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Abstract

This paper introduces a new scheme for the identification of
multivariate behavioral macromodels from tabulated frequency-
domain data. The method produces closed-form parametric ex-
pressions that reproduce with excellent accuracy the external
port behavior of the structure, both as function of frequency
and one or more external parmeters. The numerical robustness
of the main algorithm is demonstrated on two significant exam-
ples.

Introduction and motivations

Model-based design is a standard practice in many different
application areas. From initial concept to product finalization,
various modeling steps take place, in order to choose the best
candidate for protolype construction, testing, and linal produc-
tion. This is particularly true in the design of electrical inter-
connect structures, where system complexity calls for a fully
automated design and optimization workflow.

Even for simple interconnect structures, many free variables
must be determined in order to optimize the system perfor-
mance. Examples can be geometrical parameters such as in-
terconnect width and spacing or substrace height, or material
parameters such as conductivity or permittivity. The particu-
lar combination of such parameters leading to best system per-
formance is usually determined through lenghty optimization
runs, often resorting to full-wave electromagnetic tools for the
computation of the electrical response for any given parameter
configuration.

This paper proposes a technique for the identification of mul-
tivariate macromodels. These can reproduce with excellent ac-
curacy the response of a structure as a function of both fre-
quency and external parameters within a prescribed range. Only
a limited number of tabulated frequency responses at discrete
parameters values is needed for the indentification of the para-
metric macromodel. A simple closed-form interpolation rule
is then applied to recover the model response for any arbi-
trary parameters configuration. Since the model representation
is rational in the frequency-domain, a parameterized SPICE-
compatible model synthesis is possible, thus enabling fast opti-
mization runs and what-if analyses in a CAD environment. This
paper buils on preliminary results documented in [1]. Two ma-
jor improvements are introduced, leading to robust and efficient
numerical schemes.

Parametric formulation of electrical macromodels

We consider a linear system with a frequency response
H{jw, \) which is also function of a design parameter A. For
the sake of simplicity, we focus on a scalar response with a sin-
gle parameter, although the technique is general and applicable
to the multivariate multiport case [1]. A set of samples of the
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frequency response is given'

Hy = H{jwy, \) k=1, ..
for different frequencies w = wy, and parameter values A = A;.
These data can be the outcome of independent measurements or
full-wave simulations performed for fixed values A = A; of the
parameter within the range [A, A].

The first step in the identification of a parametric model
H{(jw, \) from (1) is the definition of its functional form. It
turns out that the choice of a direct parameterization of poles
and residues is not appropriate, due (o the highly non-smooth
behavior of the poles with respect to the parameter A. A suit-
able formulation for parametric models was proposed in {1],
based on the following general property of lumped electrical
networks [2].

Theovem 1. Let ) be the value of a resistor, inductor or capac-
itor in an arbitrary lumped circuit. Then, any network transfer

Junction, including Z, Y, and S representations, can be written

as a ratio of polynomials

S (@0 + QuiN)s”
Zn(QnO ; qnl)\)sn

where numerator and denominator coefficients are linear in A,

H(s,\) )

This closed-form is valid independently on the system order
and complexity. Moreover, the coefficients are linear in A, i.e.,
they have the smoothest and simplest dependence on the param-
eter. In principle, this representation does not hold for generic
parameters such as geometrical and material properties of in-
terconnects or passive components. However, its generalization
to higher order polynomials is expected to provide an excellent
uniform approximation whenever the frequency response has
a smooth dependence on the parameters. The adopted model
representation is therefore

Zn(@no + inf)\ + .. ~Qn'ﬁ’ﬂ 'r'n)sa'r
Zn(qm Fanid b gum AT )s™
Zn,m Qnm 2" nm ( 5, /\>

E— - {3)
Zn, m Inm Ynm ( 3, ')\)

H(s, \) =

whete Unm (s, A) = AN™s™ denote the basis functions used in
the expansion ol numerator and denominator.
Model identification from tabulated data

This section proposes a numerical procedure for the esti-
mation of coefficients Gy and gny, so that the parametric

'The minimum and maximum values of a quantity 7 are denoted, respec-
tively, as nn and 7; sums are written as >, with the index varying from 0 up
to 2.

n’
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model (3) accurately fits the given samples (1). The objective is
to minimize the data to model error defined as

- ZZ]HUML Ay — H;,r . {4)

The mumerical minimization of £ is a very challenging task, for
two main reasons. First, the presence of the unknowns gnm,
at denominator of (3) makes the minimization problem nonlin-
car. Therefore, a direct numerical solution is inefficient and
possibly affected by the local minima issue. Second, the pos-
sibly high-order powers of s and A in (3) may lead to strong
ill-conditioning, thus preventing the convergence of the numer-
ical computations. Our proposed solution to these problems is
now illustrated.

For the non-parametric case both issues are effectively ad-
dressed by the well-known Vector Fitting (VF) algorithm [3].
A direct extension of VF to the problem under consideration
does not appear to be feasible, since it would imply an explicit
parameterization of the poles, which we want to avoid. A pos-
sible alternative is based on a generalization to the parametric
case of the Sanathanan-Koerner (SK) iteration [4], as suggested
in [1]. This paper introduces several improvements, allowing
for better accuracy and robustness.

We first consider the ill-conditioning problems arising from
the polynomial nature of (3). This problem can be effectively
solved by choosing a different set of basis functions. Therefore,
we rewrite (3) as

N(s,A)  2nm Bnmdnm(s,A)

H , /\ — - - T, )
( ) D(\S-/ A) Zn m I'nm ¢)77,T!’l/(57 /\) / (5)

where the new basis functions are defined as first order rational
functions of frequency

ljv I /\ f - 0
(/ﬁm'n/ <S7 /\) = i . _ or (6)
:Zji/n ('X>( - a’n) f()f 73 ?é O
where -
(A Tm 2 1 (7

is the m-th order Chebychev polynomial applied to the rescaled
parameter A, and where the poles a,, are fixed. Such poles a,
can be linearly distributed over the bandwidth wy, wz] spanned
by (1), as in routine VI applications. A better solution is ob-
tained by applying standard VF to the system frequency re-
sponse for a fixed value of A, We adopt this sccond choice,
since it enhances the convergence speed of the overall fitting
process.
Substituting (5) into (4), we get

2
oI 2
Z Z n m B — rn,m,Hkl] Prm (J“}k? At)

et 1—1 Z” m Trw‘n,(vb’n/’m, (7wk~ /\f)

, (&)

which is still nonlinear in the unknowns r,,,,. The SK itera-
tion [4] provides a way (o linearize the error minimization prob-
lem. In essence, (8) is solved iteratively. At each ileration ¢, the

Frequency | Parameter | Condition number
Polynomial | Polynomial 6.9 x 107
Rational Polynomial 5.3 x 10°
Rational | Chebychev 1.3 x 10°
Table 1: Condition number of first SK iteration for poly-

nomial (3), rational-polynomial [1] and proposed rational-
Chebychev (6) basis functions.

unknown denominator is replaced by its known estimate pro-
vided by previous iteration ¢ — 1

N N 2
. Pl 1) Ty *
kot Zn,m ]:[{227)71 - 7£zlm Hyt| fnm \IWhs )\i)
=22 GR—— )
E=11=1 Z” mTam  Pnm <.7wk,; /\U
The iterative scheme is setup with r&? = 1 and r%ﬂ,ﬁl
0 Vn,m > 0. It can be shown that the resulting linear

least squares problem is unbiased and asymptotically equiva-
lent to (8). Standard and robust numerical techniques are avail-
able for the minimization of (9). The benefits of proposed ap-
proach are outlined in Table 1, which reports the condition num-
ber of the first SK iteration for different choices of basis func-
tions. Good numerical performance is insured when the condi-
ton number is as small as possible, condition fulfilled by the
proposed technique.

Normalization of the model coefficients

A close inspection of (9) reveals that the SK iteration ad-
mits the trivial solution RE,'??,,, r,(,‘m = 0, Vn, m. Therefore,
some non-triviality constraint must be added. It turns out that
the specific choice of this constraint has a dramatic influence
on the quality of the results. The simplistic solution of fixing
one of the model coefficients, e.g. rgo = 1 as used in [1], may
slow down or even prevent the convergence of the SK iteration.
In this paper, we propose a better normalization scheme that
guaranices improved performance both in terms of accuracy
and convergence speed. This normalization is inspired to the
relaxed normalization developed for VF [5]. It is established by
adding to the least squares problem for the minimization of (9)
the constraint

(#) Vb (4 )
v, 'nm — ] I(Q‘ JWEs /\i

ZRC > rm( 77777 . nm Lo o
}\Z Zm n Tnm W?Mﬂ(/""i /\l)

This constraint is enforced in least squares sense and guarantees
a non-vanishing weighted average of the coefficients rﬁfﬁ,,/, thus
making (5) well-defined at all iterations.

Uniform stability of parametric models

Stability is a fundamental property for macromodels, requir-
ing all model poles p,, 10 be in the left half plane. For paramet-
ric models like (5), uniform stability within the entire parameter
range implies

Re {p,(\)} <0 VAe [\ (1)

Since poles are only indirectly evaluated from (5), checking and
enforcing (11)is a dilficult task.



A direct test of (11) can be performed only with a brute force
approach, by gridding the interval [\, \] at many points and
checking (11) at each location. Although being simple, this
solution is not optimal, since it may be unable to detect stabil-
ity violations localized in a very small subinterval of [\, A]. Or,
it may be time consuming, if the number of grid points or pa-
rameters is large. Therefore, better mathematical conditions for
uniform stability are highly desirable, to test stability and more
importantly to develop new fitting algorithms with an automatic
stability enforcement. These conditions are presented below.

We start by writing the denominator D(s, A) of (5) as

D(s,)) =ro(A) +e(\) (sT—A) b, (12)

where
X)) =3, ram T (), b=11,...,1)%, (13)
cN) =[N, .. ,re(N)], A =diag(an),  (14)

The poles p, () of (5) are the roots of D(s, A), since the ay,
defining the basis functions cancel out. A direct calculation
shows that p,,(A) can be obtained as the eigenvalues of

AN = [re(N)A — be(N)]/ro(A) (1)

Therefore, uniform stability is guaranteed if and only if A(\)
has all eigenvalues in the left half plane, i.e. is a stable matrix.

Some results are available for checking the stability of pa-
rameter dependent matrices. For the case of degree m < 1,
we have that the stability of A(\) can be conveniently verified
through linear matrix inequalities (LMI), as stated by the fol-
lowing theorem [6].

Theorem 2. If ro()\) is not vanishing® in [\, A], A(X) is stable
Sforall X € [\, A] if a symmetric and positive definite matrix P
exists such that

ATOP +PA(N) <0, AT(NP +PA(N) <0. (16)

Therefore, (5) is stable if a positive definite solution for (16)
exists, as can be numerically verified using convex optimiza-
tion techniques. Moreover, Theorem 2 states important condi-
tions that will be exploited in our future works to enforce model
stability by construction.

The case of m > 1 is more complicated, since results like
Th. 2 involving only the extremes of the parameter range cannot
exist [7]. Stability conditions for this case, like those reported
in [6], will be subject of future investigations.

Application examples

The first application example concerns a via with stub, de-
picted in Fig. 1, connecting a microstrip line and a stripline in a
multilayer PCB. When the via is created, the metallization runs
from top to bottom. The bottom part is unnecessary to elec-
trically connect the two lines and can be a potential source of
Signal Integrity problems. To mitigate these problems, the stub
length A can be adjusted through backdrilling. Our objective is
to generate a macromodel for the 2-port via structure preserving
the dependence on the free parameter 5.

2In the linear case m < 1, 79(\) # 0 for A € [\, A] if and only if 7o ())

and 7o (\) have the same sign [7].
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Figure 1: Backdrilled via cross section.

The scattering parameters of the via were obtained using
an EM solver. Several stub heights » = 0, 200, 400, 478,
606, 716 pm were considered, including both full length (A =
716 pm) and completely backdrilled (A = 0pm) stub. The
parametric SK iteration was applied to compute the macro-
model. First, the model was normalized by setting rg9 = 1
in (5). Unfortunately, this compromised the model identifica-
tion, either because of convergence failure or low accuracy. In-
stead, using the proposed algorithm with normalization (10),
we obtained an accurate macromodel with order n = 14 and
degree m = 3. The model was computed in 2.5 minutes on a
laptop with a 1.83 GHz processor.

To validate the model quality in the whole parameter range,
additional frequency responses were computed for the new pa-
rameter values A = 100, 300, 418, 496 pm. The model
responses at these values were computed by evaluating the
closed-form expression (5). Figure 2 shows a model vs data
comparison for all (reference and validation) values of h, show-
ing a very good agreement with a maximum deviation of
2.2 x 1072, Although stability is not guaranteed by the SK
algorithm, the computed model is stable.

As a second test case, we consider a 2-turns integrated spi-
ral inductor (courtesy of MSDT Consortium, Georgia Tech).
The trace width w and the substrate dielectric constant &,
were considered as parameters. The Sy of the inductor was
computed with a full-wave solver from 0.1 up to 15 GHz for
w = 3,4,5,6, 7mils and £, = 30,35,40. All available data
were used to fit the parametric model, except for the responses
corresponding to w = 4,6 mils and £, = 35, reserved for val-
idation purposes. In Fig. 3, the response of a model (order 6,
degree 2 with respect to w and 1 with respect to £,.) is compared
to the raw data. A very good match can be observed, since the
maximum modeling error is only 4 x 1073 (0.4%). Also in this
example the relaxed normalization (10) was used, leading to a
significantly higher model accuracy. The required computation
time for this example was only 2 s. Also in this case the model
poles are stable, as shown in Fig. 4.

Conclusions

This paper introduced some new developments aimed at
the automated construction of multivariate frequency- and
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Figure 2: Magnitude and phase of So1 of the via macromodel.
Raw frequency data (solid line) and model responses (dash dot
line) are depicted for h = 0, 100, 200, 300, 400, 418, 478, 496,
606, 716 pm.

parameter-dependent macromodels. The theoretical formula-
tion and the devised numerical identification scheme have been
demonstrated to be sound and effective in modeling real-world
interconnects and passive components.
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