from the validation responses
shows how the pseudorandom initialization affects the accuracy
of the models when they are driven by a signal that is different
from the one used for the model estimation. This remark is
confirmed by the validation curves in Fig. 7. For the alternate
LLSS models, the very good accuracy of the estimated model
is confirmed by the corresponding MSE values in Table II.

The last column, which collects the percentage of model
eigenvalues outside the unitary circle, highlights that all the
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Fig. 9. (Left) Eigenvalues of linearized SBF model #3 providing the pre-
diction shown in Fig. 7. (Right) Eigenvalues of the linearized LLSS model
providing the prediction shown in Fig. 8.

TABLE III
MODEL EFFICIENCY: MATLAB SIMULATION TIME FOR THE TRANSIENT

SIMULATION OF THE CURVES IN FIGS. 7 AND 8 AND THE SPEEDUP

INTRODUCED BY THE SBF AND LLSS MODELS

estimated SBF models exhibit a potential local instability dur-
ing transient simulation. As an example, Fig. 9 compares the
eigenloci of the linearized model equation for (left) the best
SBF model labeled as #3 in Table II and (right) for the LLSS
model. As expected by the indexes in the table, it turns out that
all the eigenvalues of the LLSS model are located within the
unitary circle and that the best SBF model has some eigenvalues
lying outside the unitary circle.

The efficiency of the different models has been quantified
by the CPU time required for the computation of the reference
and model responses shown in Figs. 7 and 8. Table III collects
the figures on the efficiency of SBF model #3 and of the LLSS
model, thus confirming that both representations provide a
significant speedup with respect to the reference model. On the
other hand, it is worth remarking that the size (and, therefore,
the efficiency) of the two classes of models is comparable (see
the third column in Table II).

As a final remark, the additional strengths of the LLSS mod-
els are worth discussing. Mainly, the state–space nature of this
class of representations benefits the approximation of devices
with multiple inputs. This feature is extremely important for
the modeling of digital ICs since the models must account for
the effects of additional signals such as the enable or control
voltages and the power supply voltages. Furthermore, the LLSS
models have been proven to be effective for the characterization
of the strongly nonlinear behavior of real devices, possibly with
higher order dynamical effects [16]. These additional strengths,
along with the results collected in this section, confirm the

interest of applying the LLSS modeling methodology to the
generation of device models that can effectively be used in a
simulation environment to replace transistor-level models of
devices and, thus, speed up the simulation of realistic structures.

V. APPLICATION EXAMPLE

In this section, the LLSS modeling methodology is applied
to the characterization of two commercial devices involved in a
real communication link. The idealized structure of the link is
shown in Fig. 10. It represents an RF-to-digital communication
link1 of a mobile phone and consists of (left) a driver IC
that communicates with (right) a receiver IC via a distributed
interconnect and is energized by a common power supply
network. A high-speed Nokia CMOS single-ended transceiver
(VDD = 1.8 V) is used for both the active devices in the figure.
The interconnect is a 3-cm-long multichip module land, which
is modeled as an ideal transmission line whose parameters are
obtained from the information on the geometry of the structure
and on the substrate information (the characteristic impedance
is Zc = 100 Ω and the p.u.l. capacitance is C = 5 pF/m). The
power supply network is modeled by a lumped equivalent, and
no transitions or junctions are included in the transmission path,
for the sake of simplicity. In the example test case considered in
this application, the IC driver produces a data pattern composed
of a 50-bit-long sequence with a bit time of 5 ns and a rise time
of 500 ps.

Specialized macromodels for both the devices in Fig. 10
are estimated, as suggested in Section II. More details on the
specific model structures for single-ended drivers and receivers,
possibly including the power supply voltage fluctuations, can be
found in [3]. As an example, for the driver case, the inclusion
of the power supply voltage in the driver model leads to a two-
piece model structure such as (1) for both the output and the
supply port current, where each submodel such as iH and iL
in (1) includes an additional input accounting for the supply
voltage variable. In this paper, the macromodels are obtained
from the responses of the transistor-level descriptions of the
devices via SPICE simulations (the Mentor Graphics Eldo-
SPICE has been used for this example). However, it is worth
remarking that the modeling methodology can effectively be
applied to real devices from the actual measurements of the
their port transient responses, as already demonstrated in [2].

To assess the accuracy and the efficiency of the proposed
models in predicting the transient voltage waveforms on the
system interconnect and the supply voltage variations, the
complete structure in Fig. 10 is simulated by using either the re-
ference transistor-level models or the LLSS macromodels.

As a first test, Figs. 11 and 12 show the comparison between
the reference and predicted functional voltage signals at the
near and far ends of the system interconnect, respectively.
Figs. 11 and 12 show part of the voltage responses picked from
the complete 50-bit-long sequence. This comparison highlights
the very good correlation between the reference and predicted
responses, thus confirming the accuracy of the proposed models

1Courtesy of Nokia Research Center, Radio Technologies Laboratory,
Helsinki, Finland.
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Fig. 10. Structure the application mobile data link considered in Section V.

Fig. 11. Output port voltage waveform v21 of the driver in Fig. 10 (Solid line:
reference, dashed line: prediction via LLSS macromodels).

Fig. 12. Input port voltage waveform v12 of the receiver in Fig. 10 (Solid line:
reference, dashed line: prediction via LLSS macromodels).

in reproducing the functional signals of a high-performance
interconnect. It is also worth noting that the LLSS macromod-
els provide accurate timing information, i.e., the timing error
computed as the maximum delay between the reference and
predicted v21 and v12 curves in crossing the 0.9-V threshold
turns out to be always less than 2% of the bit time. As an
additional test, Fig. 13 shows the reference and predicted
fluctuations of supply voltage signal v31, thus also confirming a
good agreement of the predictions for the assessment of power-
bounce analysis.

Fig. 13. Fluctuation of power supply voltage v31 of the driver in Fig. 10 (Solid
line: reference, dashed line: prediction via LLSS macromodels).

TABLE IV
CPU TIME REQUIRED BY THE SIMULATION OF THE SETUP IN

FIG. 10 (SEE TEXT FOR DETAILS)

Finally, Table IV collects the CPU time required by the Eldo
simulation of the structure in Fig. 10, where the devices are
represented by either the reference transistor-level models of
devices or the proposed macromodels. From this comparison, it
is worth remarking that the LLSS macromodels can effectively
be used to handle the complexity of realistic structures. For this
example application, they introduce a simulation speedup of
30× with respect to the transistor-level models.

VI. CONCLUSION

This paper addresses the generation of accurate and efficient
behavioral models of digital devices. The nonlinear dynamic
port behavior of a digital IC is approximated by means of
composite local linear state–space models, whose parameters
are computed from device responses via a well-established
technique. The obtained models are implemented as SPICE
subcircuits or hardware descriptions such as VHDL-AMS.
A systematic study aimed at the assessment of model per-
formances is carried out on a synthetic test device, and the
feasibility of the approach for the modeling of real devices
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has been demonstrated by applying it to the characterization
of commercial devices used in a mobile data link.

APPENDIX

This Appendix briefly summarizes the local stability analysis
of the discrete-time LLSS models defined by (2). A similar
procedure can be applied to the alternate class of NARX models
defined by sigmoidal expansions [3], [6]. For conciseness, the
discussion is based on the LLSS model only. Starting from the
state–space relation (2), a first-order Taylor approximation of
the state equation is computed:

x(k) ≈ x(k) + A∆x (7)

where x(k) is the state vector at the current time sample, ∆x
is a generic incremental vector, and A is the square matrix
describing the first-order term, which is given by

A =
p∑

j=1

ρj (s(k − 1))Aj . (8)

It is worth noting that (8) is valid under the assumption that
only the present and past samples of the input variable are
included in scheduling vector s(k).

The local stability analysis is then performed by computing
the eigenvalues of matrix A and by representing the eigenvalues
in the complex real-imaginary plane. An LLSS model exhibits
potential local instability if some eigenvalues of A have a
magnitude that is smaller than one, i.e., they lie on the complex
plane outside the unitary circle.

REFERENCES

[1] I/O Buffer Information Specification (IBIS), Jan. 2004. Ver. 4.1. [Online].
Available: http://www.eigroup.org/ibis/-ibis.htm

[2] I. S. Stievano, I. A. Maio, and F. G. Canavero, “Behavioral models of I/O
ports from measured transient waveforms,” IEEE Trans. Instrum. Meas.,
vol. 51, no. 6, pp. 1266–1270, Dec. 2002.

[3] I. S. Stievano, I. A. Maio, and F. G. Canavero, “Mπ log macromodeling
via parametric identification of logic gates,” IEEE Trans. Adv. Packag.,
vol. 27, no. 1, pp. 15–23, Feb. 2004.

[4] I. S. Stievano, I. A. Maio, F. G. Canavero, and C. Siviero, “Parametric
macromodels of differential drivers and receivers,” IEEE Trans. Adv.
Packag., vol. 28, no. 2, pp. 189–196, May 2005.

[5] C. Siviero, I. S. Stievano, and I. A. Maio, “Behavioral modeling of IC out-
put buffers: A case study,” in Proc. Ph.D. Res. Micro-Electron. Electron.
Conf., PRIME, Lausanne, Switzerland, Jul. 25–28, 2005, pp. 366–369.

[6] J. Sjöberg et al., “Nonlinear black-box modeling in system identification:
A unified overview,” Automatica, vol. 31, no. 12, pp. 1691–1724, 1995.

[7] M. T. Hagan and M. B. Menhaj, “Training feedforward networks with the
Marquardt algorithm,” IEEE Trans. Neural Netw., vol. 5, no. 6, pp. 989–
993, Nov. 1994.

[8] Y. H. Fang, M. C. E. Yagoub, F. Wang, and Q. J. Zhang, “A new
macromodeling approach for nonlinear microwave circuits based on re-
current neural networks,” in Proc. IEEE MTT-S Int. Microw. Symp., 2000,
pp. 883–886.

[9] L. Ljung, System Identification: Theory for the User. Englewood Cliffs,
NJ: Prentice-Hall, 1987.

[10] R. Murray Smith and T. A. Johansen, Multiple Model Approaches to
Modeling and Control. New York: Taylor & Francis, 1997.

[11] V. Verdult, “Nonlinear system identification: A state-space approach,”
Ph.D. dissertation, Univ. Twente, Enschede, The Netherlands, Mar. 2002.

[12] V. Verdult, L. Ljung, and M. Verhaegen, “Identification of composite
local linear state-space models using a projected gradient search,” Int. J.
Control, vol. 65, no. 16/17, pp. 1385–1398, Nov. 2002.

[13] P. van Overschee and B. DeMoor, Subspace Identification of Linear
Systems: Theory, Implementation, Applications. Norwell, MA: Kluwer,
1996.

[14] M. Verhaegen, “Identification of the deterministic part of MIMO state
space models given in innovations form from input-output data,”
Automatica, vol. 30, no. 1, pp. 61–74, Jan. 1994.

[15] J. Sjöberg, “On estimation of nonlinear black-box models: How to obtain
a good initialization,” in Proc. IEEE 7th Workshop Neural Netw. Signal
Process., Amelia Island Plantation, FL, Sep. 1997, pp. 72–81.

[16] I. S. Stievano, C. Siviero, F. Canavero, and I. A. Maio, “Composite
local-linear state-space models for the behavioral modeling of digital
devices,” in Proc. IEEE Instrum. Meas. Technol. Conf., Warsaw, Poland,
May 1–3, 2007, pp. 1–4.

[17] C. Alippi and V. Piuri, “Neural modeling of dynamic systems with non-
measurable state variables,” IEEE Trans. Instrum. Meas., vol. 48, no. 6,
pp. 1073–1080, Dec. 1999.

Igor S. Stievano (M’98) received the Laurea (M.S.)
and Ph.D. degrees in electronic engineering from the
Politecnico di Torino, Torino, Italy, in 1996 and
2001, respectively.

He is currently an Assistant Professor of cir-
cuit theory with the Dipartimento di Elettronica,
Politecnico di Torino. His research interests include
electromagnetic compatibility, where he works on
the macromodeling of linear and nonlinear circuit
elements, with specific application to the behavioral
characterization of digital integrated circuits and

linear junctions for the assessment of signal integrity and electromagnetic
compatibility effects.

Claudio Siviero (M’06) received the Laurea (M.S.)
degree in electronic engineering from the Politecnico
di Torino, Torino, Italy, in 2003.

He is currently a Researcher with the Dipartimento
di Elettronica, Politecnico di Torino. His research in-
terests include electromagnetic compatibility, where
he works on the macromodeling of logic devices for
the assessment of signal integrity effects in high-
speed digital systems.

Flavio G. Canavero (F’07) received the Laurea
(M.S.) degree from the Politecnico (Technical Uni-
versity) di Torino, Torino, Italy, and the Ph.D. de-
gree from Georgia Institute of Technology, Atlanta,
in 1986.

He is currently a Professor of circuit theory
with the Dipartimento di Elettronica, Politecnico
di Torino. His research interests include signal in-
tegrity and EMC design issues, interconnect model-
ing, black-box characterization of digital integrated
circuits, EMI, and statistics in EMC.

Prof. Canavero is the Chair of URSI Commission E and the Editor for
the Practical Papers Section of the EMC Newsletters and Organizer of
two IEEE Workshops in 2007 (Signal Propagation on Interconnects and
European Systems Packaging Workshop). He was the Editor-in-Chief of the
IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY.

Ivan A. Maio (M’07) received the Laurea (M.S.)
and Ph.D. degrees in electronic engineering from the
Politecnico di Torino, Torino, Italy, in 1985 and
1989, respectively.

He is currently a Professor of circuit theory
with the Dipartimento di Elettronica, Politecnico
di Torino. His research interests include electro-
magnetic compatibility and circuit theory, where he
works on line modeling and linear and nonlinear
circuit modeling and identification.


